PRINCIPY LETU Aerodynamické síly Vzdušná rychlost Vektor celkové rychlosti (TVV) Úhel náběhu (AoA)... 4
|
|
- Iva Kašparová
- před 6 lety
- Počet zobrazení:
Transkript
1 PRINCIPY LETU
2 PRINCIPY LETU... 3 Aerodynamické síly... 3 Vzdušná rychlost... 4 Vektor celkové rychlosti (TVV)... 4 Úhel náběhu (AoA)... 4 Úhlová rychlost a poloměr zatáčky... 6 Rychlost zatáčení... 7 Ustálená a neustálená zatáčka... 8 Nakládání s energií
3 PRINCIPY LETU Úspěšné vedení vzdušného boje je skutečně nelehká úloha. Vojenští piloti vzdušných sil všech zemí se pravidelně cvičí několik let, než si osvojí návyky, aby co nejlépe využili možností svých letounů. I když je v leteckém simulátoru nemožné úplně namodelovat realistické chování letounu a jeho použití, je přesto stejně důležité, aby i virtuální piloti znali principy bojového letectva a maximálně využívali přednosti letounu jak při útoku na pozemní cíle, tak i ve vzdušném boji. To neplatí pouze pro A-10C, ale pro jakýkoliv jiný bojový letoun. Aerodynamické síly Základem letu je působení čtyř základních sil na letoun: Tah. U A-10C vytváří dva motory TF-34 tah nasáváním vzduchu vstupní části a jeho vyfukování vysokou rychlostí v opačném směru. Velikost tahu odpovídá množství vzdušného proudu, násobená jeho rychlostí. U A-10C se velikost tahu, vytvořená motory, reguluje pomocí změny množství paliva, dodávaného do motoru, které se zase reguluje posunováním pák ovládání motorů (POM) v kabině letounu. Čím více se posune POM dopředu, tím větší množství paliva se dodává do motorů a tím větší je jejich tah. Vztlak. U A-10C se vztlak vytváří na křídlech. Vztlak vzniká díky využití Bernoulliho zákonu, podle kterého je při dostatečně rychlém (vlivem tahu) pohybu křídla v proudu vzduchu rychlost proudění vzduchu nad horní částí křídla větší než pod jeho spodní částí. Ve výsledku se nad křídlem vytváří oblast nižšího tlaku, který se může zvyšovat nebo snižovat v závislosti na rychlosti proudění vzduchu. A proto, čím rychleji letí letoun, tím větší se vytváří vztlaková síla. Protipůsobící silou je síla gravitační. Tak jak se vztlaková síla vytváří prouděním vzduchu, obtékající křídlo, tak i hustota vzduchu ovlivňuje její velikost. Jelikož s nadmořskou výškou klesá hustota vzduchu, tak se s rostoucí výškou vytváří na křídlech menší vztlak. horní spodní obr. vznik vztlaku v proudu vzduchu 3
4 Aerodynamický odpor. Též nazývaný odpor vzduchu směřuje proti síle tahu. Odpor na letounech vytvářejí především vystupující části konstrukce, jako jsou vzdušné brzdy (brzdící štíty), podvozek a klapky. Gravitační síla. Gravitační síla je vlastně síla, která urychluje objekty. Země uplatňuje svoji přírodní sílu na všechny objekty. Jako neměnná síla působí gravitace vždy jedním směrem směrem dolů. Tah vytváří vztlak působící proti gravitační síle. Aby letoun vzlétl, je třeba vytvořit dostatečný vztlak, který překoná gravitační sílu působící na letoun. Vzdušná rychlost Jak je známo, s menší výškou letu se zvětšuje hustota vzduchu. Větší hustota prostředí způsobuje nárůst vztlakové síly a aerodynamický odpor všech prvků letounu. Zředěný vzduch ve větších výškách zmenšuje nosnost a snižuje aerodynamický odpor letounu, ale také umožňuje dosažení vysokých rychlostí letu. Letové charakteristiky letounu na rychlosti 700 km/h se liší od těch při rychlosti 1000 km/h. Skutečná rychlost letounu v závislosti na okolním vzduchu se nazývá skutečná vzdušná rychlost (True Air