Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví
|
|
- Otakar Kovář
- před 9 lety
- Počet zobrazení:
Transkript
1 Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel, kterým bude rozumět i malé dítě. Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví cesty do práce v metru. Opět čísla, tentokrát by s nimi mohl mít malý školák již problémy. Jak víme, existují totiž různé druhy čísel... Přirozená čísla Přirozená čísla jsou čísla 1, 2, 3, 4, 5,... Pomocí nich můžeme vyjádřit například počet věcí, zvířat a lidí. Z přirozených čísel lze vytvořit množinu, která je nekonečná a značíme ji N. Můžeme tedy zapsat N {1, 2, 3, 4, 5,...} V případě, že bychom do množiny přirozených čísel zahrnuli také nulu, budeme tuto množinu zapisovat N 0. Platí: N 0 N {0}. Celá čísla Celá čísla jsou čísla..., 3, 2, 1, 0, 1, 2, 3,.... Pomocí celých čísel můžeme vyjádřit nejen počet, ale také změnu počtu, dluh či např. teplotu. Množinu celých čísel značíme Z. Jak vidíme na obrázku č. 5, množina celých čísel vznikne tak, že k přirozeným číslům připojíme nulu a záporná čísla. Je zřejmé, že platí: N Z. 1 Obrázek č. 5 - Konstrukce množiny celých čísel
2 Racionální čísla Racionální čísla jsou čísla, která je možno vyjádřit ve tvaru zlomku: kde r Z, s N Je důležité si uvědomit, že s 0. Množinu racionálních čísel značíme Q. Mezi racionální čísla patří například:,,,... Racionální čísla používáme i v běžném životě k vyjádření částí celku (např. "Koupil jsem si bochníku chleba.") Každé přirozené a také každé celé číslo je zároveň číslem racionálním, neboť ho můžeme vyjádřit ve tvaru zlomku, jehož jmenovatel je roven jedné, například: 2, 3, atd. Je tedy zřejmé, že platí: N Z Q. Jedno racionální číslo můžeme vyjádřit nekonečně mnoha zlomky, například: Zlomek, v jehož čitateli a jmenovateli jsou nesoudělná čísla (kromě čísla 1 nemají žádného společného dělitele), se nazývá zlomek v základním tvaru (např.,,,...). Vynásobíme-li čitatel a jmenovatel zlomku stejným celým číslem k 0, provádíme rozšiřování zlomku. Příklad: ( 1) Vydělíme-li čitatel a jmenovatel zlomku stejným celým číslem k 0, provádíme krácení zlomku. Příklad: ( 1) 2
3 Při rozšiřování (krácení) zlomek v podstatě násobíme (dělíme) číslem jedna. Rozšiřováním ani krácením se hodnota zlomku nezmění! Chceme-li zjistit, zda se zlomky rovnají, převedeme je pomocí rozšiřování nebo krácení na zlomky se stejným jmenovatelem. Každé racionální číslo můžeme kromě zlomku zapsat také ve tvaru: a) desetinného čísla (např. 0,5; 1,25; 0,625) s ukončeným desetinným rozvojem, b) nekonečného desetinného periodického rozvoje (např. 0, , ; 0, , ; 0, ,3 ). Poznámka: Pozor na zaokrouhlování ( např. 0,3). Složený zlomek je takový zlomek, v jehož čitateli nebo jmenovateli je také zlomek (např. ). Smíšené číslo je tvořeno z celého čísla a zlomku (např. zlomek můžeme zapsat pomocí smíšeného čísla 2 ). Počítání se zlomky a) Sčítání zlomků provádíme podle tohoto základního schématu: + + Příklad: V případě, že jmenovatelé obou zlomků jsou čísla soudělná (mají společného dělitele), je možno vytvořit společného jmenovatele i jednodušším způsobem. Příklad:
4 b) Odčítání zlomků provádíme podle tohoto základního schématu: Příklad: V případě, že jmenovatele obou zlomků jsou čísla soudělná, lze postupovat při určení společného jmenovatele podobně jako při sčítání. Příklad: c) Násobení zlomků provádíme podle tohoto základního schématu: Příklad: Při násobení zlomků se snažíme, je-li to možné, zlomky krátit. Příklad: d) Dělení zlomků převádíme na násobení převráceným zlomkem: Příklad: Iracionální čísla Kromě racionálních čísel existují také čísla, která není možno vyjádřit ve tvaru zlomku. Jsou to čísla iracionální. Jejich množinu označujeme písmenem I, nebo ji neoznačujeme. Mezi iracionální čísla patří např. druhé odmocniny z přirozených čísel,,,,,... Mezi iracionální čísla patří také číslo ( 3, ). 4
5 Desetinný zápis každého iracionálního čísla je vždy neukončený a neperiodický. Množina iracionálních čísel je stejně jako množina čísel racionálních nekonečná. Reálná čísla Čísla racionální a iracionální souhrnně označujeme jako čísla reálná. Množinu reálných čísel značíme R. Vztah mezi jednotlivými číselnými obory znázorňuje obr. 6. Platí: N Z Q R. Obrázek č. 6 - Vztahy mezi číselnými obory Použitá literatura a ostatní zdroje CALDA, Emil. Matematika pro netechnické obory SOŠ a SOU - 1. díl. 1. vydání. Prometheus, ISBN Obrázky - zdroj: vlastní tvorba 5
Kvadratická rovnice. - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0
Kvadratické rovnice Kvadratická rovnice a + b + c = 0 a, b, c R a 0 - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0 - pokud by koeficient a byl roven nule, jednalo by se o rovnici
VíceStřední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceRovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceMatematická statistika
Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické
VíceStřední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně egistrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceRozklad na součin vytýkáním
Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:
VíceRacionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:
Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.
Více4. Lineární nerovnice a jejich soustavy
4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší
VíceZvyšování kvality výuky technických oborů
Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol
VíceSada 1 Matematika. 16. Úvod do pravděpodobnosti
S třední škola stavební Jihlava Sada 1 Matematika 16. Úvod do pravděpodobnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 -
VícePřehled učiva matematiky 7. ročník ZŠ
Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři
VíceZlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
VíceKOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120
KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.
VíceÚvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
VíceCZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
VíceVzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4.
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
VíceŘešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0
Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceAlgebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
VíceČeské vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Matematika ve starověké Babylónii
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Matematika ve starověké Babylónii Vít Heřman Praha, 22.2.2008 Obsah: 1. Úvod 2. Historický kontext 3. Dostupné historické zdroje
VíceKód uchazeče ID:... Varianta: 14
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.0/1.5.00/34.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
VíceVariace. Číselné výrazy
Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty
VíceAritmetika s didaktikou II.
Katedra matematiky PF UJEP Aritmetika s didaktikou II. KM / 0026 Přednáška 0 Desetinnáčísla O čem budeme hovořit: Budeme definovat desetinnáčísla jako speciální racionálníčísla. Naučíme se poznávat různé
Více2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1
2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.
VíceDefiniční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14
Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce
VíceVM 2. Dělitelnost přir. čísel násobek, dělitel, znaky dělitelnosti.notebook. September 21, 2015. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
VícePodíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.
5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePráce s čísly. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
Práce s čísly Cílem kapitoly je seznámit žáky se základy práce s čísly v programu python. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
VíceZÁKLADY PODNIKÁNÍ. Ing. Gabriela Dlasková dlaskova@v8-europe.com
ZÁKLADY PODNIKÁNÍ Ing. Gabriela Dlasková dlaskova@v8-europe.com LITERATURA Povinná literatura: SRPOVÁ, J. -- ŘEHOŘ, V. Základy podnikání: teoretické poznatky, příklady a zkušenosti českých podnikatelů.
VíceMETODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo)
METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech reg. č. projektu: CZ.1.07/1.3.11/02.0003 Sada metodických listů: KABINET MATEMATIKY
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu Z..07/..00/4.080 Název projektu Zkvalitnění výuky prostřednictvím IT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím IT
VíceRacionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se
teorie řešené úlohy cvičení tipy k maturitě výsledky Víš, že racionální v matematice znamená poměrový nebo podílový, zatímco v běžné řeči ho užíváme spíše ve významu rozumový? zlomky používali již staří
Více4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem
4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly
VíceA0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
VíceČíselné množiny Vypracovala: Mgr. Iva Hálková
Číselné množiny Vypracovala: Mgr. Iva Hálková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Více56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,
6 ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z8 1 Z číslic 1,2,,9 jsme vytvořili tři smíšená čísla a b c Potom jsme tato tři čísla správně sečetli Jaký nejmenší součet jsme mohli
VíceCZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor004 Vypracoval(a),
VíceDiferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 5. ročník R. Blažková: Matematika pro 4. ročník ZŠ (2. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (3. díl) (Alter) J. Jurtová:
VíceZáklady matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
VíceNázev: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu
SLOVNÍ ÚLOHY OBVOD A OBSAH KRUHU Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu Téma: Matematika 8.ročník Číslo
VíceMATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)
MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -
VíceJak pracovat s absolutními hodnotami
Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.
VíceRNDr. Božena Rytířová. Základy měření (laboratorní práce)
Autor: Tematický celek: Učivo (téma): Stručná charakteristika: RNDr. Božena Rytířová Základy měření (laboratorní práce) Měření rozměrů tělesa posuvným a mikrometrickým měřidlem Materiál má podobu pracovního
VíceCZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.7/1.5./34.527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 6 České Budějovice Název
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. procvičení a zapamatování počítání a měření úhlů
METODICKÝ LIST DA50 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Úhly II. - Počítání a měření úhlů Astaloš Dušan Matematika šestý frontální,
VícePříprava na 1. čtvrtletní písemku pro třídu 1EB
Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné
VíceProjekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol BINOMICKÉ
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
VíceEdita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
VíceGymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11
Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně
VíceVZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
VíceKapka kapaliny na hladině kapaliny
JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina
VíceZobrazení, funkce, vlastnosti funkcí
Projekt ŠABLONY na GVM registrační číslo projektu: CZ..07/.5.00/34.0948 IV- Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Zobrazení, funkce, vlastnosti funkcí
VíceZápis čísla v desítkové soustavě. Číselná osa Písemné algoritmy početních operací. Vlastnosti početních operací s přirozenými čísly
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Matematika Ročník: 1. Výstupy kompetence Učivo Průřezová témata,přesahy Číslo a početní operace VDO Občanská společnost a škola Obor
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceJEDNACÍ PROTOKOL pro PŘÍSNĚ TAJNÉ dokumenty TAJNÉ DŮVĚRNÉ VYHRAZENÉ. Označení orgánu státu nebo právnické osoby nebo podnikající fyzické osoby
Jednací protokol JEDNACÍ PROTOKOL pro PŘÍSNĚ TAJNÉ dokumenty TAJNÉ DŮVĚRNÉ VYHRAZENÉ DATUM Označení orgánu státu nebo právnické osoby nebo podnikající fyzické osoby ORGANIZAČNÍ CELEK SEVT 01 301 7 01 301
Vícea jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2
Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů
VíceAritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší
Více4a) Racionální čísla a početní operace s nimi
Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_10 ŠVP Podnikání RVP 64-41-L/51
VíceMETODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově
METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově reg. č. projektu: CZ.1.07/1.3.11/02.0005 Sada metodických listů: KABINET MATEMATIKY Název metodického
VíceÚpravy algebraických výrazů
Úpravy algebraických výrazů Jméno autora: RNDr. Ivana Dvořáková VY_32_INOVACE_MAT_181 Období vytvoření: listopad 2012 Ročník: 1. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět:
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
VíceAdriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková
VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění
Více8. ročník - školní kolo
PVTHAGORIÁDA 2012/2013 8. ročník - školní kolo ZADÁNí 1) Které číslo nepatří mezi ostatní? 225; 168; 144; 289; 324; 196; 121; 361 2) Tyč byla rozříznuta na poloviny, poté jednu část dále rozřízli na dva
VíceSkalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
VíceOPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE
VíceLogaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
Více4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
VíceZlomky. Složitější složené zlomky
Zlomky Složitější složené zlomky Dostupné z Metodického portálu www.rvp.cz, ISSN: 0-, financovaného z ESF a státního rozpočtu Složený zlomek Složené zlomky jsou jen jiný způsob zápisu dělení zlomků, kdy
VíceSoustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
Více. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
VíceMocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.
Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat
VíceAlgebraické výrazy Vypracovala: Mgr. Zuzana Kopečková
Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš
METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:
VíceLenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
VíceARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107
ROVNICE A NEROVNICE Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec VY_32_INOVACE_M1r0107 LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU V této lekci rozšíříme naše znalosti o počítání lineárních rovnic,
VíceTen objekt (veličina), který se může svobodně měnit se nazývá nezávislý.
@001 1. Základní pojmy Funkce funkční? Oč jde? Třeba: jak moc se oblečeme, závisí na venkovní teplotě, jak moc se oblečeme, závisí na našem mládí (stáří) jak jsme staří, závisí na čase jak moc zaplatíme
VíceSTŘEDOŠKOLSKÁ MATEMATIKA
STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace
VíceZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ17 Soutěž zlomky, procenta, mocniny a odmocniny, převody
Více1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka
Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_145 Vzdělávací oblast: Matematika a její aplikace Vzdělávací
VíceMateriál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a
Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce
VíceZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková
ZLOMKY A DESETINNÁ ČÍSLA Růžena Blažková Úvod Se zlomky a s desetinnými čísly se setkává každý člověk, jak v běžném životě, tak v pracovních či zájmových činnostech. Z matematického hlediska není rozdíl
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_09 ŠVP Podnikání RVP 64-41-L/51
VíceRozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly
Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený
VíceDrsná matematika IV 7. přednáška Jak na statistiku?
Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických
VíceDeterminant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Více4. Lineární (ne)rovnice s racionalitou
@04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je
Více