VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách"

Transkript

1 ROZKLAD ROZPTYLU

2 ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže jsou k dispozici údaje o skupinách (průměry, rozptyly, četnosti)

3 VNITROSKUPINOVÝ ROZPTYL Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

4 MEZISKUPINOVÝ ROZPTYL Je mírou odlišnosti poloh (průměrů) skupin Jiný název: rozptyl průměrů Vypočítává se jako rozptyl z průměrů jednotlivých skupin vůči celkovému rozptylu. Užívá se definiční výpočet rozptylu (průměrná čtvercová odchylka)

5 PŘÍKLAD 1 Na základě výsledků z 1. příkladu minulého bloku vypočítejte vnitroskupinový, meziskupinový a celkový rozptyl. Četnosti Průměry Rozptyly W X 10 9,4 185,24 Y 10 9,4 16,44 Z 10 31,9 398,89

6 ŘEŠENÍ 1 n i x i s 2 i n i x i s i2 n i (x i -x) (x i -x) 2 (x i -x) 2 n i W ,925 79, ,55625 X 10 9,4 185, ,4-4,525 20, ,75625 Y 10 9,4 16, ,4-4,525 20, ,75625 Z 10 31,9 398, ,9 17, ,1 3231,00625 Celkem 40 XX XX ,7 0 XX 4437,075 Průměr: 13,925 Vnitroskupinový rozptyl: 150,1425 Meziskupinový rozptyl 110,9269 Rozptyl 261,0694

7 PŘÍKLAD 2 Na základě následující tabulky vypočítejte meziskupinový, vnitroskupinový a celkový rozptyl. Dětinské kolegium Varianta Adámek Barunka Jiříček počet průměr 15 13,88 12,71 12,75 minimum maximum medián Směrodatná odchylka 4,655 5,85 3,438 5,337

8 ŘEŠENÍ 2 Průměr = (15*30+13,88*17+12,71*31+12,75*20)/98 = 13,62 n i s 2 i n i *s 2 i x i (x i -x) 2 (x i -x) 2 *n i Adámek 30 21, , , ,132 Barunka 17 34, ,791 13,88 0,0676 1,1492 Jiříček 31 11,82 366,42 12,71 0, ,6711 Dětinské kolegium 20 28, ,68 12,75 0, ,138 Celkem 98 XXX 2167,961 13,62 XXX 99,090

9 ŘEŠENÍ 2 s x 2 = 22,12 + 1,01 = 23,13

10 PŘÍKLAD 3 Na základě následující tabulky vypočítejte meziskupinový, vnitroskupinový a celkový rozptyl. Skupina Podíly Průměry Rozptyly A 0,2 1,75 0,25 B 0,3 2,5 0,2 C 0,5 3,8 0,5

11 ŘEŠENÍ 3 Skupina p i xi s i 2 s i2 p i x i p i (x i -x) 2 p i A 0,2 1,75 0,25 0,05 0,35 0,3125 B 0,3 2,5 0,2 0,06 0,75 0,075 C 0,5 3,8 0,5 0,25 1,9 0,32 Celkem 1 XX XX 0,36 3 0,7075

12 MÍRY ŠIKMOSTI Rozdělení s nulovou šikmostí je takové, ve kterém se medián rovná průměru Rozdělení s kladnou šikmostí je takové, ve kterém je medián menší než průměr Rozdělení se zápornou šikmostí je takové, ve kterém je medián větší než průměr Měr šikmosti je mnoho, nejpoužívanější je tzv. třetí normovaný moment

13 MÍRY ŠPIČATOSTI Čím více hodnot je kolem středu, tím je rozdělení špičatější. Nejpoužívanější míra špičatosti vychází ze čtvrtého normovaného momentu a srovnává se se špičatostí normovaného normálního rozdělení.

14 STATISTICKÝ UKAZATEL Je funkcí hodnot znaků (proměnných) Primární ukazatele jsou ukazatele přímo zjišťované (tržba) Sekundární ukazatele jsou ukazatele odvozené z primárních a to jako: Funkce různých primárních ukazatelů (zisk) Funkce různých hodnot téhož ukazatele (průměrný zisk) Funkce různých hodnot různých ukazatelů (průměrný podíl marže A na zisku)

15 STATISTICKÝ UKAZATEL Absolutní vyjadřuje velikost určitého jevu bez vztahu k jiným (např. zisk) Relativní vyjadřuje velikost určitého jevu vztaženou k jinému (např. podíl marže A na zisku) Extenzitní ukazatel je ukazatelem množství Intenzitní ukazatel je ukazatelem úrovně (např. ceny) Okamžikový je daný k určitému časovému bodu Intervalový je daný za určité časové období

16 SHRNOVATELNOST UKAZATELŮ Přímo shrnovatelné jejich souhrnnou hodnotu lze určit z dílčích hodnot (např. roční zisk z dílčích zisků za jednotlivé měsíce; součet) Nepřímo shrnovatelné jejich souhrnnou hodnotu můžeme zjistit pouze tehdy, když známe nejen dílčí hodnoty, ale ještě hodnoty jiného znaku (např. marže z prodeje A za rok z měsíčních průměrných zisků a objemů prodeje; průměr) Neshrnovatelné jejich souhrnnou hodnotu lze určit pouze se znalostí všech hodnot (např. medián)

17 INDEXY Absolutní rozdíl je rozdílem dvou hodnot Index je podílem dvou hodnot. Je to číslo udávající kolikrát je hodnota v čitateli větší než hodnota ve jmenovateli. Prostorový index srovnává jeden ukazatel na dvou různých místech (zisk firmy A vs. zisk firmy B) Druhový index srovnává jeden ukazatel u dvou různých věcí (zisk z výrobku A vs. zisk z výrobku B) Časový index srovnává jeden ukazatel ve dvou různých okamžicích (zisk v roce 0 vs. zisk v roce 1)

18 DĚLENÍ INDEXŮ Množství a úrovně (extenzitní a intenzitní) Individuální indexy jsou indexy stejnorodých ukazatelů Jednoduché indexy jsou takové, ve kterých neprovádíme shrnování Složené indexy jsou takové, ve kterých provádíme shrnování Souhrnné indexy jsou indexy nestejnorodých ukazatelů

19 UKAZATELE Obecně se používají tři ukazatele p, q, Q p = Q/q Tradiční význam: p cena q - množství Q tržba

20 JEDNODUCHÉ INDEXY Jednoduché indexy srovnávají dvě hodnoty téhož ukazatele. Nejsou nijak shrnovány. Index úrovně (ceny): Index množství: Index tržeb: Vztah:

21 ABSOLUTNÍ PŘÍRŮSTKY Změna ceny: Změna množství: Změna tržeb:

22 PŘÍKLAD Pan Bakala objevil na zahrádce uhlí a rozhodl se ho prodávat. V prvním roce prodal 200 tun uhlí za cenu 2000,- Kč/t. Ve druhém roce se rozhodl zvýšit cenu na 2200,-Kč/t a prodal takto 180 tun. Porovnejte změnu cen, prodaného množství a tržeb ve druhém roce oproti prvnímu.

23 ŘEŠENÍ Jelikož se jedná o jednu veličinu a jedno pozorování (uhlí a jedno prodejní místo), použijí se jednoduché indexy (nic se neshrnuje). Ip = 2200/2000 = 1,1 (cena vzrostla o 10%) Δp = = 200 (cena vzrostla o 200 Kč/t) Iq = 180/200 = 0,9 (objem klesl o 10%) Δq = = -20 (objem klesl o 20 tun) IQ = (2200*180)/(200*2000) = / = 0,99 (tržby klesly o cca. 1%) ΔQ = 2200*180 - (2000*200) = = (tržby klesly o 4000,- Kč)

24 BAZICKÉ A ŘETĚZOVÉ INDEXY Bazické indexy se vztahují vždy ke stejnému základu (srovnávají hodnotu vždy se stejným číslem - bází). Často se udávají v procentech (po vynásobení stem) Řetězové indexy srovnávají dvě po sobě jdoucí hodnoty v časové řadě. Mají tudíž smysl pouze pro časové indexy.

25 VZTAH INDEXŮ Platí, že násobením řetězových indexů dostáváme bazické. Opačně řetězový index získáme dělením dvou po sobě jdoucích bazických indexů.