Speed, TAS). TAS vždy bere v úvahu zmenšení hustoty vzduchu podle zvětšení výšky. Traťová rychlost (Ground Speed, DS) je skutečná rychlost letounu vzhledem k povrchu země a rovná se TAS + rychlost větru. Ve většině soudobých letounů, tak jako i u A-10C, je ukazatel rychlosti, ve kterém se počítá se změnou hustoty a vlhkosti vzduchu při změně výšky. Pokud se nezapočítává změna výšky, bude ukazatel rychlosti ukazovat přístrojovou (indikovanou) vzdušnou rychlost (Indicated Air Speed, IAS). Pro pilota je nejvíce důležitá přístrojová rychlost, protože právě ona určuje manévrovací charakteristiky letounu. Zpravidla se taková rychlost vyvádí na průhledový displej a na přístroje v kabině. Vektor celkové rychlosti (TVV) U většiny západních letounů se na průhledový displej vyvádí ukazatel vektoru celkové rychlosti (Total Velocity Vector, TVV), který poskytuje informaci o skutečném směru pohybu letounu (což nemusí být v podélné ose letounu) a je také nazýván Flight Path Marker (FPM). Pokud je vektor rychlosti umístěn k bodu na povrchu země, letoun poletí přímo na tento bod. Soudobé vysoce manévrující letouny, jako je A-10C, jsou schopny přejít na velký úhel náběhu (tj. letoun se pohybuje v jednom směru, zatímco jeho podílná osa směřuje do jiného směru), proto je ukazatel vektoru celkové rychlosti pro pilota obzvláště důležitý. Úhel náběhu (AoA) Jak již víte, směr vektoru rychlosti letu letounu nemusí být totožný s podélnou osou letounu. Úhel mezi průmětem vektoru rychlosti do podélné roviny letounu a podélnou osou letounu se nazývá úhel náběhu (Angle of Attack, AoA). Když pilot přitahuje řídicí páku letounu k sobě, zvyšuje tím úhel 4
5 náběhu. Pokud pilot v horizontálním letu sníží výkon motorů, začne letoun klesat a při pokračování v horizontálním letu se úhel náběhu nevyhnutelně zvětšuje. AoA a IAS jsou spojené s nosnými charakteristikami letounu. Při zvětšování úhlu náběhu až do kritické hodnoty se zvětšuje aerodynamická vztlaková síla. Zvýšení rychlosti letu při konstantním úhlu náběhu také zvětšuje vztlakovou sílu. Rovněž aerodynamický odpor letounu roste při zvětšování úhlu náběhu a rychlosti letu. Je nutné upozornit na možnost přechodu letounu do kritického režimu letu., Ztráta kontroly nad letounem může nastat například, pokud pilot změní úhel náběhu nad mezní hodnotu. Mezní hodnota je vždy zobrazena na přístrojích, zobrazujících hodnotu úhlu náběhu. Při zvětšování úhlu náběhu letounu na mezní hodnotu se na horním povrchu křídla začnou odtrhávat proudnice. Nesymetrické odtrhávání proudnic z pravého a levého křídla způsobuje skluz letounu a samozřejmě přetažení letounu. Přetažení může vzniknout, pokud pilot převýší mezní hodnotu úhlu náběhu. Zvlášť nebezpečné je dostat se do tohoto režimu při vedení vzdušného boje. Ve vývrtce a prakticky neovládatelný letoun se stává snadnou kořistí pro nepřítele. Při vývrtce se letoun točí kolem vertikální osy a neustále ztrácí výšku. Některé typy letounu se také mohou kolébat kolem příčné a podélné osy. Při vývrtce musí pilot soustředit svoji pozornost na vyvedení letounu z tohoto nebezpečného režimu. Existuje mnoho metodik, jak vyvést různé typy letadel z vývrtky. Zpravidla je nutné snížit tah, vyvíjený pohonnou jednotkou, vykopnout pedály do opačného směru točení vývrtky a odtlačit řídicí páku od sebe. Takovou polohu prvků řízení je třeba udržovat až do zastavení točení letounu a přechodu do kontrolovaného střemhlavého letu. Poté je třeba plynule vyvést letoun do horizontálního letu. Ztráta výšky může dosáhnout i několik stovek metrů. 5
6 Úhlová rychlost a poloměr zatáčky Vektor aerodynamických vztlakových sil je kolmý k vektoru rychlosti letu letounu. Dokud je gravitační síla rovna vztlakové síle, udržuje letoun horizontální let. Při zvětšení náklonu letounu se zmenšuje průmět vztlakové síly do vertikální roviny (na které leží vektor gravitační síly). obr. aerodynamické síly, působící na letoun Velikost dostupné vztlakové síly ovlivňuje manévrové charakteristiky letounu. Důležitými činiteli manévrovatelnosti jsou maximální úhlová rychlost zatáčení letounu v horizontální rovině a poloměr zatáčky. Tyto veličiny závisí na rychlosti letu letounu a jeho nosných vlastností. Rychlost zatáčení se měří ve stupních za sekundu. Čím je větší rychlost zatáčení, tím rychleji se letoun otočí. Dále je třeba odlišit ustálené (bez ztráty rychlosti) a neustálené manévry (se ztrátou rychlosti). Podle těchto činitelů 6
7 je nejlepším letounem takový, který disponuje minimálními poloměry zatáček a maximálními rychlostmi zatáčení v co nejširším rozsahu výšek a rychlostí. Rychlost zatáčení obr. síly působící na manévrující letoun Při zvětšení násobků přetížení se zvětšuje rychlost zatáčení a zmenšuje se poloměr zatáčky. Existuje taková optimální rychlost letu, při které se dosahuje rychlost zatáčení, blízká maximální a minimálně možný poloměr zatáčky. Na diagramu níže je zobrazena závislost úhlové rychlosti zatáčení typického soudobého stíhacího letounu při plné forsáži na skutečné vzdušné rychlosti. Skutečná vzdušná rychlost v km/h je vynesena na ose x a na ose y je rychlost zatáčení ve stupních za sekundu. Ostatní křivky představují hodnotu násobku přetížení a poloměr zatáčky. Tento diagram je nazýván Energy and Maneuvering (EM) diagram. Ačkoliv maximální úhlová rychlost zatáčení nastává při 950 km/h (18,2 stupňů za sekundu), pro zmenšení poloměru zatáčky je žádoucí udržovat rychlost km/h. Pro každý typ letounu je nejvhodnější rychlost odlišná. Její velikost závisí na výšce letu, hmotnosti letounu a aerodynamickém odporu vnějších podvěsů. Pro stíhací letouny je v průměru tato rychlost v rozsahu km/h. Například při provádění ustálené zatáčky při rychlosti 900 km/h, může pilot v případě potřeby při zvětšení násobku přetížení na maximální hodnotu, krátkodobě zvětšit úhlovou rychlost na 20 stupňů za sekundu, což jednorázově zmenší poloměr zatáčky. Letoun přitom začne zpomalovat a postupným 7
8 snižováním rychlosti se při zachování násobku přetížení úhlová rychlost zvětší až na 22 stupňů za sekundu s markantním zmenšením poloměru zatáčky. Potom, udržováním letounu na úhlu náběhu, blízkému maximálnímu, je možno ustálit tento poloměr a přejít na ustálenou zatáčku při rychlosti 600 km/h. Podobným manévrem v boji můžete buď zaujmout výhodnou pozici pro útok, nebo zmařit útok nepřítele. stupeň/s km/h Ustálená a neustálená zatáčka obr. rychlost zatáčení soudobého stíhacího letounu 8
9 Neustálená (zrychlená) zatáčka je charakteristická vysokou hodnotou úhlových rychlostí zatáčení, ale je doprovázená ztrátou rychlosti v průběhu provádění tohoto manévru. Rychlost letu se zmenšuje kvůli znatelnému nárůstu aerodynamického odporu. Úhel náběhu a násobky přetížení mohou dosahovat maximálních povolených horních limitů rozsahu. Při provádění ustálené zatáčky je aerodynamický odpor roven tahu pohonné jednotky. Úhlová rychlost je u ustálené zatáčky nižší, než u neustálené, ale u ustálené zatáčky nedochází ke ztrátě rychlosti. Teoreticky může letoun provádět ustálenou zatáčku, dokud mu nedojde palivo. 9
10 obr. ustálená zatáčka A-10 (standardní atmosférické podmínky, maximální tah) Nakládání s energií Ve vzdušném boji musí pilot umět nakládat s energií svého letounu. Tuto energii je možno si představit v podobě sumy potencionální a kinetické energie. Potenciální energie je určená výškou letu letounu a kinetická rychlostí letounu. Protože je hodnota tahu, vytvářená pohonnou jednotkou letounu, omezena, počínaje určitým úhlem náběhu, začne čelní aerodynamický odpor překonávat tahovou sílu. Letoun bude ztrácet energii. Aby se tomuto předešlo v boji, pilot musí udržovat takový režim letu, při kterém by měl udržovat maximální možnou úhlovou rychlost ustálené zatáčky a zároveň minimálně možný poloměr zatáčky. Představte si, že energie jsou peníze, které se utrácejí při nákupu manévrů. Předpokládejme, že existuje stálé doplňování (pokud u letounu pracují motory). Optimální nakládání vyžaduje účelné utrácení peněz pro pořízení potřebných manévrů. Prováděním příliš energeticky náročných zatáček letoun ztrácí rychlost a postupně se snižuje zásoba energie. V tomto případě je možné říci, že jste draze zaplatili za lacinou změnu dráhy. Na kontě máte nyní málo peněz a jste tudíž snadnou kořistí pro nepřítele s tučným kontem. Proto je záhodno, pokud to není zvlášť nutné, neprovádět manévry s vysokými násobky přetížení, při kterých letoun zpomaluje. Také je dobré si hlídat výšku letu a nesnižovat ji bezdůvodně (to jsou ty peníze ve vaší energetické bance). V boji na blízko se snažte pilotovat letoun při takových 10
11 rychlostech, při kterých lze dosáhnout maximálně možné rychlosti ustálené zatáčky a zároveň jejího minimálního poloměru. Pokud se rychlost letounu znatelně snižuje, zmenšete úhel náběhu, potlačte řídicí páku od sebe a odlehčete letoun. Dosáhnete tím rychlý nárůst rychlosti. Nicméně je třeba si v průběhu tohoto odlehčování udržet koncentraci, abyste neposkytli protivníkovi šanci na snadné vítězství. 11
Mechanika letu. Tomáš Kostroun
Mechanika letu Tomáš Kostroun Mechanika letu Letové výkony Rychlosti Klouzavost Dostup Dolet Letové vlastnosti Stabilita letu Řiditelnost Letadlová soustava Letové výkony větroně Minimální rychlost Maximální
ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch
ZATÍŽENÍ KŘÍDLA - I Rozdělení zatížení - Letová a pozemní letová = aerodyn.síly, hmotové síly (tíha + setrvačné síly), tah pohon. jednotky + speciální zatížení (střet s ptákem, pozemní = aerodyn. síly,
Technologie a řízení letecké dopravy: 6. Základní konstrukce letounů
Technologie a řízení letecké dopravy: 6. Základní konstrukce letounů Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na
V případě, že je rychlost letadla větší jak 400 km/h je třeba provést korekci na stlačenost vzduchu a změnu hustoty vzduchu.
VLASTNOSTI PLYNŮ LÉTÁNÍ Letecký výškoměr Výškoměr u letadla je vlastně barometr, kterým se měří atmosférický tlak v dané výšce. Jeho stupnice je cejchována v metrech podle vztahu pro tlak v různých nadmořských
ULL 1 AERODYNAMIKA A MECHANIKA LETU. Leoš Liška
ULL 1 AERODYNAMIKA A MECHANIKA LETU Leoš Liška Obsah 1) Vznik aerodynamických sil při obtékání těles. 2) Proudění laminární a turbulentní. 3) Rovnice kontinuity, Bernouliho rovnice, statický, dynamický
1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy.
1 ŘÍZENÍ AUTOMOBILŮ Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. ÚČEL ŘÍZENÍ natočením kol do rejdu udržovat nebo měnit směr jízdy, umožnit rozdílný úhel rejdu rejdových kol při
Role proudových motorů při konstrukci letadel
Role proudových motorů při konstrukci letadel od: Robert Lusser (r. 1941) A. Letové výkony proudových letounů 1. Horní hranice rychlosti U vrtulových pohonů je známa horní hranice rychlosti letu, což je
Přijímací odborná zkouška pro NMgr studium 2015 Letecká a raketová technika Modul Letecká technika
Přijímací odborná zkouška pro NMgr studium 2015 Letecká a raketová technika Modul Letecká technika Číslo Otázka otázky 1. Kritickým stavem při proudění stlačitelné tekutiny je označován stav, kdy rychlost
ONLY FOR FLIGHT SIMULATION USAGE NOT FOR REAL WORLD FLYING
ŠKOLA PILOTŮ Základy letu ONLY FOR FLIGHT SIMULATION USAGE NOT FOR REAL WORLD FLYING Author: Ondřej Sekal Valid from: 2010-07-12 Page 1 of 8 Úvod Tato příručka slouží jako učební materiál ke studiu pro
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY 6 208/60 Změna 4 Aircraft Industries, a.s L 200 A 05.09.2005 PŘÍLOHA K TYPOVÉMU OSVĚDČENÍ č. 6 208/60 Tato příloha, která je součástí Typového osvědčení č. 6 208/60
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY 62 001 - L 200 D Změna 3 Aircraft Industries, a.s.. L 200 D 05.09.2005 PŘÍLOHA K TYPOVÉMU OSVĚDČENÍ č. 62 001 - L 200 D Tato příloha, která je součástí Typového
ČÁST I DÍL 6 - HLAVA 1 PŘEDPIS L 8168
ČÁST I DÍL 6 - HLAVA 1 PŘEDPIS L 8168 DÍL 6 POSTUPY VYČKÁVÁNÍ HLAVA 1 KRITÉRIA VYČKÁVÁNÍ 1.1 VŠEOBECNĚ 1.1.1 Aby bylo zajištěno, že letadlo zůstane v ochranných prostorech vyčkávání, musí pilot použít
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
ELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou
Aerodynamika a mechanika letu
Aerodynamika a mechanika letu - pilot motorového kluzáku P - pilot kluzáku 1. Podle ezinárodní standardní atmosféry (SA) hustota vzduchu s rostoucí výškou a) roste b) klesá v závislosti na tlaku a teplotě
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
CERTIFIKAČNÍ SPECIFIKACE PRO KLUZÁKY A MOTOROVÉ KLUZÁKY
Konsolidované znění Evropská agentura pro bezpečnost letectví CERTIFIKAČNÍ SPECIFIKACE PRO KLUZÁKY A MOTOROVÉ KLUZÁKY CS-22 Ve znění: Změna Datum účinnosti Rozhodnutí výkonného ředitele č. 2003/13/RM ze
Tématické okruhy teoretických zkoušek Part 66 1 Modul 11B Aerodynamika, konstrukce a systémy pístových letounů
Tématické okruhy teoretických zkoušek Part 66 1 11.1 Teorie letu 11.1.1 Aerodynamika letounu a řízení letu 1 2 - Činnost a účinek: - řízení příčného náklonu: křidélka a spoilery; - řízení podélného sklonu:
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
Letová příručka L 13 SW. Obsah letové příručky: 1. Všeobecné informace. 2. Provozní omezení. 3. Nouzové postupy. 4. Normální postupy. 5.
Obsah letové příručky: 1. Všeobecné informace 2. Provozní omezení 3. Nouzové postupy 4. Normální postupy 5. Obraty 6. Výkony letadla 7. Přílohy 1. VŠEOBENÉ INFORMACE Třípohledový nákres Rozměry: Základní
Evropská agentura pro bezpečnost letectví
Rozhodnutí výkonného ředitele 2003/14/RM Konečná verze 14/11/2003 Evropská agentura pro bezpečnost letectví ROZHODNUTÍ č. 2003/14/RM VÝKONNÉHO ŘEDITELE AGENTURY ze dne 14. listopadu 2003 o certifikačních
M114 Aerodynamika, konstrukce a systémy letounů (RB1)
M114 Aerodynamika, konstrukce a systémy letounů (RB1) úroveň 114.1 Teorie letu (11.1) 114.1a Aerodynamika letounu a řízení letu Činnost a účinek řízení: příčného náklonu křidélka a spoilery; podélného
Úřad pro civilní letectví České republiky
TCDS 6877/56 Aero 145 Strana 1 of 6 Úřad pro civilní letectví České republiky ÚCL Příloha k Typovému osvědčení Aero 145 Držitel Typového osvědčení: Aircraft Industries, a.s Kunovice 1177 686 04 Kunovice
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Úřad pro civilní letectví České republiky
TCDS 4-4091-1956 Super Aero 45 Strana 1 of 6 Úřad pro civilní letectví České republiky ÚCL Příloha k Typovému osvědčení Super Aero 45 Držitel Typového osvědčení: Aircraft Industries, a.s Kunovice 1177
Vznik vztlaku a Aerodynamika rotoru větrné elektrárny
Vznik vztlaku a Aerodynamika rotoru větrné elektrárny Ing.Jiří Špičák ČSVE - Stránka 1 - Vznik vztlaku Abychom si mohli vysvětlit vznik vztlakové síly, musíme si připomenout fyzikální podstatu proudění.
Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S
MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
Přijímací odborná zkouška pro MgN studium AR 2016/2017 Letecká a raketová technika Modul Letecká technika
Přijímací odborná zkouška pro MgN studium AR 2016/2017 Letecká a raketová technika Modul Letecká technika Číslo Otázka otázky 1. Kritickým stavem při proudění stlačitelné tekutiny je označován stav, kdy
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168
ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 HLAVA 5 ÚSEK KONEČNÉHO PŘIBLÍŽENÍ 5.1 VŠEOBECNĚ 5.1.1 Účel Toto je úsek, kde se provádí vyrovnání do směru a klesání na přistání. Konečné přiblížení může být provedeno
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
BIOMECHANIKA SPORTU ODRAZ
BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
CERTIFIKAČNÍ SPECIFIKACE PRO VELMI LEHKÉ LETOUNY
Konsolidované znění Evropská agentura pro bezpečnost letectví CERTIFIKAČNÍ SPECIFIKACE PRO VELMI LEHKÉ LETOUNY CS-VLA Ve znění: Změna Datum účinnosti Rozhodnutí výkonného ředitele č. 2003/18/RM ze dne
Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav
Hydraulické posouzení vzduchospalinové cesty ustálený a neustálený stav Přednáška č. 8 Komínový tah 1 Princip vytvoření statického tahu - mezní křivky A a B Zobrazení teoretického podtlaku a přetlaku ve
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Literatura: a ČSN EN s těmito normami související.
Literatura: Kovařík, J., Doc. Dr. Ing.: Mechanika motorových vozidel, VUT Brno, 1966 Smejkal, M.: Jezdíme úsporně v silniční nákladní a autobusové dopravě, NADAS, Praha, 1982 Ptáček,P.:, Komenium, Praha,
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Řezání závitu s konstantním stoupáním (G33, SF)
Funkce Pomocí příkazu G33 je možné vyrábět závity s konstantním stoupáním: Válcový závit 3 Rovinný závit 2 Kuželový závit 1 Poznámka Technickým předpokladem pro tento způsob řezání závitů pomocí příkazu
Znění ze dne:30/06/2011 ELSA - A. Požadavky letové způsobilosti amatérsky postavených ELSA
ELSA - A Požadavky letové způsobilosti amatérsky postavených ELSA Na základě pověření MD OCL vydala Letecká amatérská asociace ČR Ke Kablu 289, 102 00. Praha 10 Stránka 1 z 9 ZMĚNOVÝ LIST Datum vydání
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
ČÁST I DÍL 2 - HLAVA 3 PŘEDPIS L 8168
ČÁST I DÍL 2 - HLAVA 3 PŘEDPIS L 8168 HLAVA 3 - KONSTRUKCE OCHRANNÉHO PROSTORU ZATÁČKY 3.1 VŠEOBECNĚ 3.1.1 Tato hlava poskytuje přehled metod používaných při konstrukci zatáček a uvádí parametry, které
ZMĚNA č. 105-B K LETECKÉMU PŘEDPISU LETOVÁ ZPŮSOBILOST LETADEL L 8
MINISTERSTVO DOPRAVY ČESKÉ REPUBLIKY Zpracovatel: Úřad pro civilní letectví ZMĚNA č. 105-B K LETECKÉMU PŘEDPISU LETOVÁ ZPŮSOBILOST LETADEL L 8 1. Následující listy neslouží ke změně předpisu. Jejich cílem
Soubory otázek pro způsobilost 'S80'
Soubory otázek pro způsobilost 'S80' č. 492 Zkratka souboru otázek: P1 Plují-li plavidla takovými směry, že se jejich dráhy kříží a mohlo by vzniknout. nebezpečí srážky, musí malá plavidla různých druhů
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
LET Z KULOVNICE. Petr Lenhard
LET Z KULOVNICE Petr Lenhard OBSAH Balistika Vnější balistika Síly a momenty Aerodynamické síly a momenty Výsledný rotační pohyb Shrnutí a literatura BALISTIKA ROZDĚLENÍ BALISTIKY Obor mechaniky zabývající
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Měření výkonových parametrů spalovacího motoru na hydrodynamické motorové brzdě SF 902. Radim Čech, Petr Tomčík
Měření výkonových parametrů spalovacího motoru na hydrodynamické motorové brzdě SF 902. Radim Čech, Petr Tomčík 1. Cíl cvičení Seznámit studenty s metodikou měření parametrů a výstupních charakteristik
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Evropská agentura pro bezpečnost letectví
Rozhodnutí výkonného ředitele 2003/15/RM Konečná verze 14/11/2003 Evropská agentura pro bezpečnost letectví ROZHODNUTÍ Č. 2003/15/RM VÝKONNÉHO ŘEDITELE AGENTURY ze dne 14. listopadu 2003 o certifikačních
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
HISTORIE A POZNATKY K HE-162 a ZPRÁVA O HE-162 č. 2 VÝKONY S JUMO-004. (Heinkelova zpráva) S. Günter a Hohbach. Technická výzvědná služba
Překlad HISTORIE A POZNATKY K HE-162 a ZPRÁVA O HE-162 č. 2 VÝKONY S JUMO-004 (Heinkelova zpráva) S. Günter a Hohbach Technická výzvědná služba Centrála velitelství vzdušných prostředků Wrightovo letiště,
SUB-KOMPAKTNÍ TRAKTOR
SUB-KOMPAKTNÍ TRAKTOR KIOTI CS2610 CS KIOTI CS2610 www.traktorykioti.cz SUB-KOMPAKTNÍ TRAKTOR KIOTI CS2610 Vysoce kvalitní dieselový motor Dieselový motor o výkonu 26 koní s optimalizovaným spalováním
Vliv přepravovaných nákladů na jízdní vlastnosti vozidel
Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Doc. Ing. Miroslav Tesař, CSc. Havlíčkův Brod 20.5.2010 1. Úvod 2. Definování základních pojmů 3. Stabilita vozidel 4. Stabilita proti překlopení
Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci.
Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. 10.12.2014 Obsah prezentace Chyby interpolace Chyby při lineární interpolaci Vlivem nestejných polohových zesílení interpolujících
BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)
BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY 77-01 Změna č. 9 MORAVAN-AEROPLANES a.s. Z 50 L Z 50 LA Z 50 LS Z 50 M Z 50 LX 11.04.2007 PŘÍLOHA K TYPOVÉMU OSVĚDČENÍ č. 77-01 Tato příloha, která je součástí
Základy letadlové techniky Ivan Jeřábek
Základy letadlové techniky Ivan Jeřábek Ústav letadlové techniky FS ČVUT Základy letadlové techniky Základy letadlové techniky-aeromechanika Názvosloví a popis základních částí letadla Vznik vztlaku na
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Výpočty zatížení náprav. Obecné informace o výpočtech zatížení náprav
Obecné informace o výpočtech zatížení náprav Všechny typy přeprav pomocí nákladních vozidel vyžadují doplnění podvozku nákladního vozidla o nějakou formu nástavby. Účelem výpočtů zatížení náprav je optimalizovat
LOCATELLI ATC20 CITY
Jeřáb do města LOCATELLI ATC20 CITY Výrobce Locatelli Crane Typ Locatelli ATC20 Kategorie Pracovní stroj samohybný Maximální nosnost 20 t Technický popis Standardní a volitelné příslušenství Locatelli
DODATEK B PŘEDPIS L 6/I
DODATEK B PŘEDPIS L 6/I DODATEK B - PROVOZNÍ OMEZENÍ DANÁ VÝKONNOSTÍ LETOUNŮ 1. Účel a rozsah Účelem tohoto dodatku je poskytnout poradenský materiál k úrovni výkonnosti určené ustanoveními Hlavy 5 tak,
B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,
HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací
Proudění ideální kapaliny
DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Obecné informace o spotřebě paliva. Souhrn PGRT
Souhrn Souhrn Tento dokument shrnuje a vysvětluje faktory, které ovlivňují spotřebu paliva vozidla. Spotřeba paliva vozidla je ovlivněna několika faktory: Pneumatiky Šetrný způsob jízdy Stav vozidla 03:60-02
Otázky k přijímací zkoušce do navazujícího magisterského studia Obor: Zbraně a munice pro AR 2015/2016
Otázky k přijímací zkoušce do navazujícího magisterského studia Obor: Zbraně a munice pro AR 2015/2016 SKUPINA A 1. Zbraně: Vysvětlete postup sestrojení konstrukčního tlaku při návrhu hlavně palné zbraně.
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
L-200 MORAVA NORMÁLNÍ ÚKONY
L-200 MORAVA NORMÁLNÍ ÚKONY 1. Při vstupu do kabiny před spuštěním motorů Hlavní ovládání podvozku - neutrál, zajištěno nouzové vysunutí podvozku neutrál parkovací brzda zabržděno, zajištěno seřídit sedadlo
TECHNIKA JÍZDY PRŮJEZDY ZATÁČEK část 1. Úvod
TECHNIKA JÍZDY PRŮJEZDY ZATÁČEK část 1. Úvod Místem na závodní trati, kde se rozhoduje o vítězích a poražených, jsou zatáčky a jejich projíždění představuje nejchoulostivější, nejnebezpečnější ale také
Řízení. Téma 1 VOZ 2 KVM 1
Řízení Téma 1 VOZ 2 KVM 1 Řízení Slouží k udržování nebo změně směru jízdy vozidla Rozdělení podle vztahu k nápravě řízení jednotlivými koly (natáčením kol kolem rejdového čepu) řízení celou nápravou (především
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
4. LET PTÁKŮ. 72 / Jak létají. Fascinace letem ptáků
4. LET PTÁKŮ Fascinace letem ptáků Ptáci byli předmětem zájmu a obdivu člověka od nepaměti. Říká se má zrak jako ostříž, je moudrý jako sova. Nejsou to však jen vnější znaky ptáků, jejich chování a život
STABILIZAČNÍ PLOCHY A KORMIDLA - I
STABILIZAČNÍ PLOCHY A KORMIDLA - I Stabilizační plocha pomocná vztlaková plocha, která stabilizuje letový režim ("vhodné letové vlastnosti při odchylkách z ustáleného letového režimu) Stabilita: vznik
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY 74-01 Změna č. 5 MORAVAN-AEROPLANES a.s. Z 726 Z 726 K 11.04.2007 PŘÍLOHA K TYPOVÉMU OSVĚDČENÍ č. č. 74-01 Tato příloha, která je součástí Typového osvědčení č.
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Řízení. Slouží k udržování nebo změně směru jízdy vozidla
Řízení Slouží k udržování nebo změně směru jízdy vozidla ozdělení podle vztahu k nápravě 1. řízení jednotlivými koly (natáčením kol kolem rejdového čepu). řízení celou nápravou (především přívěsy) ozdělení
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně
Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 14.9.2012 Název zpracovaného celku: Řízení automobilu Řízení je nedílnou součástí automobilu a musí zajistit: 1.natočení kol do rejdu změna
1. Charakteristiky větru 2. Výpočet dynamické odezvy podle EC1
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz VI. Zatížení stavebních konstrukcí větrem 2. Výpočet dynamické odezvy podle EC1 Vítr vzniká vyrovnáváním tlaků v atmosféře, která
Seminář Ekonomika provozu traktorů a inovace v mechanizaci,
Konkurenceschopnost a kvalita - inovace v zemědělském sektoru Seminář Ekonomika provozu traktorů a inovace v mechanizaci, Lektor: Prof. Ing. František Bauer, CSc. Termín 19.2 2014 v době od 9:00 16:00
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY
ÚŘAD PRO CIVILNÍ LETECTVÍ ČESKÉ REPUBLIKY 1622/58 Změna 4 Schempp-Hirth výroba letadel L - 40 20.09.2004 PŘÍLOHA K TYPOVÉMU OSVĚDČENÍ č. 1622/58 Tato příloha, která je součástí Typového osvědčení č. 1622/58
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie
F - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
ZKUŠEBNÍ PROUD VZDUCHU V AERODYNAMICKÉM TUNELU 3M REVIZE 2011 ING. MIROSLAV GOLDA ING. MARTIN SOLICH ING. KATEŘINA JANDOVÁ
ZKUŠEBNÍ PROUD VZDUCHU V AERODYNAMICKÉM TUNELU 3M REVIZE 2011 ING. MIROSLAV GOLDA ING. MARTIN SOLICH ING. KATEŘINA JANDOVÁ VÝZKUMNÝ A ZKUŠEBNÍ LETECKÝ ÚSTAV, a.s. BERANOVYCH 130, 199 05 PRAHA-LETŇANY 2011
Holding (vyčkávací obrazec)
ŠKOLA PILOTŮ Holding (vyčkávací obrazec) ONLY FOR FLIGHT SIMULATION USAGE NOT FOR REAL WORLD FLYING Author: Filip Cerveny Valid from: 2011-02-17 Page 1 of 7 Úvod Tato příručka slouží jako učební materiál