ODHAD VÝVOJE TOKU TEPLA DO PŮDY The Estimation of Evolution of the Heat Flux into Soil
|
|
- Dalibor Dvořák
- před 5 lety
- Počet zobrazení:
Transkript
1 OHA VÝVOJE TOKU TEPLA O PŮY The Estimation of Evolution of the Heat Flux into Soil Růžena Petrová Abstrakt Změny v látkových tocích a přírodních energetických procesech, jež s sebou přináší současný vývoj ve společnosti, narušují podmínky přiroené dynamické rovnováhy ekosystémů. K jejímu popisu je standardně využívána tv. ákladní energetická bilanční rovnice, kde rohodující energetické vlivy představují celková čistá radiace, evapotranspirace, jevné teplo a tok tepla do půdy. Tepelná energie se povrchu do půdy šíří vedením. Ve sledovaného objemu přílivem tepla vroste a jednotku času teplota půdy a její měnu le pro příslušnou hloubku a čas s pomocí difuivity a popsat. Fourierovým ákonem pro jednoroměrné vedení tepla. Model průběhu teploty v půdě vykauje dobrou shodu s naměřenými daty ve sledované lokalitě a byl použit k odhadu toku tepla do půdy. Klíčová slova: ekosystém, energetická bilance,, Fourierův ákon vedení tepla, polomasív, tok tepla do půdy. 1. Teplotně vlhkostní model toku tepla do půdy Na přenosu tepla do půdy se podílí především kondukce vedení tepla v důsledku konečného rodílu teplot v pevné fái hmoty [6]. Intenita vertikálního tepelného toku v půdě G [W.m - ] vlivem vedení tepla, tj. množství tepelné energie, které následkem vedení tepla a jednotku času projde horiontálně orientovanou jednotkou plochy, je přímo úměrná vertikálnímu gradientu [7] ( ) dt G = λ (1.1) d Ve sledovaného objemu přílivem tepla vedením vroste a jednotku času teplota půdy T(). Tuto měnu le pro příslušnou hloubku a čas s pomocí tv. materiálových konstant λ, resp. c a ρ stanovit následujícím vtahem T t ( ) λ T ( ) = cρ (1.)
2 λ koeficient tepelné vodivosti [W.m -1.K -1 ], c měrné teplo [J.kg -1.K -1 ], ρ měrná hmotnost [kg.m -3 ], T() teplota v hloubce [K], hloubka [m], kde výra λ ρ c λ = = a C (1.3) představuje tepelnou difuivitu a [m.s -1 ] a C= cρ [JK -1 m -3 ] tepelnou kapacitu. Substitucí výrau (1.3) do (1.) rovnice vedení tepla íská tvar [7] T t = a T (1.4) Řešení rovnice vývoje teploty T() (1.4) pro příslušnou hloubku v půdě vyjadřují následující vtahy (1.5) a (1.6) [1]. Pro odhad vývoje teploty povrchu půdy ( = 0 m) tak le použít rovnici T ( 0, t) = T + A( 0) sin[ ω( t t )] teplotu v hloubce pak představuje výra kde φ 0 (1.5) T(, t) = Tφ + A( 0) exp sinω( t t0 ) (1.6) [m] útlum šíření teplotní vlny, τ [s] perioda teplotních měn, ω [s -1 ] úhlová frekvence teplotních měn. aτ = (1.7) π. Stanovení difuivity půdy v lokalitě vrt omanín Při verifikaci navrhovaného modelu řešeného dynamického problému (Obr.1) jsou nutná vstupně-výstupní data (V/V) [3]. Teplo se do půdy šíří jejího povrchu, a vstupní data modelu je potřeba brát teplotu povrchu půdy T(0) (nikoli tv. aktivního povrchu!), výstupní T() v příslušné hloubce jsou měřena. Odporové teploměry PT100 pro jejich snímání jsou umístěny v hloubkách 0,01 až 0,08 m pod povrchem. Pokud by jako vstupní data byla vata
