teorie elektronických obvodů Jiří Petržela citlivostní a toleranční analýza

Rozměr: px
Začít zobrazení ze stránky:

Download "teorie elektronických obvodů Jiří Petržela citlivostní a toleranční analýza"

Transkript

1 Jiří Petržela citlivostní a toleranční analýza

2 motivace pasivní prvky obvodů jsou prodávány v sortimentních řadách hodnotu konkrétního prvku neznáme, zjistíme měřením s jistotou známe pouze interval, ve kterém se příslušná hodnota nachází parametry prvků se mění s časem

3 libovolná obvodová funkce nebo vlastnost závisí obecně na parametrech (prvcích) obvodu těmito parametry mohou být například základní parametry prvků, L, C, admitanční parametry tranzistoru nebo parazitní vlastnosti operačního zesilovače, atd. obvodovou funkcí může být přenos dvojbranu na nějakém konkrétním kmitočtu, střední kmitočet filtru, modul impedance dvojpólu, atd.

4 pro správný návrh obvodu je třeba vědět jak mohou odchylky jednotlivých parametrů obvodu ovlivnit nějakou jeho sledovanou obvodovou funkci toleranční analýza jak velké tolerance prvků jsou přípustné, aby některá obvodová funkce splňovala určité požadavky toleranční syntéza

5 v praxi je často potřeba zajistit co nejmenší citlivost obvodu na hodnotách prvků potom lze použít levnější součástky s menší tolerancí pro složitější obvody přesnou toleranční analýzu nebo syntézu nemusí být možné provést při toleranční analýze a syntéze jsme odkázáni na výpočetní techniku

6 principy činnosti jednotlivých analýz citlivostní analýza umožňuje zjistit, jak silně závisí nějaká vlastnost obvodu na jeho parametru worst case stanoví nejhorší možnou kombinaci obvodových prvků vzhledem k odchylce sledované vlastnosti od nominální hodnoty Monte Carlo umožňuje určit statistické parametry sledované vlastnosti obvodu (včetně výtěžnosti), a to pomocí náhodného generování odchylek parametrů

7 omezení použitelnosti jednotlivých analýz citlivostní analýza dává platné výsledky jen pro malé odchylky parametrů obvodu (parciální derivace) omezení analýzy nejhoršího případu spočívá v tom, že sledovaná skalární charakteristika musí záviset monotónně na všech parametrech výpočetní náročnost analýzy Monte Carlo roste s množstvím generací náhodných parametrů a dobou AC, DC nebo časové simulace

8 citlivostní analýza charakteristika obvodu Ψ závisí na jeho parametru Ψ =ψ ( ) absolutní citlivost je definována jako S Ψ = dψ = d lim Δ Δψ Δ relativní citlivost je definována jako Sr Ψ = ψ dψ d Δψ ψ Δψ Sr Ψ S Ψ Δ ( 0) ( 0) Δ

9 semirelativní citlivost je definována vzorcem ( 0) Ψ dψ Ssr = Δψ Ssr 00 d Ψ Δ ( ) 00 0 v případě více proměnných definujeme vektor citlivostí = ( ) ψ... r S =... r víceparametrická citlivost Ψ Ψ změna sledované funkce Ψ vyvolaná změnou všech parametrů se určí jako součet všech příspěvků Ψ

10 = Δ = Δ + + Δ ΔΨ r i i i r r S... ψ ψ a pro relativní víceparametrickou citlivost ( ) ( ) ( ) = Δ = Δ + + Δ ΔΨ r i i i r r r Sr ψ ψ ψ pro absolutní víceparametrickou citlivost tedy platí nejhorší případ nastane, když se jednotlivé odchylky sečtou se stejným znaménkem, tedy ( ) ( ) ( ) ( ) max 0 max 0 max Δ + + Δ + Δ ΔΨ r r r r r Sr Sr Sr ψ ψ ψ ψ teorie elektronických obvodů

11 Fig. : K odvození absolutní citlivosti sledované funkce.

12 tolerance prvků lze vyjádřit ve tvaru Δi i tol potom pro různé tolerance obvodových prvků platí r ΔΨ ( ) = Sr 0 i tol ψ max jsou-li všechny tolerance prvků stejné dostáváme tzv. worst case multiparameter sensitivity WCMS = i= r i= i Sr i i

13 aplikace některého z posledních dvou vztahů vede k velmi pesimistickým výsledkům v reálných obvodech jsou prvky náhodné nekorelované veličiny, které se sčítají v kvadrátu Δψ ψ Δ + Δ ψ ψ ψ r Sr... 0 Sr Sr max max r max ( ) ( 0) ( 0) r ( 0) + + Δ pro odchylku sledované funkce od nominální hodnoty potom platí méně radikální vzorec Δψ ψ ( ) ( ) Sr i tol 0 i rand r i=

14 odkud pro stejné tolerance všech prvků dostáváme tzv. multiparameter statistical sensitivity MSS = r některé obecné vlastnosti relativních citlivostí Sr kf = Sr F i= Sr Sr i F = Sr F Sr F n = n Sr F Sr F F... F n = n i= Sr Fi

15 citlivost kmitočtových charakteristik citlivost modulu je dána reálnou složkou komplexní citlivosti citlivost argumentu je jednoznačně určena imaginární složkou komplexní citlivosti F ( jω ) ( F ( jω )) ϕ ( jω ) ( F ( jω ) S ) = e S S = Im S ϕ jω ( )

16 Fig. : Výsledky citlivostní analýzy v modulu pokročilých analýz v Pspice.

17 invariance citlivostí pro impedanční funkci obvodů LC platí MS Z i ( s) Z ( s ) Z ( s) + MS L j + MS D k = D = pro přenosovou funkci napětí nebo proudu platí MS K i ( s) K ( s) K ( s) + MS L j + MS D k = 0 D = citlivostní invarianty kmitočtových charakteristik K ω ( ω ) K ( ω ) K ( ω ) S = MS = i MS C k k k C k C k

18 ( ) ( ) ( ) ( ) ( ) ( ) ( ) = = = = = = = n k j m j j n m n k k k m j j j p s z s b a s b s a D s s N s F ,,, citlivost obvodové funkce obvodovou funkci lze vždy vyjádřit v podobě výslednou citlivost lze určit z dílčích citlivostí D N F S S S = teorie elektronických obvodů

19 citlivost závisí na tvaru obvodové funkce na složení jednotlivých koeficientů obvodové funkce a jejich konkrétní realizaci na struktuře zapojení obecně

20 metody snížení citlivosti obvodové funkce nalezení hodnot takových, aby měly co nejmenší vliv na danou obvodovou funkci F(), respektive na složení jednotlivých koeficientů F() nalezení takové realizace obvodu, aby hodnoty měly minimální vliv na obvodovou funkci F()

21 výpočet citlivostí pro jednoduchý odporový dělič na obrázku přenos dvojbranu naprázdno je dán známým vztahem () K s = + absolutní citlivosti přenosu na hodnoty obou rezistorů S K dk = d = ( ) + d ( + ) S K = dk = Fig. 3: Obvodové zapojení odporového děliče.

22 relativní citlivosti potom budou mít tvar d dk K Sr d dk K Sr K K + = = + = = hodnota WCMS bude ( ) ( ) max 0 max 0 Δ + + Δ + = WCMS hodnota MSS bude ( ) ( ) max 0 max 0 Δ + + Δ + = MSS

23 Fig. 4: Skript pro výpočet citlivostí v programu Mathcad.

24 Fig. 5: Skript pro konstrukci histogramu v programu Mathcad.

25 citlivostní analýza v programu Pspice funguje spolu s analýzou pracovního bodu (bias point) Fig. 6: Testovací obvod a nastavení citlivostní analýzy v programu Pspice.

26 Fig. 7: Výsledky citlivostní analýzy v programu Pspice.

27 analýza nejnepříznivějšího případu (worst case) v případě monotónní závislosti studované veličiny na parametrech je nejhorší případ dán krajními hodnotami těchto parametrů v případě existence lokálního extrému je problém pro větší obvody neřešitelný

28 použití v programu Pspice, postup nastavit tolerance nastavit směr Hi nebo Lo řešení nalezneme ve výstupním souboru

29 Fig. 8: Nastavení analýzy worst case v programu Pspice.

30 aplikace analýzy worst case nejhorší případ je vždy stanoven vzhledem k nějaké skalární míře (numerické hodnotě), například střednímu kmitočtu, přenosu v propustném pásmu nebo činiteli jakosti touto analýzou nelze stanovit toleranční obal filtru v praktických úlohách se nabízí srovnání mezí sledované obvodové funkce získané analýzou worst case s maximálním rozptylem stejné obvodové funkce získané analýzou Monte-Carlo pro velké množství běhů

31 praktický příklad výsledků analýzy worst case, konkrétně získání horní meze blíže nespecifikované obvodové funkce Fig. 9: Worst case analýza obvodu se třemi rezistory.

32 Fig. 0: Toleranční analýza. Fig. : Toleranční syntéza.

33 při řešení většiny praktických úloh je zapotřebí přejít na přibližné numerické metody vlastnosti prvků stejného typu se liší díky výrobnímu rozptylu hodnotu prvku dopředu neznáme a má pro nás náhodný charakter pro nekonečný soubor hodnot přejde histogram v rozložení hustoty pravděpodobnosti

34 Fig. : Jako příklad lze uvést měření velké série rezistorů.

35 vlastnosti hustoty pravděpodobnosti ( x) 0 p( x) dx = P{ a x b} p( x) p = hustota pravděpodobnosti pro normální rozložení p ( x) exp σ π ( x μ) = σ b a dx Fig. 3: Bimodální rovnoměrné, oříznuté Gaussovo a bimodální trojúhelníkové.

36 volba rozložení hustoty pravděpodobnosti v případě Gaussova rozložení se uplatňuje mnoho faktorů s malým vlivem, typické pro prvky integrovaných obvodů Gaussovo rozložení je vhodné i pro simulaci výroby pasivních prvků bez následného měření a roztřídění převládá-li při výrobě jeden faktor použijeme rovnoměrné rozložení hustoty pravděpodobnosti

37 volba rozložení hustoty pravděpodobnosti při třídění dochází k přeřazování pasivních (i jiných) prvků do vyšších tříd přesnosti, což vede na využití oříznutého Gaussova rozložení pracujeme-li s nižší třídou přesnosti obvodových prvků, vystihneme tento fakt bimodálními typy rozložení hustoty pravděpodobnosti

38 statistická metoda (Monte Carlo) jedná se o simulaci výrobního procesu příslušná analýza se opakuje s náhodně zvolenými hodnotami parametrů prvků větší počet opakování analýz vede k věrohodnějším výsledkům metoda Monte Carlo je vhodná pro libovolný obvod

39 statistická metoda (Monte Carlo) vyhodnocení výsledků se provádí numericky statistickými metodami metoda je velmi výpočetně náročná, její přesnost je většinou mezi 5% až 0%

40 vyhodnocení výsledků metody Monte Carlo je vždy pro konečný počet realizací μ = N N yi s = N i= N i= 0 použití v programu Pspice ( y ) i y nastavit tolerance (pasivní prvky, L, C přímo ve schématu a polovodiče v editoru) nekorelovaná náhodná čísla pomocí DEV, možnost zavedení tolerancí LOT (integrované Darlingtonovo zapojení, integrované proudové zrcadlo, atd.)

41 Monte-Carlo pracuje vždy s jednou ze základních analýz, tedy AC, DC nebo časovou AC analýza Fig. 4: Nastavení analýzy Monte-Carlo v programu Pspice.

42 variace parametrů u diskrétních prvků a v integrovaných obvodech je obecně různá v obvodovém simulátoru Pspice se výsledky statistické metody zpracovávají v postprocesoru Fig. 5: Generace nekorelovaných a korelovaných hodnot obvodových prvků.

