Páťáci a matematika I. Přirozená čísla větší než milión. 1. Zapište čísla do tabulky. 2. Přečtěte čísla zapsaná v tabulce. Rozepište do tabulky čísla:
|
|
- Ladislava Bartošová
- před 9 lety
- Počet zobrazení:
Transkript
1 Páťáci a matematika I Přirozená čísla větší než milión 1. Zapište čísla do tabulky 2. Přečtěte čísla zapsaná v tabulce. Rozepište do tabulky čísla: 1
2 3. Napočítejte deset čísel od nuly při počítání 4. Do rámečků doplňte čísla, která tam v řadě čísel chybí 2
3 5. Do rámečků doplňte čísla, která v řadě čísel chybí. 6. Zapište násobky čísel n. 7. Zapište čísly, kolik stála výstavba silnic. 3
4 8. Zapište čísla daná jejich rozvinutým zápisem 9. Zapište rozvinutý zápis uvedených čísel 10. Zapište číslo, které má: 4
5 11. Zapište čísla Číslicemi 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, zapište různá deseticiferná čísla tak, aby se číslice neopakovaly a aby číslo 0 bylo na místě: 14. Zapište čísla, která jsou při počítání po jedné hned před a hned za daným číslem 5
6 15.Zapište alespoň tři následující čísla při počítání po Zapište alespoň tři následující čísla při počítání po Zapište alespoň tři následující čísla při počítání po Zapište nejmenší a největší číslo: Doplňte věty: 6
7 19. Kolik tisícikorun je jedna miliarda Kč? 20. Je možné zapsat jednu miliardu římskými číslicemi? 21. Porovnejte čísla, doplňte znaky >, <, =. 22. Doplňte věty 23. Z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 utvořte nejmenší možné a největší možné deseticiferné číslo, jestliže se žádná číslice neopakuje. 7
8 24. Kdo si myslí větší číslo? 25. Zapište alespoň tři čísla, která jsou řešením nerovnice tj. nejmenší možné číslo a pokud je to možné tak největší číslo. 26. Zapište nejmenší a největší možné řešení a alespoň ještě jedno řešení. 8
9 27. Zatrhněte inzeráty těch domů, které si Navrátilovi mohou koupit. Určete, který z domů je nevýhodnější koupit vzhledem k jeho rozloze a ceně. 28. Seřaďte planety podle jejich velikosti od nejmenší po největší. Zapište vzdálenosti planet od Slunce, které jsou větší (menší) než jedna miliarda kilometrů. 9
10 29. Co znamená jeden dílek na číselné ose? Do rámečků zapište čísla, která tam na číselné ose patří. 30. Zapište nejblíže menší a nejblíže větší násobek: 10
11 31. 11
12 32. Čísla n zaokrouhlete na: 33. Seřaďte světadíly podle počtu obyvatel od největšího počtu k nejmenšímu. Počty obyvatel jsou zaokrouhleny na milióny. Zapište, kolik nejméně a kolik nejvýše obyvatel tam může být. 34. Počet korun vybraných na daních je zaokrouhlen na deseti miliardy. Zapište kolik nejvýše a kolik nejméně mohlo být vybráno 12
13 35. Zapište nerovnicí a jejím řešením jak stará může být naše Země. 36. Porovnejte délky vystavěných silnic a ceny jejich výstavby. Ve větě na konci úlohy škrtněte jedno slovo tak, aby byla pravdivá. 13
Čtvrťáci a matematika VIII
Čtvrťáci a matematika VIII Poznáváme čísla do 1 000 000 a větší než milión 1. Nejdříve odhadněte a pak spočítejte, kolik je tu základních čtverců sítě. 1 2. Rozepište čísla do tabulky a čísla zapsaná v
2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1
2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.
Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:
Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.
Oblast I - Komunikace bazální
Oblast I - Komunikace bazální Úkol č. Zadání úkolu Cíl úkolu 1 Vyberte jenom jména Chápe jméno 2,3 Jak se jmenuje autor textu, Co odpovíte, na tyto Chápe jméno otázky? 4 Označte pouze křestní jména Chápe
Statistika. Počet přestupků. 1 2 3 4 5 6 7 8 9 10 11 12 počet odebraných bodů za jeden přestupek. Statistický soubor 1
Statistika Statistický soubor 1 Při měření výšky u žáků jedné třídy byly zjištěny tyto údaje (v cm): 1,176,17,176,17,17,176,17,17,17. a) Objasněte základní pojmy (stat. soubor, rozsah souboru, stat. jednotka,
Á é é Í ť š Š é ž ú é é Í é é ů ů ď ú š ů ď Ú ú Í Í é Ú Ů é Ú é Í ď ď ú Á Í Á ž ů Š é é ž é ú ž š š ž ď ž ďš ů Í ť ď ú Ú é é ž ú é ů é ú š ž é Í é š Ť é Ú ó Í é é ú ů š ž ž é ó é š Í ž ď ž ď š Ť ď ď é
Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:
Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
Test studijních předpokladů Varianta C3 FEM UO, Brno 2014 1
Test studijních předpokladů Varianta C3 FEM UO, Brno 204 Příklad. Na výrobku je uvedena aktuální cena 36 Kč a uvedeno, že byl zlevněn o 40 %. Jaká byla původní cena výrobku? A: 48 Kč D: 64 Kč B: 60 Kč
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/4.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_2_INOVACE_CH29_1_06 ŠVP Podnikání RVP 64-41-L/51
Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.
Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,
Čtvrťáci a matematika XII Přímá a nepřímá úměrnost 1. Doplňte tabulku a vyznačte graf určený tabulkou. Doplňte věty slovy zvětší, zmenší.
Čtvrťáci a matematika XII Přímá a nepřímá úměrnost 1. Doplňte tabulku a vyznačte graf určený tabulkou. Doplňte věty slovy zvětší, zmenší. 1 2. Vyřešte úlohu a doplňte větu v rámečku. 3. Vyřešte úlohu a
Počítání ve sluneční soustavě
Číslo klíčové aktivity III/2, Matematika ZŠ Nepomuk Počítání ve sluneční soustavě Znáš naše nejbližší vesmírné sousedy? Co o nich víš? Láká tě vesmír? Každý kosmonaut i astronom musí umět mnoho věcí. Bez
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
3. Mocnina a odmocnina. Pythagorova věta
. Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme
Kód uchazeče ID:... Varianta: 14
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_10 ŠVP Podnikání RVP 64-41-L/51
Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičení a zapamatování počítání a měření úhlů
METODICKÝ LIST DA50 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Úhly II. - Počítání a měření úhlů Astaloš Dušan Matematika šestý frontální,
Teorie množin. kapitola 2
Teorie množin kapitola 2 kapitola 2 část 3 Intervaly Základní poznatky Teorie množin Co po tobě budu dneska chtít? V této podkapitole tě naučím pracovat s intervaly, správně je zapisovat a zakreslovat
Metodický list. Ověření materiálu ve výuce: Datum ověření: 30. 3. 2012 Třída: 5. B Ověřující učitel: Jana Kuchtíková
Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické
P íklad desetinných ísel : 0,7 1,4 1,5 0,789 128,456
4. Desetinná ísla 4.1. ád desetinného ísla V praktickém život nehovo íme jen o 5 kg jablek, 8 metr, 7 0 C, ale m žeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých ísel existují
Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.
Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
4. Lineární nerovnice a jejich soustavy
4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší
Vzdělávací oblast. Matematika a její aplikace. Matematika. Tematický okruh
Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT JÍDLO VY_32_INOVACE_M_02_17 Vzdělávací oblast Vzdělávací obor Tematický okruh Anotace Klíčová slova Druh učebního materiálu Cílová skupina/ročník
Bytový dům "Praha 8-Libeň" - ceník na pronájem bytů 1+kk a 2+kk vč. služeb a energií
Byt Dispozice Rozloha byt m 2 Dispozice bytu, rozloha a výpočet nájmu KT Rozloha balkon m 2 Nájem Kč Topení Kč Vybavení Kč Služby - osoba 1. patro Celkový nájem vč. služeb a energií dle počtů osob v bytě
SMRK ZTEPILÝ PŘEČTI SI TEXT A POTÉ VYŘEŠ ÚKOLY: 1. SMRK POCHÁZÍ Z: a) VYŠŠÍCH NADMOŘSKÝCH VÝŠEK, b) STŘEDNÍCH POLOH, c) NÍŽIN.
SMRK ZTEPILÝ PŘEČTI SI TEXT A POTÉ VYŘEŠ ÚKOLY: V 18. STOLETÍ SE KVŮLI VELKÉ SPOTŘEBĚ DŘEVA ZAČALY ZAKLÁDAT UMĚLÉ LESY A TO ZE SMRKU, PROTOŽE TEN RYCHLE ROSTE A TO SE VYPLATÍ TĚM, KDO HO CHTĚJÍ RYCHLE
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006
Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište
Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.
5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých
DOVEDNOSTI V MATEMATICE
Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 6 MCZZ96DT DOVEDNOSTI V MTEMTICE didaktický test Testový sešit obsahuje úloh. Na řešení úloh máte 4 minut. Všechny odpovědi pište do záznamového archu. Pokud
3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose
3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2011/2012
Katedra geografie + Přírodovědecká fakulta Univerzita Palackého v Olomouci Skupina: Číslo uchazeče (nevyplňujte): PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2011/2012 Přijímací zkouška ze zeměpisu a všeobecného
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
Zápis čísla v desítkové soustavě. Číselná osa Písemné algoritmy početních operací. Vlastnosti početních operací s přirozenými čísly
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Matematika Ročník: 1. Výstupy kompetence Učivo Průřezová témata,přesahy Číslo a početní operace VDO Občanská společnost a škola Obor
15 Lze obarvit moře?
Lze obarvit moře? 15 Pomůcky Papír, tužka, kalkulačka Úvod Nejen v matematice, ale i v jiných oborech (fyzika, chemie, biologie) se pracuje s údaji, k jejichž zápisu se používají velká čísla (tj. čísla,
Délka úsečky. Jak se dříve měřilo
Jak se dříve měřilo Délka úsečky 1. Podle své ruky vyznačte: na polopřímce s počátkem P jednotku délky palec, na polopřímce s počátkem D jednotku délky dlaň, na polopřímce s počátkem M jednotku délky píď.
ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková
ZLOMKY A DESETINNÁ ČÍSLA Růžena Blažková Úvod Se zlomky a s desetinnými čísly se setkává každý člověk, jak v běžném životě, tak v pracovních či zájmových činnostech. Z matematického hlediska není rozdíl
Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU
Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu
Otázky z kapitoly Základní poznatky
Otázky z kapitoly Základní poznatky 4. ledna 2016 Obsah 1 Krokované příklady (0 otázek) 1 2 Mnohočleny a lomené výrazy (88 otázek) 1 2.1 Obtížnost 2 (78 otázek)....................................... 1
geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl
82736-250px-coronelli_celestial_globe Geografie=Zeměpis geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl a posud do jisté míry jest sporný Topografie
Název projektu: Poznáváme sebe a svět, chceme poznat více
Název projektu: Poznáváme sebe a svět, chceme poznat více Registrační číslo projektu: CZ.1.07/1.4.00/21.2970 Identifikátor materiálu Název klíčové aktivity IV/2-1/20 Inovace a zkvalitnění výuky směřující
Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH
Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH A) Sluneční soustava II. Sluneční erupce Slunce je aktivní hvězdou, na jejímž povrchu můžeme čas od času pozorovat
MATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD11C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje
1.2.1 Desetinná čísla I
1.2.1 Desetinná čísla I Předpoklady: S přirozenými čísly dokážeme hodně, ale vždy s nimi nevystačíme. Takto by například vypadalo olympijské finále v běhu na 1 m mužů, kdybychom uměli měřit pouze na celé
Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace
Slovní úlohy řešené lineární rovnicí pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Rovnice s absolutní hodnotou
Rovnice s absolutní hodnotou Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období vytvoření VM: prosinec
PŘIJÍMACÍ ZKOUŠKY I.termín 22.dubna 2014
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Příklady můžete řešit v libovolném pořadí.
Slovní úlohy v učivu matematiky 1. stupně základní školy
Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.
MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň
MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Obsahové, časové a organizační vymezení Předmět se vyučuje jako samostatný předmět v 1. - 5. ročníku 5 hodin týdně. Vzdělávání v matematice zaměřeno
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)
Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.
. Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace
240/2014 Sb. NAŘÍZENÍ VLÁDY
240/2014 Sb. NAŘÍZENÍ VLÁDY ze dne 27. října 2014 o výi časových poplatků, sazeb mýtného, slevy na mýtném a o postupu při uplatnění slevy na mýtném Vláda nařizuje podle 46 odst. 1 zákona č. 13/1997 Sb.,
Příprava na závěrečnou písemnou práci
Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě
Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu
Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu
Téma: Skloňování číslovek. Číslo projektu: CZ.1.07/1.4.00/21.1355
Název školy: Základní škola Dukelských bojovníků a mateřská škola, Dubenec Autor: Mgr. Iveta Malá Název: VY_32_INOVACE_13/12_Český jazyk pro 6. ročník Téma: Skloňování číslovek Číslo projektu: CZ.1.07/1.4.00/21.1355
. Opakovací kurs středoškolské matematiky podzim 2015
. Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka
4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují
VÝUKOVÝ MATERIÁL. Matematika 1. ročník, studijní a učební obory Bez příloh
Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vytvořeno 18.5.2013 Určeno pro Přílohy VÝUKOVÝ MATERIÁL Vyšší odborná škola a Střední
0,2 0,20 0, Desetinná čísla II. Předpoklady:
1.2.2 Desetinná čísla II Předpoklady: 010201 Pedagogická poznámka: Je třeba zahájit tak, aby se stihl ještě společný začátek příkladu 7 (pokud někdo příklad 7 začne s předstihem, nevadí to, ale jde o to,
MATEMATIKA 5. ročník
MATEMATIKA 5. ročník ZŠ praktické Pracovní sešit Škola pro život CZ.1.07/1.2.19/02.0007 Projekt Základní školy Cheb, Kostelní náměstí 14 Měl(a) bych znát: 1. číst, psát a porovnávat čísla v oboru do 1000
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Jméno a příjmení holka nebo kluk * Třída Datum Škola
M-6 Jméno a příjmení holka nebo kluk * Třída Datum Škola Následující graf ukazuje, jak se měnily (převážně jak rostly) tržby v a letecké dopravě v České republice od roku. Pozemní doprava zahrnuje především
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při
METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo)
METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech reg. č. projektu: CZ.1.07/1.3.11/02.0003 Sada metodických listů: KABINET MATEMATIKY
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA Vzdělávací předmět: Fyzika Tematický celek dle RVP: Pohyb těles. Síly Tematická oblast: Pohyb a síla Cílová skupina: Žák 7. ročníku základní školy Cílem pokusu je sledování
Otázky z kapitoly Stereometrie
Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14
Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
Prvočísla a čísla složená
Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady
Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha
1. a) Přirozená čísla
jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí
MATEMATIKA rozšířená úroveň
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.
Mateřská škola a Základní škola při dětské léčebně, Křetín 12
VY_32_INOVACE_DUM.M.18 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Třída: Anotace: Matematika a její aplikace Racionální
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PID16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
Centrum čtení LETÍME DO VESMÍRU
Centrum čtení 1. Rozdělte se do dvojic. Každá dvojice si vezme jeden list Život na Marsu? Posuďte sami! a půjde si někam na chodbu, kde je nikdo nebude rušit. Jeden z dvojice bude představovat Anču Zíravou,
FVL UO, Brno 2018 str. 1
Příklad 1. Kolik lichých přirozených čísel větších než 84 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se žádná číslice neopakuje? A: 42 B: 45 C: 48 D: 51 E: 54 1 Příklad 2. Definičním oborem funkce y
Druháci a matematika VII. Násobíme, dělíme do 20
Druháci a matematika VII Násobíme, dělíme do 20 1. Násobení 1. Vyznačte, jak děti stojí na hřišti. V kolika řadách stojí? V kolika stojí zástupech? Kolik je všech dětí na hřišti? Jak to vypočítáme? 2.
Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví
Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,
Mateřská škola a Základní škola při dětské léčebně, Křetín 12
VY_32_INOVACE_DUM.M.15 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Početní
Slovesa. MASARYKOVA ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VELKÁ BYSTŘICE projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život
Slovesa MASARYKOVA ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VELKÁ BYSTŘICE projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Číslo DUMu: VY_32_INOVACE_25_01 Tématický celek: Gramatika, skladba,
1. Pojem celé číslo. 2. Zobrazení celých čísel. Číselná osa :
C e l á č í s l a 1. Pojem celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek, 8 korun apod). Desetinná čísla
Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému
Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)
1.2.5 Reálná čísla I. Předpoklady: 010204
.2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý
Téma 5 : Přijímací pohovor do zaměstnání.
Téma 5 : Přijímací pohovor do zaměstnání. A Před pohovorem..2 A1 Úvod, minidialogy. 2 A2 Mluvení: Tvorba vlastních dialogů. 3 A3 Diskuze Co mohu při konkurzu očekávat..3 A4 Slovní zásoba 3 A5 Čtení: Rady
TVAROSLOVÍ Mgr. Soňa Bečičková
TVAROSLOVÍ Mgr. Soňa Bečičková ČÍSLOVKY VY_32_INOVACE_CJ_3_15 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Druhy číslovek, skloňování číslovek, duálové skloňování
Centrum čtení LETÍME DO VESMÍRU
Centrum čtení 1. Rozdělte se do dvojic. Kaţdá dvojice si vezme jeden list Život na Marsu? Posuďte sami! a půjde si někam na chodbu, kde je nikdo nebude rušit. Jeden z dvojice bude představovat Anču Zíravou,
Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková
VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění
jsou všechna reálná čísla, pro která platí: D: x ( ; 2) ( 2; 2) E: x ( 2; 2)
Příklad 1. Kolik přirozených čísel lze vytvořit z číslic 0, 3, 6, 9, jestliže se žádná číslice neopakuje? A: 48 B: 42 C: 60 D: 63 E: 65 Příklad 2. Definičním oborem funkce y = x 2 4 x+2 jsou všechna reálná
Jméno :... třída : 5. I. část
Jméno :... třída : 5. I. část 1. 2 569 38 625 68 138 8 372 32 765 723 765 58 217 23 792 95 676-59 635-92 382-62 826 2. 372 6 53 37 2 657. 5. 73. 658. 37 3. 573 96 387 28. 60. 700. 30. 508. V prodejně měli
ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Složené výroky Jsou tvořeny dvěma nebo více výroky jednoduššími. V : Číslo 8 je liché. V : 0,1 N. V : Paříž je hl. město Španělska.
Výrok a jeho negace Výrokem se rozumí sdělení u něhož má smysl otázka zda je či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V : Úhlopříčky čtverce jsou na sebe
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled
řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo
Co je správně? Doplňte slovesa v imperativu. obléknout si obout se. nesvlékat se nezouvat se. svléknout si zout se
Co je správně? 179/6 1. slunce zuří / září 2. rozzlobený člověk zuří / září 3. člověk, který chce to nejlepší, je náročný / špičkový 4 zboží, které má tu nejlepší kvalitu, je náročné / špičkové 5. situace