3 měřená v hloubce 0,01m (tj. T(0,01)), výsledek identifikace by byl kreslen, protože v této svrchní vrstvě je teplotní gradient největší (Obr.4). T(0) T t = a T T() Obr.1 Blokové schéma identifikace šíření tepla jednoroměrným polomasívem pomocí modelu (1.4) Teplota na povrchu polomasívu T(0) [6] byla určena výpočtem s využitím hodnoty dlouhovlnného áření R lodr, které je snímáno pyrgeometrem CG 3 fy Kipp & Zonen umístěným ve výšce 0,3m nad sledovanou vrstvou půdy a jehož teplota je měřena. Půdní povrch emituje ářivý tok, který pyrgeometr anamenává. Z hodnot snímaného ářivého toku s využitím doporučených emisivit povrchu [8] je pak možné určit řadu vstupních dat T(0) (radiační teplota povrchu) modelu dle vtahu ( 0) = 4 R lodr R lodr odražené dlouhovlnné áření [W.m - ], ε emisivita [1], σ Stefan-Boltamova konstanta [W.m - K -4 ]. T (1.8) ε σ Korelace vypočítané řady dat T(0) s měřenými hodnotami ostatních teplot je patrná Obr Verifikace navrženého modelu Při určování vhodné vstupní řady T(0) modelu (1.8) byl testován vliv doporučených tabulkových hodnot emisivity ε v rosahu 0,9 0,98 [8] na hodnotu jišťované difuivity a vrstvy půdy v měřeném místě. Hodnoty emisivity ε uvedeného rosahu mají výnamný vliv při stanovení řady dat povrchové teploty (rodíl ve stupních), nicméně hodnotu a [] (1.9) tento rosah výraně neovlivňí. Při identifikaci byla použita řada dat vstupu T(0) vypočítaná s hodnotou emisivity ε=0,95.
4 Záření (krátkovlnné a dlouhovlnné) dne , vrt omanín Rsdop, Rsodr, Rldop, Rlodr [W.m - ] :00 0:00 1:00 0:00 1:00-00 Řada1 Řada Řada3 Řada4 Čas Obr. Hodnoty dopadajícího a odraženého áření na stanici vrt omanín dne Teplota půdního povrchu T(0), teplota čidla CG3 a teplota T() v hloubce 0,08 m , vrt omanín 30 5 Teplota [ C] Řada1 Řada Řada :1 0:00 4:48 9:36 :4 19:1 0:00 4:48 Čas Obr.3 Hodnoty teplot využitých při verifikaci modelu (1.4) vývoje teploty T() Tato data T(0) spolu s naměřenými hodnotami teploty T( = 0,08 m) byla použita pro výpočet difuivity a ve sledovaném místě dle vtahu []. 0,08 π 0 a = A ln A0 (1.9)
5 A 0 teplotní amplituda v hloubce 0 m A teplotní amplituda v hloubce 0,08 m. Místo měření pod povrchem [m] vrstva (0 až 0,01m) s největším gradientem :00 4:30 9:00 13:30 17:00 1:30 4:00 Čas [hh:min] Obr. 4 Průběh teplotních polí na řeu polomasívem v denní periodě Její hodnota činí a=0, [m s -1 ] při naměřené hodnotě objemové vlhkosti sledovaného místa 3%. Teoretický průběhu teploty T m (0)a a T m (0,08) (1.5), (1.6) pro porovnání s naměřenými daty T(0)a a T(0,08) náorňuje (Obr.5) 4. Stanovení hodnoty toku tepla do půdy Hodnota difuivity a (1.3) ahrnuje hodnotu tepelné vodivosti λ, měrné hmotnosti ρ a měrného tepla c materiálu, jehož tepelné vlastnosti jsou koumány. Aby bylo možné teoreticky stanovit hodnotu tepelného toku G měřeného místa ve sledované periodě τ (1.7), je nutné ke stanovení hodnoty odpovídající tepelné vodivosti λ nát velikost tepelné kapacity půdy C (1.3)). λ = ac (1.10) Její hodnota je načně ávislá na typu, složení a na obsahu vody ve sledovaném vorku. Určená difuivita a=0, [m s -1 ] (při objemové vlhkosti 3%) ukaovala na hlinitojílovitý charakter měřené půdní vrstvy, a proto byly pro výpočet C použity tabulkové hodnoty c=1300 [J.kg -1.K -1 ] a ρ =196 [kg.m -3 ] [5] pro uvedené podmínky (λ = 1,5 [W.m -1.K -1 ]). Pro jinou vlhkost by bylo nutné použít jiné hodnoty c, ρ. Půda s tv. plnou půdní vlhkostí má až 10x větší tepelnou vodivost λ než půda se spodní hodnotou objemové vlhkosti (tv. bodem vadnutí).