43 diskrétní prvky nekorelované hodnoty prvků, pro modelování stačí jednoduchý generátor náhodných čísel integrované obvody pracujeme s korelovanými hodnotami prvků, pro modelování stačí generátor náhodných čísel v integrovaných obvodech jsou prvky umístěny blízko sebe, mají matching

44 koeficient korelace je definován předpisem ρ XY N N i= = ( x x)( y y) i ρ X ρ Y i takže koeficient korelace může nabývat hodnot z intervalu ρ přičemž levá mez značí zcela nepřímou souvislost a pravá mez naopak označuje zcela přímou souvislost mezi dvěma čísly (obecně jevy) čitatel v definičním vztahu se označuje jako kovariance XY

45 obvodový simulátor Pspice umožňuje uživateli výběr mezi normálním a rovnoměrným rozdělením hustoty pravděpodobnosti jako příklad na využití analýzy Monte-Carlo lze uvést simulaci zpětnovazebního článku Wienova oscilátoru základním typem analýzy je zde střídavá analýza Fig. 6: Wienův článek, pásmová propust používaná v oscilátorech.

46 Fig. 7: Sledovanou funkcí Wienova článku je střední kmitočet.

47 Fig. 8: Postprocesing v Pspice toleranční analýzy Wienova článku.

48 Fig. 9: Analýza Monte Carlo, rovnoměrné rozložení pravděpodobnosti.

49 Fig. 0: Analýza Monte Carlo, normální rozložení pravděpodobnosti.

50 Fig. : Analýza a vyhodnocení metody Monte-Carlo v programu Mathcad.

51 výtěžnost obvodu hodnoty prvků a tím i charakteristiky obvodu jsou do jisté míry náhodné veličiny výtěžnost obvodu je statistická míra, která reprezentuje procento realizací, které vyhovují oblasti A při návrhu obvodu je potřeba přihlédnout k ekonomickým a výrobním hlediskům

52 metody zvyšování výtěžnosti obvodu středování návrhu umožňuje použít nejvyšší možné tolerance prvků při zachování dané výtěžnosti nebo maximalizovat výtěžnost pro dané tolerance snížením rozptylu obvodových prvků je třeba použít součástky z vyšší třídy přesnosti zvyšuje se cena výsledného zařízení

53 pro nesymetrické rozložení není návrhový střed stejný jako nominální hodnoty parametrů obvodu Fig. : Definice výtěžnosti obvodu pro dvojrozměrný případ.

54 jednoduchý příklad na toleranční analýzu studovaným obvodem je nezatížený dělič proudu složený ze dvou lineárních rezistorů s vodivostmi G a G zkoumanými obvodovými funkcemi je výstupní proud tekoucí vodivostí G a celková vstupní vodivost děliče vstupní proud do děliče je 0mA a meze pro obě sledované obvodové funkce jsou i (.5mA, 5.5mA) G ( 80mS, ms) out 4 vstup 0 vyhovuje G =G =30mS nebo G =0mS, G =40mS zadání?

55 případ G =G =30mS nevyhovuje intervalu pro G vstup případ G=0mS a G=40mS nevyhovuje ničemu Fig. 3: Příklad na toleranční analýzu implementovaný v programu Mathcad.

56 Fig. 4: uční řešení příkladu na toleranční analýzu odporového děliče.

57 jednoduchý příklad na toleranční syntézu studovaným obvodem je nezatížený dělič napětí složený ze dvou lineárních rezistorů stejných hodnot zkoumanými obvodovými funkcemi je přenos napětí a vstupní impedance, definovány jsou známými vztahy K = vstup + + Z = úkolem je zjistit maximální tolerance obou rezistorů tak, aby tyto obvodové funkce splňovaly požadavky ( 0.49, 0.5) Z (.8k Ω,. kω) K vstup

58 nominální hodnoty rovnoměrné rozložení obvodové funkce Fig. 5: Příklad na toleranční syntézu odporového děliče v Mathcadu.

59 Fig. 6: Výsledky příkladu na toleranční syntézu v Mathcadu.

60 Fig. 7: uční řešení příkladu na toleranční syntézu odporového děliče.

61 děkuji za pozornost otázky?

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

teorie elektronických obvodů Jiří Petržela modelování

teorie elektronických obvodů Jiří Petržela modelování Jiří Petržela při tvorbě modelu je třeba uvážit fyzikální podstatu prvků požadovanou přesnost řešení stupeň obtížnosti modelu (jednoduché pro ruční výpočty, složitější pro počítač) účel řešení programové

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Přenos pasivního dvojbranu RC

Přenos pasivního dvojbranu RC Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,

Více

Chyby a neurčitosti měření

Chyby a neurčitosti měření Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

elektrické filtry Jiří Petržela filtry se syntetickými bloky

elektrické filtry Jiří Petržela filtry se syntetickými bloky Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Studium tranzistorového zesilovače

Studium tranzistorového zesilovače Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5

Více

elektrické filtry Jiří Petržela aktivní filtry

elektrické filtry Jiří Petržela aktivní filtry Jiří Petržela postup při návrhu filtru nové struktury analýza daného obvodu programem Snap získání symbolického tvaru přenosové funkce srovnání koeficientů přenosové funkce s přenosem obecného bikvadu

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace TECHNICKÁ DOKUMENTACE Rozmístění a instalace prvků a zařízení Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Součástky v elektrotechnice

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36 Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k? A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,

Více

Knihovny součástek. Přidání knihovny. Cesta ke knihovnám pro Pspice

Knihovny součástek. Přidání knihovny. Cesta ke knihovnám pro Pspice Knihovny součástek Přidání knihovny Cesta ke knihovnám pro Pspice Analog.olb Možnost nastavení počáteční podmínky Pasivní prvky Řízené zdroje Spínače Source.olb V - napěťový zdroj I - proudový zdroj Parametry

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Modelování a simulace elektronických systémů

Modelování a simulace elektronických systémů Modelování a simulace elektronických systémů Elektronické systémy Řídicí obvody, obvody pro úpravu signálu, polovodičové měniče, elektromotory Modelování a simulace Obvodových veličin OrCAD/PSPICE Chování

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

elektrické filtry Jiří Petržela filtry se spínanými kapacitory

elektrické filtry Jiří Petržela filtry se spínanými kapacitory Jiří Petržela motivace miniaturizace vytvoření plně integrovaného filtru jednotnou technologií redukce plochy na čipu snížení ceny výhody koncepce spínaných kapacitorů (SC) koeficienty přenosové funkce

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

výkonovou hustotu definovat lze (v jednotkách W na Hz). Tepelný šum (thermal noise) Blikavý šum (flicker noise)

výkonovou hustotu definovat lze (v jednotkách W na Hz). Tepelný šum (thermal noise) Blikavý šum (flicker noise) Šumová analýza Josef Dobeš 26. září 2013 Rádiové obvody a zařízení 1 1 Fyzikální příčiny šumu a jeho typy Náhodný pohyb nosičů náboje (elektronů a děr) v elektronických prvcích generuje napětí a proudy

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

teorie elektronických obvodů Jiří Petržela řešení nelineárních obvodů

teorie elektronických obvodů Jiří Petržela řešení nelineárních obvodů Jiří Petržela vlastnosti lineárních obvodů přechodný děj obvodu je vždy tlumený, trvá omezenou dobu a je dán jeho vlastnostmi, počátečními podmínkami a buzením ustálený stav nezávisí na počátečních podmínkách

Více

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = =

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = = B 4:00 hod. Elektrotechnika Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něho byl ze zdroje dodáván maximální výkon. Vypočítejte pro tento případ napětí, proud a výkon rezistoru.

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Profilová část maturitní zkoušky 2016/2017

Profilová část maturitní zkoušky 2016/2017 Tematické okruhy a hodnotící kritéria Střední průmyslová škola, 1/8 ELEKTRONICKÁ ZAŘÍZENÍ Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2016/2017 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA

Více