elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory
|
|
- Dušan Esterka
- před 8 lety
- Počet zobrazení:
Transkript
1 Jiří Petržela všepropustné fázovací články, kmitočtové korektory
2 zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů kmitočtové korektory kmitočtové rozdělovací obvody kmitočtové slučovací obvody
3 všepropustné fázovací články (VFČ) obecně K () s N n= 1 = K0 N ( 2 s b s + b ) ( 2 s + b + ) 1ns b0 n n= 1 1n umožňují korigovat fázovou charakteristiku beze změny modulové kmitočtové charakteristiky používají se ve zpožďovacích článcích, fázovacích korektorech (vyrovnávačích) nebo místo integrátorů přenos fázovacího článku lze vyjádřit ve tvaru 0n
4 všepropustné fázovací články (VFČ) obecně pro polohu nulových bodů a pólů lze odvodit n 1 + n2 = b1 p1 + p2 = b1 n = 1n2 = b0 p1 p2 b0 pro komplexní hodnoty nulových bodů a pólů dostáváme ( Re n &) 2 + ( Im n& ) 2 = ( Re p& ) 2 + ( Im p& ) 2 Re n & = Re pro stabilní obvod leží póly v levé polorovině komplexní rovina a nulové body v pravé polorovině symetricky vzhledem k imaginární ose komplexní roviny p&
5 všepropustné fázovací články (VFČ) obecně modulová kmitočtová charakteristika je konstantní K ( ω) = K0 fázová charakteristika je dána příspěvky jednotlivých nulových bodů a pólů přenosové funkce ϕ ( ω) = ϕ = n 2 takže pro skupinové zpoždění platí τ n n b1 nω arctan 2 1 b ω ( 2 1 ) ( ) b1 n 1+ b2 nω ω = + ( 2 b b ) 2 π 1 2 ω + n 1n 2n b 2n 2 2n 4 ω
6 f τ 1 n = = b1 i = Obr. 1: Normované kmitočtové char. fázovacího článku 1. řádu, Mathcad.
7 f 2 Q τ n 2 = = 0.58 = b b = = Obr. 2: Normované kmitočtové char. fázovacího článku 2. řádu, Mathcad.
8 f f 1 2 Q τ n 2 = = = 0.69 = b b b = = = Obr. 3: Normované kmitočtové char. fázovacího článku 3. řádu, Mathcad.
9 f f 1 2 Q Q τ n 1 2 = = = 0.52 = 0.81 = b b b b = = = = Obr. 4: Normované kmitočtové char. fázovacího článku 4. řádu, Mathcad.
10 f f f Q Q τ n 1 2 = = = = 0.56 = 0.92 = = = = = = Obr. 5: Normované kmitočtové char. fázovacího článku 5. řádu, Mathcad. b b b b b
11 VFČ prvního řádu přenos fázovacího článku lze vyjádřit ve tvaru K () s = K 0 s s ω0 + ω takže přenos na nízkých a vysokých kmitočtech bude K0 = 1 K = 1 0 Obr. 6: Pasivní RC fázovací články 1. řádu.
12 VFČ prvního řádu fázový posuv bude dvojnásobný ve srovnání s obdobným obvodem s minimálním argumentem ϕ ( ω) = 2 arctan( ω) čemuž odpovídá i dvojnásobné skupinové zpoždění počáteční hodnota skupinového zpoždění je rovna ( ) = b π τ / 0 1 nulový bod a pól leží symetricky na reálné ose
13 Obr. 7: Analýza prvního pasivního RC fázovacího článku 1. řádu, Snap.
14 Obr. 8: Analýza prvního pasivního RC fázovacího článku 1. řádu, Pspice.
15 Obr. 9: Analýza druhého pasivního RC fázovacího článku 1. řádu, Snap.
16 Obr. 10: Analýza druhého pasivního RC fázovacího článku 1. řádu, Pspice.
17 VFČ prvního řádu s prvky LCR při impedančním přizpůsobení se chovají jako ideální přenosová vedení lze je libovolně kaskádněřadit bez vzájemného ovlivňování oba zatěžovací rezistory jsou nedílnou součástí článku, určují mimo jiné i hodnotu činitele jakosti článku používají se k vyrovnávání skupinového zpoždění klasických LRC filtrů, zejména při strmých aproximacích Z in =R Z out =R Obr. 11: Vstupní a výstupní odpor LCR fázovacího článku.