6 T(0)*, T m (0) T(0)+, T m (0,08) [ C] :00 6:00 9:00 1:00 15:30 18:00 1:00 4:00 Čas [hh:min] Obr.5 Průběh teplotních polí na řeu polomasívem v denní periodě Z derivace rovnice (1.4) při hodnotě = 0 m pro stanovení toku tepla povrchu do půdy plyne následující vtah [4] G0( t) := λ A0 exp sin ω ( t ) + A0 exp cos ω ( t ) + (1.11) G [W.m - ] :00 3:00 6:00 9:00 1:00 15:00 18:00 1:00 4:00 0:00 Čas [hh:min] Obr. 6 Stanovené hodnoty toku tepla do půdy G (1.11) dne v lokalitě vrt omanín Možný vypočítaný vývoj toku G pro denní periodu τ (1.7) dne je na Obr. 6.
7 Zpřesnění hodnot toku tepla G [W.m - ] by umožnilo experimentální stanovení tepelné kapacity C (1.3) půdy ve sledované lokalitě např. dle [9] C = x c + x c + x c s s w w a a (1.1) x s x w x a objemová frakce pevné složky objemová frakce vody objemová frakce vduchu Stanovení skutečného podílu frakcí především u pevné složky a vody (x s, x w ) by achytilo aktuální vliv vlhkosti na hodnoty materiálových konstant půdy a tím i hodnotu λ, resp. toku tepla G. 5. ZÁVĚR Ve sledované lokalitě byl umístěno v hloubce 0,08 m čidlo pro ánam tepelného toku fy Huxeflux. Získaná měření umožní potvrdit navrhovaný postup odhadu toku tepla do půdy G. Literatura [1] Cambel, G. S., Norman, J. M An Indroduction to Environmental Biophysics. New York: Springer, 1998.ISBN [] HINKEL, K. M Estimating Seasonal Values of Thermal iffusivity in Thawed and Froen Soils Using Temperature Time series. Cold Regions Science and Technology, ISSN 05-3X. [3] HOFREITER, M Identifikace soustav. Praha, ČVUT, ISBN [4] MONTHEITH, J., UNSWORTH, M Principles of Environtemtal Physics. Oxford: Elsevier ISBN [5] PETERS LIAR, C. A. et al..1998: The Effect of Soil Thermal Conductivity Parametriation on Surface Energy Fluxes and Temperatures. Journal of the Atmospheric Science.1998, 55, 7. ISSN [6] SAZIMA, M., KMONÍČEK, V., SCHNELLER J. a kol Teplo. Praha: SNTL ISBN [7] VRIES,.A Thermal Properties of Soils. Physics of Plant Environment. Amsterodam: North-Holland Publishing Company, ISSN: [8] Manual Kipp and Zonen. [on line]. eltf: Kipp and Zonen, [cit ]. < [9] VAN WIJK, W.R Soil Science.Physics of Plant Environment. 1966, vol.98, 1. ISSN: Poděkování Tento text vnikl díky podpoře grantu MŠMT Nr
TERMOKINETIKA PŮDNÍ POVRCHOVÉ VRSTVY Thermokinetics of Surface Soil Layer
TERMOKINETIKA PŮDNÍ POVRCHOVÉ VRSTVY Thermokinetics of Surface Soil Layer Růžena Petrová Abstrakt: Článek se zabývá možnostmi výzkumu a použití modelu termokinetiky povrchové půdní vrstvy, jež úzce souvisí
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
PROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
Vliv prosklených ploch na vnitřní pohodu prostředí
Vliv prosklených ploch na vnitřní pohodu prostředí Jiří Ježek 1, Jan Schwarzer 2 1 Oknotherm spol. s r.o. 2 ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Abstrakt Obsahem příspěvku je určení
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,
e, přičemž R Pro termistor, který máte k dispozici, platí rovnice
Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček
TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
Insolace a povrchová teplota na planetách mimo sluneční soustavu. Michaela Káňová
Insolace a povrchová teplota na planetách mimo sluneční soustavu Michaela Káňová Obsah Extrasolární planety Insolace Rovnice vedení tepla v 1D a 3D Testy Výsledky Závěr Extrasolární planety k 11.6. potvrzeno
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA KYBERNETIKY MODELOVÁNÍ A SIMULACE MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE SEMESTRÁLNÍ PRÁCE Vypracoval: 2011 1 I. ZADÁNÍ Sestavte model průběžné
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
Část 5.2 Lokalizovaný požár
Část 5.2 Lokalizovaný požár P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ Cílem příkladu je určit teplotu ocelového nosníku, který je součástí
Toky energie v ekosystémech a evapotranspirace. Jakub Brom LAE ZF JU a ENKI o.p.s.