26 PŘÍKLAD V tabulce je časová rada ukazující vývoj počtu zjištěních trestných činů v letech Charakterizujte tento vývoj pomocí absolutních přírůstku, řetězových a dvou bazických indexů (bází je rok 1991 a poté rok 1995) t Yt

27 ŘEŠENÍ t Yt I t/91 I t/95 Přírůstky I t/t , ,91 93, , ,81 108, , ,07 99, , , , ,88 105, , ,58 107, ,7

28 ,6 PŘÍKLAD V tabulce jsou bazické indexy počtu dokončených bytů v ČR v letech se základem v roce 1997, a dále bazické indexy počtu dokončených bytů v letech 2000 až 2003 se základem v roce Dopočítejte chybějící bazické indexy v obou řadách. Rok I (i/97) I (i/00) , , , ,4 100, , ,3

29 ŘEŠENÍ Rok I (i/97) I (i/00) I t/t ,49 XXX ,4 88,03 1, ,6 94,15 1, , , ,69 98,2 0, ,88 108,3 1, ,83 107,6 0,993

Indexy Jednoduché indexy Složené individuální indexy Souhrnné indexy Ze souhrnných indexů Laspeyresův index Paascheho index

Indexy Jednoduché indexy Složené individuální indexy Souhrnné indexy Ze souhrnných indexů Laspeyresův index Paascheho index Indexy (motto: It is commonly believed that anyone who tabulates numbers is a statistician. This is like believing that anyone who owns a scalpel is a surgeon. Hooke R.) Jednoduché indexy srovnávají bezprostředně

Více

PŘÍKLAD 1. t I t/ ,

PŘÍKLAD 1. t I t/ , INDEXY PŘÍKLAD 1 Na základě tabulky bazických indexů vypočítejte řetězové indexy a tabulku bazických indexů s bází t = 3 t I t/1 1 100 2 102,5 3 105 4 110 5 121 ŘEŠENÍ 1 t I t/1 I t/t-1 I t/3 1 100 XX

Více

IV. Indexy a diference

IV. Indexy a diference IV. Indexy a diference Ukazatel specifická statistická veličina popisující určitou sociálně ekonomiclou skutečnost. Ekonomická teorie definuje své pojmy a jejich vztahy často bez ohledu, zda jde o pojmy

Více

časové indexy s pohyblivým základem = řetězové indexy (koeficienty růstu)

časové indexy s pohyblivým základem = řetězové indexy (koeficienty růstu) ndexní analýza je statistická metoda sloužící ke srovnání a analyzování ekonomických (a jiných) jevů pomocí indexních čísel index - bezrozměrné číslo, které popisuje časové, věcné nebo prostorové srovnání

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

1 Indexy a časové řady. 1.1 Srovnávání ukazatelů, indexy

1 Indexy a časové řady. 1.1 Srovnávání ukazatelů, indexy 1 Indexy a časové řady 1.1 Srovnávání ukazatelů, indexy Pojem statistický ukazatel se používá zejména v ekonomické statistice jako synonymum pro statistický znak. Tento pojem je používán jak pro statistické

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Indexní analýza. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí

Indexní analýza. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Indexní analýza Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Indexní analýza Patří mezi nejpouživanější prostředky porovnání. Umožní

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Popisná statistika. Jaroslav MAREK. Univerzita Palackého

Popisná statistika. Jaroslav MAREK. Univerzita Palackého Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Obecné, centrální a normované momenty

Obecné, centrální a normované momenty Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola

Více

Minimální hodnota. Tabulka 11

Minimální hodnota. Tabulka 11 PŘÍLOHA č.1 Výsledné hodnoty Výsledky - ženy (SOŠ i SOU, maturitní i učební obory) Aritmetický průměr Maximální hodnota Minimální hodnota Medián Modus Rozptyl Směrodatná odchylka SOM 0,49 2,00 0,00 0,33

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

5.2.2 POMĚRNÁ ČÍSLA SROVNÁVACÍ, INDIVIDUÁLNÍ JEDNODUCHÉ INDEXY

5.2.2 POMĚRNÁ ČÍSLA SROVNÁVACÍ, INDIVIDUÁLNÍ JEDNODUCHÉ INDEXY Druhy poměrných čísel. Poměrná čísla srovnávací, indexy Aleš Drobník strana 5.2.2 POMĚRNÁ ČÍSLA SROVNÁVACÍ, INDIVIDUÁLNÍ JEDNODUCHÉ INDEXY Poměrná čísla srovnávací neboli individuální jednoduché indexy

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1 3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní

Více

Základ volíme podle toho, jaký je účel srovnání. Na správně zvoleném základu závisí, zda bude poměrný ukazatel plnit svou funkci.

Základ volíme podle toho, jaký je účel srovnání. Na správně zvoleném základu závisí, zda bude poměrný ukazatel plnit svou funkci. POMĚRNÍ UKAZATELÉ VÝZNAM Porovnejte dvě školy z hlediska úspěšnosti jejich studentů v přijetí na vysoké školy v loňském školním roce. Z první školy bylo přijato 58 studentů, z druhé školy 65 studentů.

Více

Poměrní ukazatelé. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí

Poměrní ukazatelé. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Poměrní ukazatelé Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Poměrný ukazatel Poměrný ukazatel znázorňuje výsledek, který získáme

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta

TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) semestrální práce z předmětu STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Jan Kubiš, Kateřina

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Téma 2. Řešené příklady

Téma 2. Řešené příklady Téma. Řešené příklady 1. V tabulce č. 1. jsou uvedeny údaje o spotřebě polotučného sušeného a polotučného tekutého mléka v jednotlivých létech. Tab. 1. (mil. l) \ rok 1998 1999 000 001 00 003 004 005 Polotučné

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Souvislý příklad na poměrná čísla Aleš Drobník strana 1 5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Poměrná čísla se hojně užívají v ekonomické praxi. Všechny druhy poměrných čísel si shrneme

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná

Více

UKAZATELÉ VARIABILITY

UKAZATELÉ VARIABILITY UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství 1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Základní statistické pojmy

Základní statistické pojmy POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza

Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Korelační a regresní analýza 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Pearsonův korelační koeficient u intervalových a poměrových dat můžeme jako

Více

Odchylky jako nástroj řízení. Odchylky můžeme vyhodnocovat: a) v absolutních jednotkách (množstevních, objemových, měnových)

Odchylky jako nástroj řízení. Odchylky můžeme vyhodnocovat: a) v absolutních jednotkách (množstevních, objemových, měnových) Odchylky jako nástroj řízení V souvislosti se zpřesňováním procesu plánování a kontroly se skutečné hodnoty porovnávají se stanovenou kontrolní veličinou. Jako kontrolní veličiny se používají plánované

Více

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf. Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot

Více

INDUKTIVNÍ STATISTIKA

INDUKTIVNÍ STATISTIKA 10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém

Více

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze

Více

Předmět studia: Ekonomická statistika a analytické metody I, II

Předmět studia: Ekonomická statistika a analytické metody I, II Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě

Více

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat 2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

STATISTIKA. Zjišťování, zpracování, hodnocení a interpretace číselných údajů.

STATISTIKA. Zjišťování, zpracování, hodnocení a interpretace číselných údajů. STATISTIKA Zjišťování, zpracování, hodnocení a interpretace číselných údajů. ZÁKLADNÍ STATISTICKÉ POJMY Statistický znak: Věcně, prostorově a časově vymezen Příklad: počet výskytů viru H5N1 na území ČR

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních

Více

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1 Srovnání údajů. Poměrná čísla Aleš Drobník strana 4. SROVNÁVÁNÍ ÚDAJŮ Statistika mj. zpracovává údaje (viz definice statistiky). Důležitou součástí zpracování údajů je srovnávání údajů (statistických znaků

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý

Více

Studijní opory předmětu MT 003 část STATISTIKA v kombinovaném studiu Vysoké školy hotelové v Praze, bakalářský studijní program všech oborů

Studijní opory předmětu MT 003 část STATISTIKA v kombinovaném studiu Vysoké školy hotelové v Praze, bakalářský studijní program všech oborů Studijní opory předmětu MT 003 část STATISTIKA v kombinovaném studiu Vysoké školy hotelové v Praze, bakalářský studijní program všech oborů Obsahová náplň předmětu MT003 část statistika 1. Statistika -

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Tabulka 1. Výběr z datové tabulky

Tabulka 1. Výběr z datové tabulky 1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat

Více

KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015

KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015 KGG/STG Statistika pro geografy 11. Analýza časových řad Mgr. David Fiedor 4. května 2015 Motivace Úvod chceme získat představu o charakteru procesu, která časová řada reprezentuje Jaké jevy lze znázornit

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě

Více

SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD

SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Poměrná čísla se užívají v ekonomické praxi. Připomeneme si definici poměrného čísla: Definice POMĚRNÝM ČÍSLEM (PČ) nazýváme ukazatel, jenž vzniká podílem

Více

Protokol č. 5. Vytyčovací údaje zkusných ploch

Protokol č. 5. Vytyčovací údaje zkusných ploch Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více