Kombinační automaty (logické obvody) Booleovy zákony
|
|
- Ondřej Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Kombinační automaty (logické obvody) Booleovy zákony Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_01_CIT_03_Booleovy_zakony Téma: Booleovy zákony Číslo projektu: CZ.1.07/1.5.00/
2 Základy výrokové logiky George Boole Soudobé události ve světě v roce 1815: - Britský vědec Peter Roget vynalezl logaritmické pravítko, které umožňovalo počítání logaritmů, což umožňovalo přímé umocňování a odmocňování. - Česko 24. září mechanik pražské polytechniky Josef Božek předvedl v Královské oboře veřejnosti vůz poháněný parním strojem. - Francie: 18. června bitva u Waterloo Zdroj: Narozen 2. listopadu 1815 Lincoln, panství Lincolnshire, Anglie a zemřel 8. prosince 1864 Ballintemple, Irsko) byl britský matematik a filosof, známý jako objevitel základů moderní aritmetiky, nazvané později Booleovou algebrou. Je považován za zakladatele informatiky, jakkoli v jeho době nebylo o počítačích ani uvažováno. Zdroj:
3 Vtip o profesoru Boole Profesor Boole na lehkém obědě Drží nabídku Menu a poroučí si: Ano Ano Ano Ano Zdroj:
4 Praktická aplikace logiky Stojíte na křižovatce a před sebou máte chlapa z dvojčat. Předtím jste se v hospodě dozvěděl, že dvojčata ukazují cestu kudy kam. Problém je v tom, že jeden z dvojčat vždy lže a druhý mluví vždy pravdu. Jakou položíte otázku abyste se dozvěděl správnou cestu? Správná otázka zní: Jakou cestu by mi poradil tvůj bratr?
5 Tři základní logické funkce podle George Boolea 1. Logická negace 2. Logický součet 3. Logický součin aa aa aa bb ff ad1: ff = aa ad2: ff = aa + bb aa bb ff ad3: ff = aa bb 1 1 1
6 Zákony Booleovy algebry logiky Zákony komutativní: AA + BB = BB + AA AAAA = BBA Zákony asociativní AA + BB + CC = AA + BB + CC AA BBBB = AAAA C Zákony distributivní AA BB + CC = AABB + AAAA AA + BBBB = (AA + BB)(AA +C) Zákony idempotentní: AA + AA = AA; AA + "0" = AA ; AA + "III = "III AAAA = AA; AA "0" = "0"; A* I = A
7 Zákony doplňku: Zákony Booleovy algebry logiky AA + AA = "III ; AA AA = "0 Zákon involuce AA = AA Zákony de Morgana AA + BB = AA BB ; Zákony absorpce AA AA + BB = AA; Zákony absorpce negace AA + AA BB = AA + BB; AA AA + BB = AA BB; AA BB = AA + BB AA + AA BB = AA AA + AA BB = AA + BB AA AA + BB = AA BB
8 Příklady užití Booleových zákonů Dokažte identitu: 1) aabb + aa bb + aaaa aabb + aa bb + bbbb Zjednodušte: 2) XXXX + XX YYZZ + YYYY [Y] 3) XXYY + ZZ XX + YY ZZ [ZZZZ + ZZYY ] 4) FF = aa bb cc dd + aa bb ccdd + aa bbbbdd + aabb cc dd + aabb ccdd + aaaacc dd + aaaaaadd [dd (bb + aa + cc)]
9 Řešení příkladu č.1 Dokažte identitu: aabb + aa bb + aaaa aabb + aa bb + bbbb aabb cc + cc + aa bb cc + cc + aaaa b + bb užití zákona doplňku aabb cc + aabb cc + aa bbcc + aa bbcc + aaaaaa + aabb cc prosté roznásobení aabb cc + cc + cc + aa bb cc + cc +bbcc aa + aa vytknutí aabb + aa bb + bbbb užití zákona doplňku a idempotentního zákona Dokázaná identita pomocí úprav Booleovými zákony Jako příklad zkuste dokázat identitu úpravou pravé strany rovnice.
10 Řešení příkladu č.2 Zjednodušte: XXXX + XX YYZZ + YYYY [Y] = YY XX + XX ZZ + ZZ užijeme zákon absorpce negace = YY XX + ZZ + ZZ užijeme zákon doplňku = YY XX + "III užijeme zákon idempotentní = YY
11 Řešení příkladu č.3 XXYY + ZZ XX + YY ZZ [ZZZZ + ZZYY ] = ZZZZYY + ZZZZYY + ZZZZ + ZZYY ; roznásobíme vše = ZZ(XXYY + XXYY + XX + YY ); vytkneme Z = ZZ(XXYY + XX + XXYY + YY ); užijeme zákon komutativní = ZZ(XX + YY ); užijeme zákon absorpce = ZZZZ + ZZYY ; roznásobíme a máme výsledek
12 Řešení příkladu č.4 FF = aa bb cc dd + aa bb ccdd + aa bbbbdd + aabb cc dd + aabb ccdd + aaaacc dd + aaaaaadd [dd (bb + aa + cc)] = dd (aa bb cc + aa bb cc + aa bbcc + aabb cc + aabb cc + aabbcc + aabbcc)= = dd (bb (aa cc + aa cc + aacc + aaaa) + aa(bb cc + bb cc + bbcc + bbbb)+ c(aa bb + aa bb + aabb + aaaa))= = dd (bb (aa (cc + cc) + aa(cc + cc)) + aa(bb (cc + cc) + bb(cc + cc))+c(aa (bb + bb) + aa(bb + bb)))= = dd (bb (aa + aa) + aa(bb + bb)+ c(aa + aa))= =dd (bb + aa+ c)
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu Číslo materiálu Náev škol Autor Tematická oblast Ročník CZ..7/.5./34.58 VY_32_INOVACE_CTE_2.MA_4_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště,
Fuzzy logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Binární logika 3) 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 1 Osnova přednášky Základní pojmy Lingvistické proměnné Funkce
2. LOGICKÉ OBVODY. Kombinační logické obvody
Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY
Binární logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Logické proměnné a logické funkce
Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
4. Elektronické logické členy. Elektronické obvody pro logické členy
4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:
P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody
P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.
Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí způsoby algebraické minimalizace a využití Booleovy algebry
Číslo projektu Číslo materiálu Náev školy Autor Náev Téma hodiny Předmět Ročník /y/ CZ..07/.5.00/4.04 VY INOVACE_8_ČT_.08_ algebraická minimaliace Střední odborná škola a Střední odborné učiliště, Hustopeče,
Základy číslicové techniky. 2 + 1 z, zk
Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Informační a komunikační technologie
Informační a komunikační technologie 2. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Booleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
Booleova algebra Luboš Štěpánek
Booleova algebra Luboš Štěpánek Úvod Booleovaalgebra(čti búlova ),nazvanápodleirskéhomatematikaalogikageorge Boolea(1815 1864), je užitečná v mnoha matematických disciplínách a má velmi široké uplatnění
ú ň ň ů ý ů ů ů ň Í ů ý ů ý ý ý ň ú ý ů ú ň ý ú ý ů ú ů ý ý ů ď ď ň ú ů ý ů ý ý ý ý ů ý ý ý ý ý ý ó ť ý ů ý ů ý ý ý ý ý ď ý ý ý ý ů ý ů ý ý ý ý ů ý ý ý ý ů Í ů ď ý ý ů Ť ý ý ý ý ý ý ý ú ý ů ú ú Í Ť ú ú
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Blokové
MAT_303 Název: VY_32_INOVACE_01_MAT_303_OZŠ_reálná_čísla_II.docx. MAT_304 Název: VY_32_INOVACE_01_MAT_304_OZŠ_zlomky.docx
Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:
Test z matematiky. Přijímací zkoušky na bakalářský obor Bioinformatika
Test z matematiky Přijímací zkoušky na bakalářský obor Bioinformatika 5. 6. 2019 Na provedení testu máte 60 minut. Při testu nelze používat kalkulátory, tabulky ani jakákoli komunikační média. Test obsahuje
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
ú ť á á á á á á á Š É Č á ú é á é š š é á á ž é š é á ů é é ž á é á ž é é á ž é á á ú ý é é ž ž ž é Ťé š ň é é š é ž á á á á é Š á á á ó ž ů é á é á ž á é á á ú ú á ž ž á á á é á Ž á áš á ž é á š á á á
MOCNINY A ODMOCNINY Eva Zummerová
MOCNINY A ODMOCNINY Eva Zummerová . Mocniny s prirodzeným exponentom Zápis a n (čítame a na n-tú ), kde a R, n N a platí : a n = a.a...a n činiteľov sa nazýva n-tá mocnina čísla a. Číslo a sa nazýva základ
ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť
1 Úvod do matematické logiky
1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.
Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,
6.1.2 Operace s komplexními čísly
6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Velmi zjednodušený úvod
Velmi zjednodušený úvod Výroková logika: A, B, C - výroky. Booleova algebra Výroky nabývají hodnot Pravdivý a Nepravdivý. C = A B A B Booleova algebra: a, b, c - logické (Booleovské) proměnné. Logické
Multimetr: METEX M386OD (použití jako voltmetr V) METEX M389OD (použití jako voltmetr V nebo ampérmetr A)
2.10 Logické Obvody 2.10.1 Úkol měření: 1. Na hradle NAND změřte tyto charakteristiky: Převodní charakteristiku Vstupní charakteristiku Výstupní charakteristiku Jednotlivá zapojení nakreslete do protokolu
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
OBECNÉ METODY VYROVNÁNÍ
OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky
Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů
Základy číslicové techniky z, zk
Základy číslicové techniky 2 + 1 z, zk Doc. Ing. Vlastimil Jáneš, CSc., K620 e-mail: janes@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro,
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Matematika pro informatiky I
Fakulta přírodovědně humanitní a pedagogická, Technická univerzita v Liberci Doc. RNDr. Miroslav Koucký, CSc. Liberec, 2017 Obsah 1. Matematické základy 1.1. Kartézský součin, relace, zobrazení 1.2. Základy
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení
Měřicí a řídicí technika bakalářské studium - přednášky LS 28/9 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automaty Matematický
Aut 2- úvod, automatické řízení, ovládací technika a logické řízení
Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 30. 10. 2012 Aut 2- úvod, automatické řízení, ovládací technika a logické řízení 1. ÚVOD DO AUTOMATICKÉHO ŘÍZENÍ
Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.
Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán
Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 utor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné
1.1 Funkce 1 V životě se běžně setkáváme se vztahem závislosti mezi různými proměnnými. Takovým vztahem závislosti může být například cena akciového titulu v závislosti na čase nebo teplota v místnosti
LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení. N Měřicí a řídicí technika 2012/2013. Logické proměnné
N4444 Měřicí a řídicí technika 22/23 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automat Matematický základ logického řízení
g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?
Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla
Matematika II. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné
Booleova algebra. 4. kapitola. Booleova algebra a její modely
Booleova algebra 4. kapitola. Booleova algebra a její modely In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 37 50. Persistent URL: http://dml.cz/dmlcz/403770 Terms
Sylabus kurzu Elektronika
Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-
20. Výrazy binomické vzorce, rozklad na součin.notebook. March 12, Učivo: Výrazy - umocňování dvojčlenu, rozklad na součin 4. Ročník: 8.
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Matematické důkazy Struktura matematiky a typy důkazů
Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.
Obsah DÍL 1. Předmluva 11
DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26
1.1 Definice a základní pojmy
Kapitola. Teorie dělitelnosti C. F. Gauss: Matematika je královnou všech věd a teorie čísel je královna matematiky. Základním číselným oborem, se kterým budeme v této kapitole pracovat, jsou celá čísla
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
PROTOKOL O LABORATORNÍM CVIČENÍ
STŘENÍ PRŮMYSLOVÁ ŠKOL V ČESKÝH UĚJOVIÍH, UKELSKÁ 3 ÚLOH: ekodér binárního kódu na sedmisegmentový displej 0.. Zadání PROTOKOL O LORTORNÍM VIČENÍ Navrhněte a realizujte dekodér z binárního kódu na sedmisegmentovku.
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek.
Algebraické výrazy Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. 1. Upravte výrazy: a) 6a + 3b + 2a + c b b) 3m + s
Číslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
Matematika pro informatiky I
Fakulta přírodovědně humanitní a pedagogická, Technická univerzita v Liberci Doc. RNDr. Miroslav Koucký, CSc. Liberec, 2016 Copyright Doc. RNDr. Miroslav Koucký, CSc. 2 Obsah 1. Matematické základy 1.1.
NA VLASTNICKÉ PRÁVO K JEDNOTKÁM
PROHLÁŠENÍ O ROZDĚLENÍ PRÁVA K NEMOVITÉ VĚCI NA VLASTNICKÉ PRÁVO K JEDNOTKÁM podle ustanovení 1166 zák. č. 89/2012 Sb. Článek I. Údaje o vlastníkovi, pozemku a domu Bytové družstvo Vánek IČ: 24142255 se
Úvod do informačních technologií
Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika
mové techniky budov Osnova Základy logického Druhy signálů
Základy Systémov mové techniky budov Základy logického řízení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 email: jan.vanus vanus@vsb.czvsb.cz http://sweb sweb.cz/jan.vanus Druhy signálů, Osnova, základní dělení
Integrální počet funkcí jedné proměnné
Integrální počet funkcí jedné proměnné V diferenciálním počtu jsme určovali derivaci funkce jedné proměnné a pomocí ní vyšetřovali řadu vlastností této funkce. Pro připomenutí: derivace má uplatnění tam,
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...
Logika 5 Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1 Logika je věda o.... slovech správném myšlení myšlení Otázka číslo: 2 Základy
Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.
1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna
Міжнародний збірник наукових праць. Випуск 2(11)
УДК 657 Міжнародний збірник наукових праць. Випуск 2(11) Michal Hora OD KAMÍNKŮ KE STANDARDU IBM PC 1 Příspěvek se zaměřuje na historický vývoj počítacích pomůcek od dávného starověku až po osobní počítače
Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
Výbor textů k moderní logice
Mezi filosofií a matematikou 5 Logika 20. století: mezi filosofií a matematikou Výbor textů k moderní logice K vydání připravil a úvodními slovy opatřil Jaroslav Peregrin 2006 Mezi filosofií a matematikou
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Prohlášení ú astníka výb rového ízení k výb rovému ízení ís. SBN/020/2015
#@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:..
Historie matematiky a informatiky
Historie matematiky a informatiky 2018 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 22. 2. 2018 Alena Šolcová, FIT ČVUT v Praze 1 Pýthagorás ze Samu, 6. stol. př. n. l.
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Konečné automaty (sekvenční obvody)
Konečné automaty (sekvenční obvody) Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_03_CIT_42_III_Seminarni_prace_navrh_KA Téma: Návrhy zadání III. Seminární
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Logické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou
Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty
Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:
Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Obsah 1. Úvod 2. Kontaktní logické řízení 3. Logické řízení bezkontaktní Leden 2006 Ing.
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Matematická logika. Miroslav Kolařík
Matematická logika přednáška první Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 014/015. prosince 014 Předmluva iii