Toky energie v ekosystémech a evapotranspirace Jakub Brom LAE ZF JU a ENKI o.p.s. Sluneční energie Na povrch zemské atmosféry dopadá sluneční záření o hustotě 1,38 kw.m -2, tato hodnota se nazývá solární
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
ODHAD PRŮBĚHU ENERGETICKÝCH TOKŮ VE SLEDOVANÝCH EKOSYSTÉMECH Estimation of Energetic Fluxes and Evapotranspiration of Monitored Ecosystems
ODHAD PRŮBĚHU ENERGETICKÝCH TOKŮ VE SLEDOVANÝCH EKOSYSTÉMECH Estimation of Energetic Fluxes and Evapotranspiration of Monitored Ecosystems Růžena Petrová Abstrakt: Článek popisuje analýzu metod výpočtů
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
VI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0
Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita
STUDIE VERTIKÁLNÍHO PROFILU RYCHLOSTI VĚTRU STUDY OF VERTICAL PROFILE OF WIND SPEED. Dufková Jana Mendelova zemědělská a lesnická univerzita v Brně
STUDIE VERTIKÁLNÍHO PROFILU RYCHLOSTI VĚTRU STUDY OF VERTICAL PROFILE OF WIND SPEED Dufková Jana Mendelova emědělská a lesnická univerita v Brně Abstract: The wind speed in,2 and 12, m above the ground
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek a napájení sledovaných vodních zdrojů.
Sledování 18 O na lokalitě Pozďátky Metodika Metodika monitoringu využívá stabilních izotopů kyslíku vody 18 O a 16 O v podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Měření tlakové složky potenciálu půdní vody tenzometrem UMS T8 a vlhkosti půdy vlhkostním čidlem TMS2
Měření tlakové složky potenciálu půdní vody tenzometrem UMS T8 a vlhkosti půdy vlhkostním čidlem TMS2 Teoretický úvod měření půdního potenciálu Potenciál půdní vody [J/kg] (dále jako potenciál ) je jedna
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ
ODBOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ Autor: Ing. Zdeněk Veselý, Ph.D. Doc. Ing. Milan Honner, Ph.D.
BH059 Tepelná technika budov
BH059 Tepelná technika budov Neustálený teplotní stav Teplotní útlum a fázové posunutí teplotního kmitu konstrukce Pokles dotykové teploty podlahy θ 10 O ustáleném (stacionárním)teplotním stavu mluvíme
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
LABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA APLIKOVANÉ MATEMATIKY FAKULTA DOPRAVNÍ LABORATORNÍ CVIČENÍ Z FYZIKY Jméno Jana Kuklová Stud. rok 7/8 Číslo kroužku 2 32 Číslo úlohy 52 Ročník 2. Klasifikace
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Tepelně vlhkostní bilance budov
AT 02 TZB II a technická infrastruktura LS 2012 Tepelně vlhkostní bilance budov 10. Přednáška Ing. Olga Rubinová, Ph.D. Harmonogram t. část Přednáška Cvičení 1 UT Mikroklima budov, výpočet tepelných ztrát
Sníh a sněhová pokrývka, zimní klimatologie
Sníh a sněhová pokrývka, zimní klimatologie Sníh Vznik okolo mrznoucích kondenzačních jader v plně saturované atmosféře při teplotách hluboko pod bodem mrazu Ostatní zimní hydrometeory Námraza ledová
elektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě
12. 14. května 2015 Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě Karel Vokurka Technická univerzita v Liberci, katedra fyziky, Studentská 2, 461 17 Liberec karel.vokurka@tul.cz
TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.
TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:
Analýza termodynamických jevů v potrubních sítích - měření tepelných ztrát potrubí. Pavel Sláma
Analýza termodynamických jevů v potrubních sítích - měření tepelných ztrát potrubí Pavel Sláma Odborné vedení, spolupracovníci a autor ČVUT Praha Fakulta strojní školitel: prof. Ing. Jiří Nožička CSc.
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,
Solární soustavy pro bytové domy
Využití solární energie pro bytové domy Solární soustavy pro bytové domy Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Původ sluneční energie, její šíření prostorem a dopad na Zemi
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
CALCULATION OF THE WIND SPEED IN DIFFERENT HEIGHTS PŘEPOČET RYCHLOSTI VĚTRU V RŮZNÝCH VÝŠKÁCH
CALCULATION OF THE WIND SPEED IN DIFFERENT HEIGHTS PŘEPOČET RYCHLOSTI VĚTRU V RŮZNÝCH VÝŠKÁCH Dufková J. Ústav krajinné ekologie, Agronomická fakulta, Mendelova emědělská a lesnická univerita v Brně, Zemědělská
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 7. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 7 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
Vliv rozdílného využívání lučního porostu na teplotu půdy
AKTUALITY ŠUMAVSKÉHO VÝZKUMU II str. 251 255 Srní. 7. října 2 Vliv rozdílného využívání lučního porostu na teplotu půdy The influence of different grassland management on soil temperature Renata Duffková*,
þÿ PY e s t u p t e p l a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 3 Jan Tywoniak A428 tywoniak@fsv.cvut.cz Bilanci lze sestavit pro krátký nebo dlouhý časový úsek odlišná využitelnost (proměňujících
Návrh výměníku pro využití odpadního tepla z termického čištění plynů
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh výměníku pro využití odpadního tepla z termického čištění plynů Frodlová Miroslava Elektrotechnika 09.08.2010 Práce je zaměřena na problematiku využití
5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení
1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních
Cvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce
Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti. Ing. Kamil Staněk, Ph.D. 124XTDI TERMOVIZNÍ DIAGNOSTIKA.
124XTDI TERMOVIZNÍ DIAGNOSTIKA Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti Ing. Kamil Staněk, Ph.D. kamil.stanek@fsv.cvut.cz Praha, 30.10. 2012 1D Přenos tepla obvodovou konstrukcí
SOFTWARE PRO STAVEBNÍ FYZIKU
PROTOKOL Z VÝSLEDKŮ TESTOVÁNÍ PROGRAMU ENERGETIKA NA POTŘEBU ENERGIE NA VYTÁPĚNÍ A CHLAZENÍ DLE ČSN EN 15 265. SOFTWARE PRO STAVEBNÍ FYZIKU Testována byla zkušební verze programu ENERGETIKA 3.0.0 z 2Q
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Laboratoře TZB Cvičení č. 5 Stratifikace vodního objemu vakumulačním zásobníku Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607
LTZB TEPELNÝ KOMFORT I
LTZB Měření parametrů vnitřního prostředí TEPELNÝ KOMFORT I Ing.Zuzana Veverková, PhD. Ing. Lucie Dobiášová Tepelný komfort Tepelná pohoda je stav mysli, který vyjadřuje spokojenost s tepelným prostředím.
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
T E C H N I C K Á Z P R Á V A
CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba č. 212 Akreditovaná zkušební laboratoř č. 1007.4 Zkušebna tepelných vlastností materiálů, konstrukcí a budov T E C H N I C K Á Z P R Á V A Zakázka
TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =
Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -
Zděné konstrukce podle ČSN EN : Jitka Vašková Ladislava Tožičková 1
Zděné konstrukce podle ČSN EN 1996-1-2: 2006 Jitka Vašková Ladislava Tožičková 1 OBSAH: Úvod zděné konstrukce Normy pro navrhování zděných konstrukcí Navrhování zděných konstrukcí na účinky požáru: EN
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,
Elektroenergetika 1. Základní pojmy a definice
Základní pojmy a definice Elektroenergetika vědní disciplína, jejímž předmětem zkoumání je zabezpečení elektrické energie pro lidstvo Výroba elektrické energie Přenos a distribuce elektrické energie Spotřeba
Elektromechanický oscilátor
- 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody
1 Nulové body holomorfní funkce
Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
MKP simulace integrovaného snímače
MKP simulace integrovaného snímače podélných a příčných vln Petr Hora Olga Červená Ústav termomechaniky AV ČR, v. v. i. Praha, CZ Inženýrská mechanika 2012 - Svratka Úvod nedestruktivní testování (NDT)
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka