May 26, 2016 DATA SCIENCE LABORATORY D T. Fakulta informačních technologíı. Reference. Motivace Data a jejich. Hidden Markov Model

Rozměr: px
Začít zobrazení ze stránky:

Download "May 26, 2016 DATA SCIENCE LABORATORY D T. Fakulta informačních technologíı. Reference. Motivace Data a jejich. Hidden Markov Model"

Transkript

1 České Vysoké Učení Technické v Praze Fakulta informačních technologíı May 26, 2016 D T DATA SCIENCE LABORATORY

2 Presentation Outline

3 Proč modelovat? Hlavní myšlenka: Rozdíly v chovaní zvířat jsou znatelné v příslušných modelech chování. Sledovaní změn v chovaní Porovnání chovaní jedinců

4 Odkud data pocházejí Poziční data Akce

5 Poziční data Chybějící hodnoty Šum

6 Poziční data Chybějící hodnoty Linear interpolation f L (x) = f (x 0 ) + b 1 (x x 0 ) b 1 = f (x 1) f (x 0 ) x 1 x 0

7 Poziční data Chybějící hodnoty Linear interpolation, f L Quadratic interpolation f Q (x) = f (x 0 ) + b 1 (x x 0 ) + b 2 (x x 0 )(x x 1 ) b 2 = f (x 2 ) f (x 1 ) x 2 x 1 f (x 1 ) f (x 0 ) x 1 x 0 x 2 x 0

8 Poziční data Chybějící hodnoty Linear interpolation, f L Quadratic interpolation, f Q Cubic interpolation f C = b 0 +b 1 (x x 0 )+b 2 (x x 0 )(x x 1 )+b 3 (x x 0 )(x x 1 )(x x 2 ) b 3 = f (x 3 ) f (x 2 ) x 3 x 2 f (x 2 ) f (x 1 ) x 2 x 1 f (x 1 ) f (x 0 ) x 1 x 0 x 3 x 0

9 Poziční data Chybějící hodnoty Linear interpolation, f L Quadratic interpolation, f Q Cubic interpolation, f C Kombinace f (x) = f L(x)+f Q (x) 2

10 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace y coordinate data points linear interpolation quadratic interpolation combination of interpolations x coordinate

11 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace data points linear interpolation quadratic interpolation combination of interpolations

12 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace data points linear interpolation quadratic interpolation combination of interpolations

13 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace data points 0.0 linear interpolation quadratic interpolation combination of interpolations

14 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace Filtrace šumu

15 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace Filtrace šumu Median filter

16 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace Filtrace šumu Median filter Moving average filter

17 Poziční data Chybějící hodnoty Linear interpolation Quadratic interpolation Cubic interpolation Kombinace Filtrace šumu Median filter Moving average filter Kalman filter

18 Kalman filter Proč Kalmanův filtr?

19 Kalman filter linárního systému Skrytý markovský model se spojitými stavy Initial conditions(x 0 ) Measurement(z k ) Predict step State estimate(x k ) Update step

20 Kalman filter Co je uvnitř? measurement(z) posterior(x t - 1) new estimate(xt) (posterior) x t = ẋt + Ky prior(ẋ t ) residual(y) y= z - ẋ t

21 Kalman filter

22 Kalman filter

23 Presentation Outline

24 Related work chovaní myší v labyrintu [1] s

25 Related work chovaní skotu [2] s

26 Related work chovaní skotu [2]

27 Related work chovaní lidí [3] Fuzzy Q-state learning + Agglomerative fuzzy clustering

28 Přístupy modelování sekvencí Dynamic Bayesian network

29 Přístupy modelování sekvencí Dynamic Bayesian network s

30 Přístupy modelování sekvencí Dynamic Bayesian network s Linear chain Conditional Random fields Yt-1 Yt Yt+1 Xt-1 Xt Xt+1

31 Přístupy modelování sekvencí Dynamic Bayesian network s Conditional Random fields LSTM RNN

32 Co je (HMM)? λ = (A, B, π)

33 Co je (HMM)? λ = (A, B, π)

34 Co je (HMM)? λ = (A, B, π) Množina skrytých stavů Y = {y 1, y 2,..., y N } a pozorovanych výstupů X = {x 1, x 2,..., x M }

35 Co je (HMM)? λ = (A, B, π) Množina skrytých stavů Y = {y 1, y 2,..., y N } a pozorovanych výstupů X = {x 1, x 2,..., x M } Sekvence stavů Q = q 1 q 2 q 3...q T a sekvence výstupů O = o 1 o 2 o 3...o T

36 Co je (HMM)? λ = (A, B, π) Množina skrytých stavů Y = {y 1, y 2,..., y N } a pozorovanych výstupů X = {x 1, x 2,..., x M } Sekvence stavů Q = q 1 q 2 q 3...q T a sekvence výstupů O = o 1 o 2 o 3...o T Pravděpodobnosti přechodů (transitions) A = {a ij } a ij = P(q t = y j q t 1 = y i ), 1 i, j N

37 Co je (HMM)? λ = (A, B, π) Množina skrytých stavů Y = {y 1, y 2,..., y N } a pozorovanych výstupů X = {x 1, x 2,..., x M } Sekvence stavů Q = q 1 q 2 q 3...q T a sekvence výstupů O = o 1 o 2 o 3...o T Pravděpodobnosti přechodů (transitions) A = {a ij } a ij = P(q t = y j q t 1 = y i ), 1 i, j N Pravděpodobnosti pozorovanych symbolů (emissions) B = {b i,j } b i,j = P(o t = x j q t = y i ), 1 i N, 1 i M

38 Co je (HMM)? λ = (A, B, π) Množina skrytých stavů Y = {y 1, y 2,..., y N } a pozorovanych výstupů X = {x 1, x 2,..., x M } Sekvence stavů Q = q 1 q 2 q 3...q T a sekvence výstupů O = o 1 o 2 o 3...o T Pravděpodobnosti přechodů (transitions) A = {a ij } a ij = P(q t = y j q t 1 = y i ), 1 i, j N Pravděpodobnosti pozorovanych symbolů (emissions) B = {b i,j } b i,j = P(o t = x j q t = y i ), 1 i N, 1 i M Pravděpodobnosti počátečních stavů π = {π i } π i = P(q 1 = y i ), 1 i N

39 Jak HMM použít? P(O, Q) - Trellis diagram q 1 q 2 q 3 q T o 1 o 2 o 3 o T

40 Jak HMM použít? P(O, Q) - Trellis diagram q 1 q 2 q 3 q T o 1 o 2 o 3 o T T P(o 1,..., o T, q 1,..., q T ) = P(q 1 )P(o 1 q 1 ) P(q k q k 1 )P(o k q k ) k=2 T P(o 1,..., o T, q 1,..., q T ) = π q1 b q1,o 1 a qk 1,q k b qk,o k k=2

41 Jak HMM použít? P(O, Q) - Trellis diagram q 1 q 2 q 3 q T o 1 o 2 o 3 o T T P(o 1,..., o T, q 1,..., q T ) = P(q 1 )P(o 1 q 1 ) P(q k q k 1 )P(o k q k ) k=2 T P(o 1,..., o T, q 1,..., q T ) = π q1 b q1,o 1 a qk 1,q k b qk,o k k=2 Vybavení modelu? Viterbiho algoritmus - arg max Q P(O, Q λ)

42 Jak HMM použít? P(O, Q) - Trellis diagram q 1 q 2 q 3 q T o 1 o 2 o 3 o T T P(o 1,..., o T, q 1,..., q T ) = P(q 1 )P(o 1 q 1 ) P(q k q k 1 )P(o k q k ) k=2 T P(o 1,..., o T, q 1,..., q T ) = π q1 b q1,o 1 a qk 1,q k b qk,o k k=2 Vybavení modelu? Viterbiho algoritmus - arg max Q P(O, Q λ) Učení modelu? EM algoritmus - arg max λ P(O, Q λ)

43 Presentation Outline

44 Existující algoritmy shlukové analýzy HMM Spektrální shlukování pomocí Bhattacharya divergence[4] Spektrální shlukování pomocí Kullback-Leiblerovy divergence[5] Variational hierarchical EM [6]

45 Existující algoritmy shlukové analýzy HMM Spektrální shlukování pomocí Bhattacharya divergence[4] Spektrální shlukování pomocí Kullback-Leiblerovy divergence[5] Variational hierarchical EM [6] V čem je problém?

46 Existující algoritmy shlukové analýzy HMM Spektrální shlukování pomocí Bhattacharya divergence[4] Spektrální shlukování pomocí Kullback-Leiblerovy divergence[5] Variational hierarchical EM [6] V čem je problém? Normálně rozdělené emissions!

47 Existující algoritmy shlukové analýzy HMM Spektrální shlukování pomocí Bhattacharya divergence[4] Spektrální shlukování pomocí Kullback-Leiblerovy divergence[5] Variational hierarchical EM [6] V čem je problém? Normálně rozdělené emissions! Jak z toho ven?

48 Existující algoritmy shlukové analýzy HMM Spektrální shlukování pomocí Bhattacharya divergence[4] Spektrální shlukování pomocí Kullback-Leiblerovy divergence[5] Variational hierarchical EM [6] V čem je problém? Normálně rozdělené emissions! Jak z toho ven? definovat vzdálenost jinak.

49 Euklidovská vzdálenost Euklidovská vzdálenost[7] Euklidovská vzdálenost mezi řádky matice B d ec (λ, λ 1 ) = N M N i=1 k=1 b ik b ik 2 Minimalizovaná Euklidovská vzdálenost d mec (λ, λ 1 ) = N N i=1 min M j k=1 b ik b jk 2 Pravděpodobnostní rozdělení B je z hlediska podobnosti dvou HMM nejvýznamější [8].

50 Statistická vzdálenost I Kullback-Leiblerova divergence[7] výpočetně náročné aproximace. 1 d KL (λ, λ ) = 1 P(O λ) O G(O) log P(O λ ) P(O λ)do 2 předpoklad: Q = Q = Q opt, si jsou podobné 3 d Vit (λ, λ ) = O 1 P(Qopt,O λ) G(O) log P(Q opt,o λ ) P(O λ)do 4 předpoklad: Markovský řetězec je ergodický 5 d Vit (λ, λ ) = 1 G(O) log P(Q l,o λ) P(Q l,o λ ) P(O λ) + ɛ

51 Statistická vzdálenost II 6 d Vit (λ, λ ) ɛ = 1 G(O) 1 G(O) T 1 t=1 ( log ayt,y t+1 log a y t,y t+1 T ( log byt,x t log b y ) t,x t t=1 7 Délka sekvence O je dostatečně dlouhá 8 d Vit (λ, λ ) δ Vit = ( a ij π i log aij log a ij) + i,j ( b ik π i log bij log b ij ) i,k ) +

52 Shlukování 1 Hierarchistické shlukování Linkage ze vzdálenostní matice (single, average, complete) 2 Spektrální shlukování podle Shi a Malik (2000) podle Ng, Jordan a Weiss (2002) Vytvoříme matici vzdáleností X Reprezentace této pomocí podobnostního grafu Similarity matrix W, w ij = e X ij 2 2σ 2 Degree matrix D, D i,i = j V w ij, D i,j;i j = 0

53 Spektrální shlukování - Shi and Malik 1 Výpočet vlastních čísel (D W )y = λdy 2 Pomocí druhého nejmenšího vlastního čísla rekurzivně děĺıme graf. Normalized minimum cut Minimum cut Minimum cut

54 Presentation Outline

55 Evaluace modelu Vizuální evaluace doménovým expertem Evaluace pomocí Viterbiho sekvence Label Acc. Mean Acc. Variance S % 2.22 S % 0.69 S % 2.82 S % 4.12 S % 3.93 Přesnost 83.86% 4.76

56 distance shlukování Hierarchistické shlukování single linkage single linkage cluster id

57 distance shlukování Hierarchistické shlukování Single linkage Avereage linkage average linkage cluster id

58 distance shlukování Hierarchistické shlukování Single linkage Average linkage Complete linkage complete linkage cluster id

59 shlukování Spektrální shlukování

60 I 1 MATETIĆ, Maja; RIBARIĆ, Slobodan; IPŠIĆ, Ivo. Qualitative modelling and analysis of animal behaviour. Applied Intelligence, 2004, 21.1: Y. Guo, G. Poulton, P. Corke, G.J. Bishop-Hurley, T. Wark, D.L. Swain, Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model, Ecological ling, Volume 220, Issue 17, 10 September 2009, Pages , ISSN LEE, Sang Wan; KIM, Yong Soo; BIEN, Zeungnam. A nonsupervised learning framework of human behavior patterns based on sequential actions. Knowledge and Data Engineering, IEEE Transactions on, 2010, 22.4: Tony Jebara, Yingbo Song, and Kapil Thadani. Spectral clustering and embedding with hidden Markov models. In Machine Learning: ECML 2007, pages

61 II 5 Shi Zhong and Joydeep Ghosh. A unified framework for model-based clustering. The Journal of Machine Learning Research, 4: , COVIELLO, Emanuele; CHAN, Antoni B.; LANCKRIET, Gert RG. Clustering hidden Markov models with variational HEM. The Journal of Machine Learning Research, 2014, 15.1: FALKHAUSEN, Markus; REININGER, Herbert; WOLF, Dietrich. Calculation of distance measures between hidden Markov models. In: EUROSPEECH JUANG, Biing-Hwang Fred; RABINER, Lawrence R. A probabilistic distance measure for hidden Markov models. AT&T technical journal, 1985, 64.2:

62 Děkujeme za pozornost.

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

Metody analýzy dat II

Metody analýzy dat II Metody analýzy dat II Detekce komunit MADII 2018/19 1 Zachary s club, Collaboration network in Santa Fe Institute, Lusseau s network of Bottlenose Dolphins 2 Web Pages, Overlaping communities of word associations

Více

Klasifikace a rozpoznávání

Klasifikace a rozpoznávání Klasifikace a rozpoznávání Prezentace přednášek M. Španěl, 2009 Ústav počítačové grafiky a multimédií Téma přednášky Unsupervised techniky Obsah: Literatura Úvod do shlukování Metriky, základní přístupy,

Více

Monte Carlo Lokalizace. Martin Skalský

Monte Carlo Lokalizace. Martin Skalský Monte Carlo Lokalizace Martin Skalský Proč Lokalizace? Problém určení pozice robota a věcí kolem něj. (filtrování dat, state estimation) Je důležitá Knowledge about where things are is at the core of any

Více

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny

Více

Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce

Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce Analýza dat v GIS Dotazy na databáze Prostorové Atributové Překrytí Overlay Mapová algebra Vzdálenostní funkce Euklidovské vzdálenosti Oceněné vzdálenosti Funkce souvislosti Interpolační funkce Topografické

Více

LEKCE12 FAKTOROVÁ ANALÝZA vzorový výsledek cvičení

LEKCE12 FAKTOROVÁ ANALÝZA vzorový výsledek cvičení 1 LEKCE12 FAKTOROVÁ ANALÝZA vzorový výsledek cvičení 12.1 Pokuste se najít v položkách na nichž respondenti oceňovali jednotlivé prvky vybavenosti AQUAPARKU příbuznost voleb. Identifikujte v položkách

Více

Aplikace obrazové fúze pro hledání vad

Aplikace obrazové fúze pro hledání vad Marek Vajgl, Irina Perfilieva, Petr Hurtík, Petra Hoďáková Národní superpočítačové centrum IT4Innovations Divize Ostravské univerzity Ústav pro výzkum a aplikaci fuzzy modelování Ostrava, Česká republika

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 10 1/21 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte

Více

STATISTICKÉ NÁSTROJE A JEJICH VYUŽITÍ PŘI SEGMENTACI TRHU STATISTICAL TOOLS AND THEIR UTILIZATION DURING THE PROCESS OF MARKETING SEGMENTATION

STATISTICKÉ NÁSTROJE A JEJICH VYUŽITÍ PŘI SEGMENTACI TRHU STATISTICAL TOOLS AND THEIR UTILIZATION DURING THE PROCESS OF MARKETING SEGMENTATION STATISTICKÉ NÁSTROJE A JEJICH VYUŽITÍ PŘI SEGMENTACI TRHU STATISTICAL TOOLS AND THEIR UTILIZATION DURING THE PROCESS OF MARKETING SEGMENTATION Anna Čermáková Michael Rost Abstrakt Cílem příspěvku bylo

Více

Katedra kybernetiky, FEL, ČVUT v Praze.

Katedra kybernetiky, FEL, ČVUT v Praze. Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci. Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci

Více

Umělá inteligence v hudbě. Matematicko-fyzikální fakulta Univerzity Karlovy

Umělá inteligence v hudbě. Matematicko-fyzikální fakulta Univerzity Karlovy Umělá inteligence v hudbě Lukáš Bednařík Matematicko-fyzikální fakulta Univerzity Karlovy 13. 11. 2012 Osnova 1 Motivace 2 Songsmith Tréning modelu Generování melodie 3 Vztah slov a melodie 4 Určení melodické

Více

Hledání optimální polohy stanic a zastávek na tratích regionálního významu

Hledání optimální polohy stanic a zastávek na tratích regionálního významu Hledání optimální polohy stanic a zastávek na tratích regionálního významu Václav Novotný 31. 10. 2018 Anotace 1. Dopravní obsluha území tratěmi regionálního významu 2. Cíle výzkumu a algoritmus práce

Více

Metody analýzy dat I. Míry a metriky - pokračování

Metody analýzy dat I. Míry a metriky - pokračování Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:

Více

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36

Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36 Testování změn v binárnách autoregresních modelech Šárka Hudecová KPMS MFF UK ROBUST 2012 Němčičky 9. 14.9.2012 Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36 Uvažovaná situace

Více

Markovovy modely v Bioinformatice

Markovovy modely v Bioinformatice Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Algoritmy pro shlukování prostorových dat

Algoritmy pro shlukování prostorových dat Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň

Více

Faster Gradient Descent Methods

Faster Gradient Descent Methods Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Shluková analýza Shluková analýza je souhrnným názvem pro celou řadu výpočetních algoritmů, jejichž cílem

Více

Uni- and multi-dimensional parametric tests for comparison of sample results

Uni- and multi-dimensional parametric tests for comparison of sample results Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Multivariátní porovnání dat - klastrová (shluková) analýza

Multivariátní porovnání dat - klastrová (shluková) analýza Multivariátní porovnání dat - klastrová (shluková) analýza - bez apriorních předpokladů Shluková analýza Shluková analýza - cluster analysis úvod - definice princip algoritmy výsledky Shluková analýza

Více

Optimalizační algoritmy inspirované chováním mravenců

Optimalizační algoritmy inspirované chováním mravenců Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení

Více

Některé potíže s klasifikačními modely v praxi. Nikola Kaspříková KMAT FIS VŠE v Praze

Některé potíže s klasifikačními modely v praxi. Nikola Kaspříková KMAT FIS VŠE v Praze Některé potíže s klasifikačními modely v praxi Nikola Kaspříková KMAT FIS VŠE v Praze Literatura J. M. Chambers: Greater or Lesser Statistics: A Choice for Future Research. Statistics and Computation 3,

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

IT4Innovations Centre of Excellence

IT4Innovations Centre of Excellence IT4Innovations Centre of Excellence Supercomputing for Applied Sciences Ivo Vondrak ivo.vondrak@vsb.cz: VSB Technical University of Ostrava http://www.it4innovations.eu Motto The best way to predict your

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.

Více

TERMINOLOGIE ... NAMĚŘENÁ DATA. Radek Mareček PŘEDZPRACOVÁNÍ DAT. funkční skeny

TERMINOLOGIE ... NAMĚŘENÁ DATA. Radek Mareček PŘEDZPRACOVÁNÍ DAT. funkční skeny PŘEDZPRACOVÁNÍ DAT Radek Mareček TERMINOLOGIE Session soubor skenů nasnímaných během jednoho běhu stimulačního paradigmatu (řádově desítky až stovky skenů) Sken jeden nasnímaný objem... Voxel elementární

Více

Statistická analýza dat

Statistická analýza dat Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Dálkový průzkum Země. Klasifikace obrazu

Dálkový průzkum Země. Klasifikace obrazu Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means

Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means Semestrální práce z KIV/PRO Využití Voroného diagramu pro inicializaci K-means shlukování Jméno Příjmení (Osobní číslo) 11. prosince 2014 Obsah 1 Úvod 2 2 Vysvětlení pojmů 3 2.1 K-means shlukování.........................

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

NUMERICKÁ KLASIFIKACE. David Zelený Zpracování dat v ekologii společenstev

NUMERICKÁ KLASIFIKACE. David Zelený Zpracování dat v ekologii společenstev NUMERICKÁ KLASIFIKACE http://wfc3.gsfc.nasa.gov PROČ MÁ SMYSL VĚCI KLASIFIKOVAT? vlnová délka (~ ekologický gradient) 172 http://wfc3.gsfc.nasa.gov PROČ MÁ SMYSL VĚCI KLASIFIKOVAT? vlnová délka (~ ekologický

Více

Regulační diagramy EWMA. Eva Jarošová Škoda Auto Vysoká škola

Regulační diagramy EWMA. Eva Jarošová Škoda Auto Vysoká škola Regulační diagramy EWMA Eva Jarošová Škoda Auto Vysoká škola ČSJ 19.2.2015 Obsah 1. Podstata a konstrukce diagramu 2. Využití diagramů EWMA 3. Porovnání Shewhartova a EWMA diagramu 4. Volba parametrů 5.

Více

Strojové učení a dolování dat. Vybrané partie dolování dat 2016/17 Jan Šimbera

Strojové učení a dolování dat. Vybrané partie dolování dat 2016/17 Jan Šimbera Strojové učení a dolování dat vgeografii Vybrané partie dolování dat 2016/17 Jan Šimbera simberaj@natur.cuni.cz Kde v geografii? Získávání prostorově podrobných dat Prostorová dezagregace Analýza dat dálkového

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti

Více

VÚTS, a.s. Liberec CENTRE OF ENGINEERING RESEARCH AND DEVELOPMENT

VÚTS, a.s. Liberec CENTRE OF ENGINEERING RESEARCH AND DEVELOPMENT VÚTS, a.s. Liberec CENTRE OF ENGINEERING RESEARCH AND DEVELOPMENT KEY DATA CENTER OF ENGINEERING RESEARCH AND DEVELOPMENT LIBEREC ESTABLISHED 1951 200 employees Turnover : 15 Mio EUR (2013) ISO 9001 certification

Více

Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru

Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru Jarní škola 2013 Krušné hory, Mariánská 28. května 2013 Motivace Časosběrná fluorescenční mikroskopie detekce částic

Více

ROBUST 2014 Jetřichovice ledna

ROBUST 2014 Jetřichovice ledna ROBUST 2014 Jetřichovice 19. 24. ledna Jitka Bartošová katedra exaktních metod Vysoká škola ekonomická v Praze Fakulta managementu Jindřichův Hradec Abstrakt Snahy o modelování velkých náhodných výběrů

Více

Unbounded Model Checking

Unbounded Model Checking Unbounded Model Checking Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 25. října 2011 Evropský sociální fond Praha & EU: Investujeme do

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)

Více

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University

Více

Data Science projekty v telekomunikační společnosti

Data Science projekty v telekomunikační společnosti Data Science projekty v telekomunikační společnosti Jan Romportl Chief Data Scientist, O2 Czech Republic Data, mapa a teritorium Data Science Mezioborová technicky orientovaná oblast, která se zabývá inovativním

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE Plzeň, 2017 Martin Černý Prohlášení Předkládám tímto k posouzení a obhajobě bakalářskou práci zpracovanou na

Více

EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) David Zelený Zpracování dat v ekologii společenstev

EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) David Zelený Zpracování dat v ekologii společenstev EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) EKOLOGICKÁ PODOBNOST Q VS R ANALÝZA Vzorky Druhy druh 1 druh 2 druh 3 vzorek 1 0 1 1 vzorek 2 1 0 0 vzorek 3 0 4 4 vztahy mezi vzorky Q analýza vztahy mezi

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

, ČVUT v Praze Připravil: Ing. Zdeněk Patočka Letecké laserové skenování a jeho využití v inventarizaci lesa

, ČVUT v Praze Připravil: Ing. Zdeněk Patočka Letecké laserové skenování a jeho využití v inventarizaci lesa 22. 10. 2015, ČVUT v Praze Připravil: Ing. Zdeněk Patočka Letecké laserové skenování a jeho využití v inventarizaci lesa Ing. Zdeněk Patočka Ústav hospodářské úpravy lesů a aplikované geoinformatiky, LDF

Více

Pokročilé metody geostatistiky v R-projektu

Pokročilé metody geostatistiky v R-projektu ČVUT V PRAZE, Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Vedoucí projektu: RNDr. Dr. Nosková Jana Studentská grantová soutěž ČVUT 2011 Praha, 2011 Geostatistika

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek

Více

ŘEŠENÍ PROBLÉMU LOKACE HUBŮ POMOCÍ GENETICKÉHO ALGORITMU SOLVING THE SINGLE ALLOCATION HUB LOCATION PROBLEM USING GENETIC ALGORITHM

ŘEŠENÍ PROBLÉMU LOKACE HUBŮ POMOCÍ GENETICKÉHO ALGORITMU SOLVING THE SINGLE ALLOCATION HUB LOCATION PROBLEM USING GENETIC ALGORITHM ŘEŠENÍ PROBLÉMU LOKACE HUBŮ POMOCÍ GENETICKÉHO ALGORITMU SOLVING THE SINGLE ALLOCATION HUB LOCATION PROBLEM USING GENETIC ALGORITHM Miroslav Slivoně 1 Anotace: Článek je zaměřuje na problém lokace hubů

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

BRDSM: Komplexní systém dynamického řízení kvality plynule odlévané oceli

BRDSM: Komplexní systém dynamického řízení kvality plynule odlévané oceli BRDSM: Komplexní systém dynamického řízení kvality plynule odlévané oceli Registrační číslo: 132071 Garant výsledku: prof. Ing. Josef Štětina, Ph.D. Typ: Software - R Rok vydání: 30. 12. 2016 Instituce:

Více

Swarm Intelligence. Moderní metody optimalizace 1

Swarm Intelligence.   Moderní metody optimalizace 1 Swarm Intelligence http://pixdaus.com/single.php?id=168307 Moderní metody optimalizace 1 Swarm Intelligence Inteligence hejna algoritmy inspirované chováním skupin ptáků, hmyzu, ryb apod. Particle Swarm

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Prostorová analýza dat (PAD) Číslo předmětu: 548-0044 Garantující institut: Garant předmětu: Institut geoinformatiky doc. Dr. Ing. Jiří Horák Kredity: 5

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

PRINCIPY ZABEZPEČENÍ KVALITY

PRINCIPY ZABEZPEČENÍ KVALITY (c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,

Více

Miroslav Čepek

Miroslav Čepek Vytěžování Dat Přednáška 4 Shluková analýza Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 14.10.2014 Miroslav Čepek

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce příznaků 3 25 2 Granáty Jablka Četnost 15 1 5 2 3 4 5 6 7 8 Váha [dkg] Pravděpodobnosti - diskrétní příznaky Uvažujme diskrétní příznaky

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Markovovy

Více

Interpolační funkce. Lineární interpolace

Interpolační funkce. Lineární interpolace Interpolační funkce VEKTOR RASTR Metody Globální Regrese - trend Lokální Lineární interpolace Výstupy Regrese lokální trend Inverse Distance Weighted IDW Spline Thiessenovy polygony Natural Neighbours

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Albert-László Barabási. Network Science http://barabasi.com/networksciencebook/ kapitoly 1 a 2 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_

Více

RELATIONAL DATA ANALYSIS

RELATIONAL DATA ANALYSIS KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO RELATIONAL DATA ANALYSIS RADIM BELOHLAVEK, JAN OUTRATA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

KOMPARACE DEMOGRAFICKÉHO CHOVÁNÍ KRAJŮ ČESKÉ REPUBLIKY POMOCÍ VÍCEROZMĚRNÝCH STATISTICKÝCH METOD

KOMPARACE DEMOGRAFICKÉHO CHOVÁNÍ KRAJŮ ČESKÉ REPUBLIKY POMOCÍ VÍCEROZMĚRNÝCH STATISTICKÝCH METOD ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVI 9 Číslo 6, 2008 KOMPARACE DEMOGRAFICKÉHO CHOVÁNÍ KRAJŮ ČESKÉ

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

I. Úvod. II. Popis základních metod technické analýzy !! "# ! "" $% &'() "* *+ "" "* (,-.,/ " " "" *!!+ 01+ " * " " 2! " "*"*!

I. Úvod. II. Popis základních metod technické analýzy !! # !  $% &'() * *+  * (,-.,/    *!!+ 01+  *   2!  **! I. Úvod!! "#! "" $% &'() "* *+ "" "* (,-.,/ " " "" *!!+ 01+ " * " " 2! " "*"*! 3 * 4 " (,-.,/ *" * # "!5!0 6 7289:+789:!; ;"! ; *$! "#!; 0 + ní získané, za! + 0 0"< = >

Více

Teorie rozhodování (decision theory)

Teorie rozhodování (decision theory) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie

Více

StatSoft Shlukování podobných

StatSoft Shlukování podobných StatSoft Shlukování podobných v softwaru STATISTICA Tímto článkem nakoukneme do oblasti statistiky zabývající se shlukováním. Tedy situací, kdy chcete data/objekty nějak seskupit na základě jejich podobnosti.

Více

PROSTOROVÉ HIERARCHICKÉ SHLUKOVÁNÍ

PROSTOROVÉ HIERARCHICKÉ SHLUKOVÁNÍ PROSTOROVÉ HIERARCHICKÉ SHLUKOVÁNÍ Jiří HORÁK 1, Igor IVAN 1, Tomáš INSPEKTOR 1 1 Institut geoinformatiky, Hornicko-geologická fakulta, VŠB-TUO, 17. listopadu 15/2172, 708 33, Ostrava- Poruba, ČR Abstrakt

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

Analýza textury. Radim Šára Centrum strojového vnímání FEL ČVUT. DZO, R. Šára

Analýza textury. Radim Šára Centrum strojového vnímání FEL ČVUT. DZO, R. Šára Analýza textury Radim Šára Centrum strojového vnímání FEL ČVUT 1999 DZO, R. Šára DZO, R. Šára 1 Osnova prednášky 1. Co je to textura? 2. Motivační příklady. 3. Jak lze měřit vlastnosti textury? 4. Analytický

Více

Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1

Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1 Evolučníalgoritmy Kategorie vytvořená v 90. letech, aby se sjednotily jednotlivémetody, kterévyužívaly evoluční principy, tzn. Genetickéalgoritmy, Evolučnístrategie a Evoluční programování (v těchto přednáškách

Více

STATISTICKÉ ODHADY PARAMETRŮ

STATISTICKÉ ODHADY PARAMETRŮ STATISTICKÉ ODHADY PARAMETRŮ Jan Pech 21. září 2001 1 Motivace Obrazové snímače pracující ve vzdáleném infračerveném spektru jsou poměrně novou záležitostí. Ty nejkvalitnější snímače chlazené kapalným

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

Extrakce z nestrukturovaných dat

Extrakce z nestrukturovaných dat Extrakce z nestrukturovaných dat Ing. Ivo Lašek (upravil doc. Ing. Vojtěch Svátek, Dr.) Zimní semestr 2012 http://nb.vse.cz/~svatek/rzzw.html Extrakce pojmenovaných entit Extrakce informací ze nestrukturovaných

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více