Základní vztahy v elektrických
|
|
- Kamil Neduchal
- před 6 lety
- Počet zobrazení:
Transkript
1 Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/ Modernizace didaktických metod a inovace.
2 Klasifikace elektrických obvodů analogové číslicové lineární nelineární lineární parametry prvků nejsou funkcemi napětí a proudu (jsou konstantní) nelineární obvod obsahuje alespoň jeden nelineární prvek, parametry prvků jsou funkcemi napětí a proudu (nejsou konstantní mění se se změnou proudu nebo napětí) se soustředěnými / s rozprostřenými parametry u rozprostřených parametrů Na časové průběhy napětí a proudu mají vliv fyzické rozměry obvodu. Vlnový charakter elektrického proudu rozměry obvodu způsobují zpožďování signálu. 2
3 Cíl výpočtu obvodu Analýza obvodu hledají se časové průběhy obvodových veličin (proudu a napětí) v modelu elektrického obvodu parametry prvků jsou známy. Nejjednodušší typ problému Výpočet parametrů obvodových prvků- je známé schéma obvodu, je znám časový průběh obvodových veličin alespoň na části obvodu složitější typ problému. Není jistá řešitelnost, řešení nemusí být jediné Syntéza obvodu - podle požadovaného chování, nebo průběhu obvodových veličin na vybraných částech obvodu se navrhuje nové schéma obvodu, počítají se parametry obvodových veličin nejsložitější typ problému, zpravidla nevede k jedinému řešení. Nutné zahrnout i další ukazatele, jako realizovatelnost, ekonomické ohledy 3
4 Popis obvodů reálný obvod -> sestavení do schématu elektrického obvodu - fyzikální model obvodu schéma elektrického obvodu forma sítě, uzly, větve, obvodové prvky GRAF obvodu, obvodový prvek jednoznačný symbol, spojovací vodiče, uzly souvislá čára zjednodušený model obvodu: spojovací vodiče a součástky ve schématu jsou považovány za ideální, popisují se základním parametrem (rezistor odpor, kondenzátor kapacita, cívka indukčnost), napěťový zdroj napětí, proudový zdroj proud výpočet veličin (proud, napětí) obvodové rovnice tvoří s na základě Kirchhoffových zákonů 4
5 1. Kirchhoffův zákon součet okamžitých proudů přitékajících do uzlu se rovná součtu proudů z uzlu vytékajících vychází ze zákona kontinuity elektrického náboje i 1 + i 2 + i 3 + i 4 = i 5 + i 6 orientace šipek proudu do uzlu i 1 + i i N = N k=1 i k = 0 vychází ze zákona kontinuitity el. náboje I = J S d S = 0 5
6 2. Kirchhoffův zákon součet okamžitých napětí na uzlech v uzavřené smyčce roven nule. u 1 + u 2 + u 3 + u 4 + u 5 = 0 pro obecný obvod u 1 + u u N = N i=1 u i = 0 vykonaná práce jednotkového elektrického náboje v uzavřené smyčce v elektrickém poli A = E l dl = 0 6
7 Řazení obvodových prvků ve větvi sériové řazení celou větví teče stejný proud i 1 = i 2 = i 3 = i napětí se rozděluje na jednotlivé prvky. u 1 + u 2 + u 3 = u 7
8 Řazení obvodových prvků ve větvi paralelní řazení na všech prvcích jedna okamžitá velikost napětí, u 1 = u 2 = u 3 = u proudy se rozdělují na jednotlivé prvky. i 1 + i 2 + i 3 = i 8
9 Metoda ekvivalence soustavu více prvků, která se do obvodu připojuje dvěma vývody se nahrazuje jedním ekvivalentním prvkem napětí mezi svorkami soustavy a ekvivalentním prvkem stejně jako proud, který oběma svorkami protéká se nemění nový prvek, který nahrazuje předchozí soustavu, se nazývá ekvivalentní náhrada 9
10 Metoda ekvivalence sériové řazení rezistorů stejný proud, součet napětí U I = U 1 + U 2 + U U n I sčítají se odpory vodivosti 1 R = R 1 + R R n G G G G n = 1 G = U 1 I + U 2 I + U 3 I + U n I n 10
11 Metoda ekvivalence paralelní řazení rezistorů stejné napětí, součet proudů I U = I 1 + I 2 + I I n = I 1 U U + I 2 U + I 3 U + + I n U sčítají se vodivosti G 1 + G 2 + G G n = G pro odpory platí 1 R R R R 11
12 Příklad výpočtu ekvivalentní náhrady rezistorů obvod se řeší postupně, po každém kroku kontrola 1. Paralelní spojení sčítání vodivostí 1 = = R R 23 R 2 R 3 R 45 R 4 R 23 = R 2R 3 R 5 R 2 + R 45 = R 4R 5 3 R 4 + R 5 2. Sériové sp. součet odporů: R 123 = R 1 + R 23, R 456 = R 45 + R 6 3. Paralelní sp. souč. vodivostí: R = R 123R 456 R R
13 Metoda ekvivalence řazení induktorů pro nestacionární stav vyloučení vlivu vzájemné i cizí indukčnosti Sériové řazení součet okamžitých napětí: u = u 1 + u u n = L 1 di dt + L 2 di dt + + L n di dt = L di dt L = L 1 + L L n t Paralelní řazení součet okamžitých proudů i = Γ u dt 0 sčítají se inverzní indukčnosti Γ = Γ 1 + Γ Γ n = 1 L L L n = 1 L 13
14 Metoda ekvivalence řazení kapacitorů pro nestacionární stav Paralelní součet okamžitých proudů: i = i 1 + i i n = C 1 du dt + C 2 du dt + + C n du dt = C du dt C = C 1 + C C n Paralelní řazení součet okamžitých napětí u = 1 C sčítají se elastance (převrácené hodnoty kapacit) t 0 i dt S = S 1 + S S n = 1 L L L n = 1 L 14
15 Řazení zdrojů napětí je možné jen sériové řazení napětí se sčítají U 1 + U 2 + U U n = U různá orientace změna znaménka U 1 U 2 U 3 + U 4 = U 15
16 Řazení zdrojů proudu možné jen paralelní řazení proudy se sčítají I = I 1 + I I n různá orientace změna znaménka I = I 1 I 2 I 3 + I 4 16
17 Lineární zdroj napětí přiblížení reálnému zdroji sériově se zdrojem rezistor R i (vnitřní odpor) hodnota napětí klesá lineárně s odběrem proudu U = U i R i I při provozu do zkratu je proud omezen proud nakrátko I k = U i R i 17
18 Lineární zdroj proudu ekvivalent ke zdroji proudu doplnění paralelního konduktoru G i hodnota proudu klesá lineární s růstem napětí na svorkách I = I i G i U při provozu naprázdno je hodnota napětí omezená napětí naprázdno U p = I i G i 18
19 Ekvivalence lineárního zdroje proudu a napětí stejná VA charakteristika - - je možné určit ekvivalenci parametrů lin. zdroj proudu naprázno = lineární zdroj napětí bez zátěže: U i = U P lin. zdroj proudu nakrátko = lin. zdr. napětí nakrátko I i = I k 19
20 Ekvivalentní náhrady v lin. zdrojích zjednodušení složitého schématu sériově řazené prvky zjednodušení libovolné proházení prvků, zachování orientace napěťový zdrojů U 0 = U 1 U 2 + U 3 +, R 0 = R 1 + R 2 + R 3 + paralelně řazené prvky I 0 = I 1 I 2 I 3 + G 0 = G 1 + G 2 + ekvivalence lineárního zdroje proudu a napětí postupné zjednodušování 20
21 Přizpůsobení lineárního zdroje napětí lineární zdroj je přizpůsoben, pokud dostává zátěž maximum možného výkonu. výstup maximum výkonu zátěže platí pro I = I k /2 Příkony prvků zatíženého lin. zdroje napětí vnitřním pasivním prvku P i P i = R i I 2 = U i 2 R i R L + R i 2 zátěži P L P L = I U i R i I = U i 2 R L R L + R i 2 při R i = R L je zdroj přizpůsoben 21
22 Přizpůsobení lineárního zdroje proudu lineární zdroj je přizpůsoben, pokud dostává zátěž maximum možného výkonu. výstup maximum výkonu zátěže platí pro U = U p /2 Příkony prvků zatíženého lin. zdroje napětí vnitřním pasivním prvku P i P i = G i U 2 = I i 2 G i G L + G i 2 zátěži P L P L = U I i G i U = I i 2 G L G L + G i 2 při G i = G L je zdroj přizpůsoben 22
23 Theveninův teorém lineární dvojpól obsahující ideální zdroje nezávislé, řízené a pasivní prvky se může nahradit sériovým spojením zdroje napětí a rezistoru (pasivního dvojpólu) lineárním zdrojem napětí určení náhradních prvků zdroje měření/výpočet napětí naprázdno a proudu nakrátko naprázdno U i = u nakrátko R i = U i /i = U p /I k 23
24 Nortonův teorém lineární dvojpól obsahující ideální zdroje nezávislé, řízené a pasivní prvky se může nahradit paralelním spojením zdroje proudu a pasivního dvojpólu. lineární zdroj proudu určení náhradních prvků zdroje měření/výpočet napětí naprázdno a proudu nakrátko nakrátko - I i = i = I k naprázdno G i = I i /u = I k /U p 24
25 Příklad Určete náhradní parametry napěťového děliče podle Theveninova a Nortonova teorému Určete náhradní parametry Wheatstoneova můstku podle Theveninova a Nortonova teorému 25
26 princip superpozice V lineárních obvodech, ve kterých současně působí několik nezávislých zdrojů, můžeme určit kteroukoli obvodovou veličinu jako součet týž veličin vyvolaných každým zdrojem samostatně. Ostatní zdroje je nutné vyjmout z obvodu korektně, tj. zdroj napětí nahradit zkratem a zdroj proudu rozpojenou větví zkrat - napěťový zdroj o nulovém napětí rozpojený obvod proudový zdroj o nulovém proudu. Zjednodušuje výpočet rozporcování obvodu na jednotlivé vlivy zdrojů 26
27 princip superpozice - příklad v obvodu na schématu vypočtěte proud I 2 řešení dva zdroje - vytvoření dvou obvodů obvod o vyřazeným zdrojem proudu proud I 2 : I 2 = U 0 R 1 +R 2 obvod s vyřazeným zdrojem napětí proud I 2 (dělič proudu): I 2 = I 0 R 1 R 1 +R 2 výsledek součet proudů I 2 a I 2 I 2 = I 2 + I 2 = U 0 R 1 + R 2 + I 0R 1 R 1 + R 2 = U 0 + I 0 R 1 R 1 + R 2 27
28 transfigurace náhrada části obvodů stejné vlastnosti, ale jiná topologie R 1 = R 2 = R 3 = R b R c R a + R b + R c R a R c R a + R b + R c R a R b R a + R b + R c R a = R 1 R 2 + R 2 R 3 + R 1 R 3 R 1 = R 2 + R 3 + R 2 R 3 R 1 R b = R 1 R 2 + R 2 R 3 + R 1 R 3 R 2 = R 1 + R 3 + R 1 R 3 R 2 R c = R 1 R 2 + R 2 R 3 + R 1 R 3 R 3 = R 1 + R 2 + R 1 R 2 R 3 28
29 transfigurace pro vyvážený obvod R a = R b = R c = R Δ R 1 = R 2 = R 3 = R Y R Δ = 3R Y R Y = 1 3 R Δ 29
30 Elektrické obvody Děkuji za pozornost Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/ , který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR.
Obvodové prvky a jejich
Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící
Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá
neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými
ZÁKLADY ELEKTROTECHNIKY pro OPT
ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003
20ZEKT: přednáška č. 3
0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových
Základní elektronické obvody
Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
Základy elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
TEORIE ELEKTRICKÝCH OBVODŮ
TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl
Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36
Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií
Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří
Kirchhoffovy zákony. Kirchhoffovy zákony
Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon
12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony
. Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
Základní definice el. veličin
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický
Úvod do elektrotechniky
Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.
Základy elektrotechniky (ZELE)
Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.
Harmonický průběh napětí a proudu v obvodu
Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,
Elektronika ve fyzikálním experimentu
Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními
I 3 =10mA (2) R 3. 5mA (0)
Kirchhoffovy zákony 1. V obvodu podle obrázku byly změřeny proudy 3 a. a. Vypočítejte proudy 1, 2 a 4, tekoucí rezistory, a. b. Zdroj napětí = 12 V, = 300 Ω, na rezistoru jsme naměřili napětí 4 = 3 V.
Nezávislý zdroj napětí
Nezávislý zdroj napětí Ideální zdroj: Udržuje na svých svorkách napětí s daným časovým průběhem Je schopen dodat libovolný proud, i nekonečně velký, tak, aby v závislosti na zátěži zachoval na svých svorkách
Základní pasivní a aktivní obvodové prvky
OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6
Řešení elektronických obvodů Autor: Josef Sedlák
Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení
R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky
Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.
Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm
Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.
Základy elektrotechniky a výkonová elektrotechnika (ZEVE)
Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
Pracovní list žáka (SŠ)
Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +
ELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných
VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní
Bohumil Brtník TEORETICKÁ ELEKTROTECHNIKA Praha 2017 Bohumil Brtník Teoretická elektrotechnika Recenzovali: David Matoušek, Fakulta elektrotechniky a informatiky Univerzity Pardubice Miroslav Stehlík,
Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu
Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič
U R U I. Ohmův zákon V A. ohm
Ohmův zákon Ohmův zákon Spojíme li vodivě svorky zdroje o napětí U, začne vodičem procházet proud I. Napětí tedy vyvolalo elektrický proud Proud je pak přímo úměrný napětí (Ohmův zákon): I U R R V A U
1 Zdroj napětí náhradní obvod
1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém
ITO. Semestrální projekt. Fakulta Informačních Technologií
ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Symetrické stavy v trojfázové soustavě
Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1
CZ.1.07/2.2.00/07.0002 Modernizace oboru technická a informační výchova OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1 (PŘEDNÁŠKY) 2009 PaedDr. PhDr. Jiří Dostál, Ph.D. Název studijního předmětu: Elektrotechnika
3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
STEJNOSMĚRNÝ PROUD Kirchhoffovy zákony TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Kirchhoffovy zákony TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Elektrické obvody Složitější elektrické obvody tvoří elektrické sítě.
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektrotechniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektrotechniky 1 Elektrotechnika:
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový
Určeno pro posluchače všech bakalářských studijních programů FS
rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a
FYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
( ) Induktory se vzájemnou vazbou
Induktory se vzájemnou vazbou Dvě cívky, které jsou umístěny v těsné blízkosti, mohou jedna druhou ovlivňovat. Magnetický tok vytvořený jednou cívkou zasahuje závity druhé cívky a naopak. Hovoříme o cívkách
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.
Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti
Základy elektrotechniky
Základy elektrotechniky Základní veličiny a jejich jednotky Elektrický náboj Q Coulomb [C] Elektrický proud Amber [A] (the basic unit of S) Hustota proudu J [Am -2 ] Elektrické napětí Volt [V] Elektrický
Název: Měření napětí a proudu
Název: Měření napětí a proudu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Elektřina a magnetismus
2. ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ
2 ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ 2 Úvod Analýzou elektrické soustavy rozumíme výpočet všech napětí a všech proudů v soustavě Při analýze se snažíme soustavu rozdělit na jednotlivé obvodové
2. Elektrické proudové pole
2. Elektrické proudové pole Prochází-li, v celém prostoru uvnitř vodiče elektrický proud nazýváme toto prostředí elektrickým proudovým polem. Elektrický proud je dán uspořádaným pohybem elektrických nábojů
I. STEJNOSMĚ RNÉ OBVODY
Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů
OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1
CZ.1.07/2.2.00/07.0002 Modernizace oboru technická a informační výchova OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1 (CVIČENÍ) 2009 PaedDr. PhDr. Jiří Dostál, Ph.D. Název studijního předmětu: Elektrotechnika 1
Kirchhoffovy zákony
4.2.16 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? Problém: V obvodu jsou dva zdroje, jak to ovlivní naše
Osnova kurzu. Základy teorie elektrických obvodů 3
Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie
Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1
Příklady: 28. Obvody 1. V obvodu na obrázku je dáno E 1 = 6, 0 V, E 2 = 5, 0 V, E 3 = 4, 0 V, R 1 = 100 Ω, R 2 = 50 Ω. Obě baterie jsou ideální. Vypočtěte a) [0,3 b] napětí mezi body a a b a b) [0,7 b]
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
Elektřina a magnetizmus závěrečný test
DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost
Teoretická elektrotechnika FBMI
i Teoretická elektrotechnika FBMI Text, který vám předkládám vznikl úpravou a redukcí textu mého skripta Elektrotechnika pro informatiky, k předmětu přednášenému do roku 2014 na elektrotechnické fakultě
Elektrické obvody: teorie a příklady. Martin Černík
Martin Černík Liberec 2014 . Text a ilustrace: Ing. Martin Černík, Ph.D. Revize textu: doc. Ing. Milan Kolář, CSc. Recenze: Ing. Jan Václavík c Martin Černík, Liberec 2014 Technická univerzita v Liberci
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?
TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název
PŘECHODOVÝ JEV V RC OBVODU
PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí
Úvod do elektrokinetiky
Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)
I dt. Elektrický proud je definován jako celkový náboj Q, který projde vodičem za čas t.
ELEKTRICKÝ PROUD Stacionární elektrické pole je charakterizováno konstantním elektrickým proudem Elektrický proud I je usměrněný pohyb elektrických nábojů. Jednotkou je ampér, I A. K vzniku elektrického
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
Měřicí přístroje a měřicí metody
Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny
20ZEKT: přednáška č. 10. Elektrické zdroje a stroje: výpočetní příklady
20ZEKT: přednáška č. 10 Elektrické zdroje a stroje: výpočetní příklady Napětí naprázdno, proud nakrátko, vnitřní odpor zdroje Théveninův teorém Magnetické obvody Netočivé stroje - transformátory Točivé
- Stabilizátory se Zenerovou diodou - Integrované stabilizátory
1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou
Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze
Z předchozích přednášek víme, že kapacitor a induktor jsou setrvačné obvodové prvky, které ukládají energii Dosud jsme se zabývali ustáleným stavem předpokládali jsme, že v minulosti byly všechny kapacitory
Fyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
Doporučená literatura
Elektronika 2015 Doporučená literatura J. Doleček Moderní učebnice elektroniky 1-6, Technická literatura BEN Z Ondráček Elektronika pro fyziky, Brno 1998 www Mike Tooley, Electroinic circuits, fundamental
Studijní opory předmětu Elektrotechnika
Studijní opory předmětu Elektrotechnika Doc. Ing. Vítězslav Stýskala Ph.D. Doc. Ing. Václav Kolář Ph.D. Obsah: 1. Elektrické obvody stejnosměrného proudu... 2 2. Elektrická měření... 3 3. Elektrické obvody
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové
2.6. Vedení pro střídavý proud
2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých
4.2.18 Kirchhoffovy zákony
4.2.18 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? U 1 Problém: V obvodu jsou dva zdroje. Jak to ovlivní
2 Přímé a nepřímé měření odporu
2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou
Elektrický proud 2. Zápisy do sešitu
Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a
Přednáška v rámci PhD. Studia
OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia Doc. Ing. Lubomír Brančík, CSc. UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci)
MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU
MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU Zadání: 1. Změřte voltampérovou charakteristiku fotovoltaického článku v závislosti na hodnotě sériového odporu. Jako přídavné
Analogová elektronika
Analogová elektronika Motivace Převod měřených veličin/dějů na data Řízení experimentu Zpracování signálů potřebné v analogové (spojitý průběh hodnot) i digitální (diskrétní hodnoty) podobě Charakteristika
20ZEKT: přednáška č. 7 Zdroje
20ZEKT: přednáška č. 7 Zdroje Zdroj proudu a napětí Zatěžovací charakteristiky zdrojů Théveninův a Nortonův teorém Akumulátory a baterie Fotovoltaické zdroje Jak vybrat zdroj? (Nezávislý) zdroj napětí
CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.
CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného
[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.
[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] 04.01.01 Na rezistoru je napětí 5 V a teče jím proud 25 ma. Rezistor má hodnotu. A) 100 ohmů B) 150 ohmů C) 200 ohmů 04.01.02 Na rezistoru
Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického
Zdroje napětí - usměrňovače
ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového
1. ÚVOD DO TEORIE OBVODŮ
. ÚVOD DO TEORIE OBVODŮ Základem elektrických jevů je působení elektrických nábojů. Jak známo, každá hmota se skládá z molekul a molekuly z atomů prvků. Atomy jsou složeny z jádra a elektronového obalu.
Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete
Výpočet napětí malé elektrické sítě
AB5EN - Výpočet úbytků napětí MUN a metodou postupného zjednodušování Výpočet napětí malé elektrické sítě Elektrická stejnosměrná soustava je zobrazená na obr.. Vypočítejte napětí v uzlech, a a uzlový