18 návrh VFČ prvního řádu s prvky LRC základní zapojení je křížový článek, přičemž hodnoty L a C vycházejí ze vztahů zadané hodnoty L = R ω 0 C = 1 ω R funkce fázovacího křížového článku je analogická s Graetzovým usměrňovacím můstkem negativní indukčnost lze vytvořit z pasivních součástek pouze při činiteli vazby k=1 modifikace pro k<1 0
19 M=k (L 11 L 22 ) L x =L 11 -M L y =L 22 -M L z =M Obr. 12: Základní typy zapojení fázovacího článku.
20 nesymetrické zapojení VFČ 1. řádu bez použití vzájemné indukčnosti není dosud známo 0.8<k<1 k=1 C(1-k)/(2+2k) Obr. 13: Ekvivalentní zapojení fázovacího článku 1. řádu: křížový článek, zapojení s realizací záporné indukčnosti a zapojení s vzájemnou indukčností.
21 Obr. 14: Analýza pasivního LRC fázovacího článku 1. řádu v programu Snap.
22 návrh VFČ druhého řádu s prvky LRC základní zapojení je opět křížový článek, přičemž hodnoty L 1, L 2 a C 1, C 2 vycházejí ze vztahů L 1 = R ω Q 0 C 1 = Q ω R 0 L 2 = RQ ω 0 C 2 = 1 ω RQ nesymetrické zapojení je výhodnější než symetrické, naráží však na problém s činitelem vazby k=1 snižování hodnoty k je možné různými způsoby, přičemž některé eliminují i nutnost použití indukčnosti L 2 /2 0
23 postup návrhu VFČ druhého řádu s prvky LRC máme přesně definovanou hodnotu k dopočítáme hodnoty obvodových prvků komplikovaný návrh pro konkrétní k navrhneme další prvky nutnost doplňkové cívky v sérii s kapacitorem na rozdíl od VFČ 1. řádu je možné realizovat nesymetrické zapojení bez použití vzájemné indukčnosti o typu realizace rozhoduje především hodnota Q
24 k=1 kx<k<1 kx=(1-q 2 )/(1+Q 2 ) L 2 /2-L 1 (1-k)/(2+2k) Obr. 15: Ekvivalentní zapojení fázovacího článku 2. řádu: křížový článek, nesymetrický dvojbran s k=1, k<1 a s obecným k.
25 Cx=C 2 (Q 2 /(Q 2-1)) C=C 1 =C 2 L=L 1 =L 2 Q>1 Q=1 C=C 1 =C 2 L=L 1 =L 2 C=C 1 =C 2 L=L 1 =L 2 Q=1/ 2 Q=1 Obr. 16: Nesymetrická zapojení fázovacího článku 2. řádu bez použití vzájemné indukčnosti vhodné pro různé Q.
26 Lx=2L 1 L 2 /(2L 2 -L 1 ) Q>1/ 2 Q>1/ 2 Cx=2C 1 C 2 /(2C 1 -C 2 ) Obr. 17: Varianty nesymetrického zapojení VFČ 2. řádu pro Q>0.707.
27 reálné vlastnosti VFČ druhého řádu s prvky LRC vliv mají ztráty reálných cívek a kapacitorů, konečné tolerance hodnot prvků a tolerance činitele vazby pro vysoké kmitočty je nutno brát v úvahu vliv parazitních kapacit a indukčností reálného obvodu řád uvedených obvodů je závislý na dodržení shodnosti funkčních prvků je třeba sledovat odchylky tyto neideální vlastnosti mají většinou vliv zejména na konstantnost modulové kmitočtové charakteristiky
28 VFČ druhého řádu s aktivním prvkem celkový přenos napětí je ~ K () s = [ M + ( M + 1 ) K( s) ] M = R / 2 R1 bude-li například dvojbran s přenosem K(s) tvořen pasivním RC článkem 1. řádu typu DP nebo HP potom M=1 Obr. 18: Aktivní fázovací článek s obecným dvojbranem.
29 VFČ prvního řádu s operačním zesilovačem odstraňuje nevýhodu plovoucího výstupu symbolický tvar přenosové funkce je K R R Cs + R R R Cs + R () s = K() s = R1R 3Cs + R R R Cs + R Obr. 19: Nejjednodušší aktivní fázovací články 1. řádu s VFA.
30 Obr. 20: Analýza aktivních fázovacích článků 1. řádu programem Snap
31 Obr. 21: Analýza aktivního fázovacího článku 1. řádu, Pspice.
32 Obr. 22: Modulová kmitočtová charakteristika aktivního fázovacího článku 1. řádu pro hodnotu C (1nF, 1μF), program Pspice.
33 Obr. 23: Přenos harmonického signálu o kmitočtu 1kHz aktivním VFČ 1. řádu v programu Pspice pro různé hodnoty C=10nF, C=100nF a C=1μF.
34 VFČ prvního řádu s proudovým konvejorem Obr. 24: Jednoduché fázovací články s aktivním prvkem CCII+.
35 Obr. 25: Přenosové funkce fázovacích článků s CCII+, program Snap.
36 při návrhu se využívá Bodeho aproximací modulových char. elektrické filtry kmitočtové korektory mají za úkol korigovat nežádoucí kmitočtovou závislost reálné přenosové cesty je-li do cesty s přenosem K 1 (ω) zařazen korektor K 2 (ω) ( ω) = K ( ) ( ) 1 ω K2 ω K0 K = jednoduché korekce lze provést RC článkem korektory pro individuální požadavky mohou být značně složité, náročný návrh
37 kmitočtové korektory v audio technice používají se k potlačení nebo zvýraznění určitého kmitočtového pásma v intervalu 20Hz až 20kHz korektory hloubek a výšek jsou dvoupásmové, prvního řádu se sklonem modulové charakteristiky 20dB na dekádu pro lepší korekci se využívají vícepásmové korektory, přičemž pro akustické aplikace se ustálil počet pásem (5, 7, 10, 31) a jejich vymezení souvisí z logaritmického dělení oktáv
38 kmitočtový korektor s invertujícím zesilovačem impedance Z n je obvykle tvořena sériovým rezonančním obvodem LCR podle polohy potenciometru se Z n zařazují do zpětné vazby, čímž dochází k potlačení nebo zvýraznění signálu Obr. 26: Kmitočtový korektor s invertujícím zesilovačem.
39 kmitočtový korektor s neinvertujícím zesilovačem horní (dolní) poloha jezdce potenciometru realizuje absenci (prezenci) kmitočtového pásma definovaného Z n pro střední polohu jezdce je přenos kmitočtově nezávislý aplikace uzemněných ztrátových syntetických induktorů Obr. 27: Kmitočtový korektor s neinvertujícím zesilovačem.
40 Baxandalův sdružený kmitočtový korektor velmi časté zapojení v audio technice pro zvýraznění a potlačení basů a výšek viz laboratorní úloha kurzu BNFE Obr. 28: Baxandalův sdružený korektor hloubek a výšek.
41 pásmový korektor se dvěma invertujícími zesilovači výhodou je nízký šum a kmitočtově nezávislá (konstantní) vstupní impedance pasivní selektivní blok může být realizován rezonančním obvodem nebo RC článkem Obr. 29: Zapojení pásmového kmitočtového korektoru se dvěma zesilovači.
42 kmitočtové rozdělovací a slučovací obvody jedná se o kmitočtové filtry, které umožňují signál rozdělit do několika tras nebo naopak signály sloučit v audio technice se používá například dvoupásmová nebo třípásmová kmitočtová výhybka (podle repro soustavy) snaha o minimalizaci ztrát ve filtru se projevuje využitím prvků L a C v praxi se využívají struktury tvaru T článku i Π článku
43 kmitočtové rozdělovací a slučovací obvody při zpracování větších výkonů používáme pasivní prvky Obr. 30: Kmitočtové rozdělovací obvody, dvoupásmová a třípásmová výhybka.
44 návrh dvoupásmové kmitočtové výhybky hodnoty prvků navrhujeme pro jednotný mezní kmitočet f m pro induktory dostáváme návrhové vztahy m m m f R L f R L f R L π π π = = = a podobně pro kapacitory musí platit R f C R f C R f C m m m π π π = = = kde R představuje odpor reproduktorů, pro obě větve stejný
45 kmitočtové slučovací obvody při slučování kmitočtově blízkých úzkopásmových signálů použijeme pásmové propusti využíváme teorii Zobelových filtrů Obr. 31: Dvoupásmový slučovací a třípásmový sériový rozdělovací obvod.
46 děkuji za pozornost otázky?
elektrické filtry Jiří Petržela filtry se syntetickými bloky
Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová
elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech
Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se
elektrické filtry Jiří Petržela aktivní filtry
Jiří Petržela postup při návrhu filtru nové struktury analýza daného obvodu programem Snap získání symbolického tvaru přenosové funkce srovnání koeficientů přenosové funkce s přenosem obecného bikvadu
teorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
elektrické filtry Jiří Petržela pasivní filtry
Jiří Petržela výhody asivních filtrů levné a jednoduché řešení filtrace není nutné naájení aktivních rvků nevýhody asivních filtrů maximálně jednotkový řenos v roustném ásmu obtížnější kaskádní syntéza
PŘELAĎOVÁNÍ AKTIVNÍCH FILTRŮ POMOCÍ NAPĚŤOVĚ ŘÍZENÝCH ZESILOVAČŮ
PŘELAĎOVÁNÍ AKTIVNÍCH FILTRŮ POMOCÍ NAPĚŤOVĚ ŘÍZENÝCH ZESILOVAČŮ Tuning Active Filters by Voltage Controlled Amplifiers Vladimír Axman *, Petr Macura ** Abstrakt Ve speciálních případech potřebujeme laditelné
3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
KOREKTORY FREKVENČNÍ CHARAKTERISTIKY NFZ
KOEKTOY FEKVENČNÍ CHAAKTEISTIKY NFZ Korektory mohou ungovat jako pasivní nebo aktivní. Pasivní korektory jsou zapojeny přímo v cestě n signálu, aktivní korektory se skládají ze zesilovače v přímé cestě
Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.
Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti
Frekvenční charakteristiky
Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/
Impedanční děliče - příklady
Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí
Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.
Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
elektrické filtry Jiří Petržela aktivní prvky v elektrických filtrech
Jiří Petržela základní aktivní prvky používané v analogových filtrech standardní operační zesilovače (VFA) transadmitanční zesilovače (OTA, BOTA, MOTA) transimpedanční zesilovače (CFA) proudové konvejory
Přenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
elektrické filtry Jiří Petržela filtry se spínanými kapacitory
Jiří Petržela motivace miniaturizace vytvoření plně integrovaného filtru jednotnou technologií redukce plochy na čipu snížení ceny výhody koncepce spínaných kapacitorů (SC) koeficienty přenosové funkce
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.
Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,
Hlavní parametry rádiových přijímačů
Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače
Experiment s FM přijímačem TDA7000
Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního
Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_03_Filtrace a stabilizace Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech
Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?
OPERA Č NÍ ZESILOVA Č E
OPERAČNÍ ZESILOVAČE OPERAČNÍ ZESILOVAČE Z NÁZVU SE DÁ USOUDIT, ŽE SE JEDNÁ O ZESILOVAČ POUŽÍVANÝ K NĚJAKÝM OPERACÍM. PŮVODNÍ URČENÍ SE TÝKALO ANALOGOVÝCH POČÍTAČŮ, KDE OPERAČNÍ ZESILOVAČ DOKÁZAL USKUTEČNIT
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
Přednáška v rámci PhD. Studia
OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia Doc. Ing. Lubomír Brančík, CSc. UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci)
Teorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech
Fyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač
Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním
TDA7000. Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a
4. Experiment s FM přijímačem TDA7000 (návod ke cvičení z X37LBR) Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a ověřit jeho základní vlastnosti. Nejprve se určí
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
Prohlášení. V Brně dne 29. května podpis autora. Poděkování
Prohlášení Prohlašuji, že svou diplomovou práci na téma Fázovací obvody s moderními funkčními bloky jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších
Vykreslete převodní, modulovou a fázovou charakteristiku C-R článku. Zjistěte rezonanční frekvenci tohoto článku. Proveďte šumovou analýzu obvodu.
1 Střídavé analýzy Cílem cvičení je osvojení práce s jednotlivými střídavými analýzami, kmitočtovou analýzou, a šumovou analýzou. Prováděna bude analýza kmitočtových závislostí obvodových veličin v harmonickém
ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory
Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,
Grafické zobrazení frekvenčních závislostí
Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost
1.6 Operační zesilovače II.
1.6 Operační zesilovače II. 1.6.1 Úkol: 1. Ověřte funkci operačního zesilovače ve funkci integrátoru 2. Ověřte funkci operačního zesilovače ve funkci derivátoru 3. Ověřte funkci operačního zesilovače ve
Návrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?
TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název
Pracovní třídy zesilovačů
Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému
(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy
Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač
1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.
Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou
Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1
Fakulta biomedicínského inženýrství Elektronické obvody 2016 prof. Ing. Jan Uhlíř, CSc. 1 Obsah předmětu Elektronické obvody 1. Zesilovače analogových signálů 2. Napájení elektronických systémů 3. Nelineární
Výpočet základních analogových obvodů a návrh realizačních schémat
Parametrický stabilizátor napětí s tranzistorem C CE E T D B BE Funkce stabilizátoru je založena na konstantní velikosti napětí. Pokles výstupního napětí způsobí zvětšení BE a tím větší otevření tranzistoru.
teorie elektronických obvodů Jiří Petržela citlivostní a toleranční analýza
Jiří Petržela citlivostní a toleranční analýza motivace pasivní prvky obvodů jsou prodávány v sortimentních řadách hodnotu konkrétního prvku neznáme, zjistíme měřením s jistotou známe pouze interval, ve
Kmitočtová analýza (AC Analysis) = analýza kmitočtových závislostí obvodových veličin v harmonickém ustáleném stavu (HUS) při první iteraci ano
Kmitočtová analýza (AC Analysis) = analýza kmitočtových závislostí obvodových veličin v harmonickém ustáleném stavu (HUS) - napodobování činnosti inteligentního obvodového analyzátoru. Další příbuzné analýzy:
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 2
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 2 (zimní semestr 2012/2013, kompletní verze, 21. 11. 2012) Téma 2 / Úloha 1: (jednocestný usměrňovač s filtračním kondenzátorem) Simulace (např. v MicroCapu)
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
elektrické filtry Jiří Petržela úvod, organizace výuky
Jiří Petržela garant Ing. Jiří Petržela, PhD. UREL, FEKT, VUT v Brně Purkyňova 118, 612 00 Brno 6. patro, dveře 644, telefon 541149126 petrzelj@feec.vutbr.cz, icq 306326432 konzultační hodiny pondělí a
Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2
PŘEDNÁŠKA 3 - OBSAH Přednáška 3 - Obsah i 1 Parazitní substrátový PNP tranzistor (PSPNP) 1 1.1 U NPN tranzistoru... 1 1.2 U laterálního PNP tranzistoru... 1 1.3 Příklad: proudové zrcadlo... 2 2 Parazitní
ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY
EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky
Operační zesilovač (dále OZ)
http://www.coptkm.cz/ Operační zesilovač (dále OZ) OZ má složité vnitřní zapojení a byl původně vyvinut pro analogové počítače, kde měl zpracovávat základní matematické operace. V současné době je jeho
10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou
10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou Jak to funguje Operační zesilovač je součástka, která byla původně vyvinuta
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Teorie elektronických
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 1 návod k měření Zpětná vazba a kompenzace Změřte modulovou kmitočtovou charakteristiku invertujícího zesilovače v zapojení s operačním zesilovačem
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA APLIKOVANÉ ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA APLIKOVANÉ ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE Návrh a konstrukce analogového ekvalizéru Pavel Smetana 5 Abstrakt Tato práce je
Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole
13. VYSOKOFREKVENČNÍ RUŠENÍ 13.1. Klasifikace vysokofrekvenčního rušení Definice vysokofrekvenčního rušení: od 10 khz do 400 GHz Zdroje: prakticky všechny zdroje rušení Rozdělení: rušení šířené vedením
Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)
Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných
Obr. 1 Činnost omezovače amplitudy
. Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední
Fyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroniky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroniky Aktivní filtry s operačními zesilovači Active Filters with Operational Amplifiers 2012 Tomáš Chalupka PROHLÁŠENÍ
Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
Účinky měničů na elektrickou síť
Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN
Zpětná vazba a linearita zesílení
Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje
teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů
Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Měřící přístroje a měření veličin
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu
DIFERENČNÍ STRUKTURY LINEÁRNÍCH OBVODŮ S DDCC A DVCC
VYSOKÉ ČENÍ TECHNICKÉ V BRNĚ BRNO NIVERSITY OF TECHNOLOY FAKLTA ELEKTROTECHNIKY A KOMNIKAČNÍCH TECHNOLOIÍ ÚSTAV TELEKOMNIKACÍ FACLTY OF ELECTRICAL ENINEERIN AND COMMNICATION DEPARTMENT OF TELECOMMNICATIONS
Přednáška 4 - Obsah. 1 Základní koncept přesného návrhu Koncept přesného operačního zesilovače... 1
PŘEDNÁŠKA 4 - OBSAH Přednáška 4 - Obsah i 1 Základní koncept přesného návrhu 1 1.1 Koncept přesného operačního zesilovače... 1 2 Přesný dvojstupňový OZ 2 2.1 Princip kmitočtového doubletu v charakteristice
Stakohome Network s.r.o., tel.: +420 226 517 522, +420 776 780 373, stakohome@stakohome.cz www.inteligentni-byt.cz, www.stakohome.
LR4G 6 PRVKŮ SYSTÉM 2 PANELŮ LR3G TŘÍPASMOVÝ PANEL LR8G DVOUPÁSMOVÝ PANEL Jako vlajková loď řady reproduktorů Stealth Acoustics je LR4g prvním neviditelným reproduktorem, který se začleňuje do designu
ABSTRAKT KLÍČOVÁ SLOVA ABSTRACT KEYWORDS
- 1 - - 2 - ABSTRAKT Tato práce se zabývá návrhem 10-ti pásmového equalizeru s optimalizací kmitočtové charakteristiky pomocí spektrálního audio-analyzátoru. Je zde rozebrána problematika zpracování audiosignálů
II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ
Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou
Základní elektronické obvody
Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =
Elektrotechnická zapojení
Elektrotechnická zapojení 1. Obvod s rezistory Na základě níže uvedeného obrázku vypočítejte proudy I1, I2, I3. R1 =4Ω, R2 =2Ω, R3 =6Ω, R4 =1Ω, R5 =5Ω, R6 =3Ω, U01 =48V 2. Obvod s tranzistorem počet bodů:
Filtrační analogové obvody pro integrovanou výuku VUT a VŠB-TUO
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Filtrační analogové obvody pro integrovanou výuku VUT a VŠB-TUO Garant předmětu: Prof. Ing. Kamil Vrba, CSc. Autoři textu:
Zdroje napětí - usměrňovače
ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového
Měření na nízkofrekvenčním zesilovači. Schéma zapojení:
Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření
teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky
Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice
Zesilovače. Ing. M. Bešta
ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného
9.1 Přizpůsobení impedancí
9.1 Přizpůsobení impedancí Základní teorie Impedančním přizpůsobením rozumíme stav, při kterém v obvodu nedochází k odrazu vln a naopak dochází k maximálnímu přenosu energie ze zdroje do zátěže. Impedančním
Zadání semestrálních prácí z předmětu Elektronické obvody. Jednodušší zadání
Zadání semestrálních prácí z předmětu Elektronické obvody Jiří Hospodka katedra Teorie obvodů, ČVUT FEL 26. května 2008 Jednodušší zadání Zadání 1: Jednostupňový sledovač napětí maximální počet bodů 10
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ
MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ Třída: A4 Školní rok: 2010/2011 1 Vlastnosti měřících přístrojů - rozdělení měřících přístrojů, stupnice měřících přístrojů, značky na stupnici - uložení otočné
4.1 OSCILÁTORY, IMPULSOVÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1 OSCILÁTORY, IMPULSOVÉ OBVODY 4.1.1 OSCILÁTORYY Oscilátory tvoří samostatnou skupinu elektrických obvodů,
Základy elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu
4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační