Grafické zobrazení frekvenčních závislostí
|
|
- Kamila Ševčíková
- před 8 lety
- Počet zobrazení:
Transkript
1
2 Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost ovlivní velikost impedance, proudy a napětí v obvodu a především, jak tuto závislost na frekvenci znázornit graficky Jaký smysl má kreslit frekvenční charakteristiky obvodů? Chceme vybrat vhodné komponenty do nového domácího kina jakou frekvenční charakteristiku má AV receiver, reproduktory a další komponenty tedy jak hluboké a jak vysoké tóny je soustava schopna zahrát? Naším úkolem je postavit zesilovač k vychylovacím obvodům osciloskopu pokud má zesilovač přenést pilovitý signál bez nepřijatelného zkreslení, musí mít správnou frekvenční charakteristiku. Potřebujeme navrhnout filtr, který odstraní síťové rušení i tady vycházíme ze znalosti frekvenčních charakteristik. Může sběrnice pracovat na určité frekvenci? i to souvisí s její frekvenční charakteristikou Pro jaké signály můžeme použít určitý měřící přístroj (voltmetr, ampérmetr, wattmetr) a mnoho dalších důvodů
3 Uvažujme sériový RC obvod (integrační článek): u 1 (t) Impedance obvodu je: Zatímco reálná část impedance je v tomto případě konstantní, imaginární část se s frekvencí mění, a to od - k 0 Pro různé frekvence dostaneme různá komplexní čísla, které můžeme přirozeně nakreslit jako body v komplexní rovině: -500j -1000j -1500j -2000j -2500j Im ϕ 4000 Re 2000 Z Z ω R C u 2 (t) R = 1 kω, C = 1 µf, U 1m = 1V Frekvence f se bude měnit od 0 k V tomto konkrétním případě je impedance vyznačena jako červená úsečka v komplexní rovině (obecně křivka) Na této křivce musí být vynesena stupnice frekvence od 0 do Velikost impedance odečteme jako vzdálenost vybraného bodu křivky (pro určitou frekvenci) od počátku Fáze impedance je úhel mezi kladnou reálnou poloosou a spojnicí vybraného frekvenčního bodu s počátkem Toto grafické znázornění se nazývá hodograf, používá se zejména v řídící technice, neboť je možné z této křivky (pro přenos) zjistit, zda je obvod stabilní, obecně je ale čtení tohoto grafu poněkud obtížné Z toho důvodu se obvykle frekvenční charakteristiky kreslí dvojrozměrně zvlášť pro modul komplexního čísla tato charakteristika se pak nazývá modulová frekvenční charakteristika, a zvlášť pro fázi ta se pak nazývá fázová frekvenční charakteristika
4 Frekvenční osa je vždy logaritmická Modulová frekvenční charakteristika impedance Fázová frekvenční charakteristika impedance Modulová osa je logaritmická, u impedance je zobrazena její skutečný modul; osa fázového posunu je lineární Na rozdíl od hodografu jsou zřetelně vidět dvě oblasti frekvencí, s výrazným zlomem na kruhové frekvenci 1000 s -1 na nízkých frekvencích převažuje vliv impedance kapacitoru, na vysokých frekvencích je jeho impedance zanedbatelná vůči odporu rezistoru
5 Nejčastěji se ale frekvenční charakteristiky kreslí pro přenos obvodu: Přenos obvodu udává poměr mezi napětím na výstupu obvodu a na jeho vstupu popisuje tedy vlastnosti obvodu, jeho hodnota ale nezávisí ani na amplitudě, ani na fázovém posunu vstupního napětí Přenos může být definován pouze pro obrazy fázory, Fourierovu transformaci, Laplaceovu transformaci,, ale nikdy nemůžeme definovat přenos pro časovou oblast!!! V našem RC článku je výstupní napětí: Přenos obvodu je pak: Uvažujme ω << Pak ω 0.001<< 1 a Uvažujme ω >> Pak ω >> 1 a Jak se mění modul? Pokud kruhová frekvence vzroste desetkrát, modul přenosu desetkrát klesne; v logaritmických souřadnicích jsou ale desetinásobné hodnoty vždy stejně vzdálené výsledkem je lineárně klesající úsečka Hodnoty na svislé ose modulové charakteristiky jsou násobeny 20 a jednotkou jsou decibely [db]
6 Frekvenční charakteristika bude rozdělena na dva grafy jako modulová a fázová frekvenční charakteristika [db] [rad] ,5 1 1, w dekáda = desetinásobek frekvence Modulová charakteristika je vynášena jako Obě osy modulové charakteristiky jsou logaritmické Jednotkou je decibel [db] Fázová charakteristika je vynášena jako w Osa x fázové charakteristiky je logaritmická, osa y je lineární Jednotkou je radián [rad] Strmost -20dB/dekádu Strmost π/4 /dekádu Jak bylo ukázáno na minulém slidu, zlom charakteristiky je pro podmínku ωrc = 1, tedy při kmitočtu:
7 Tento obvod se nazývá integrační RC článek proč? Obrazem integrálu ve frekvenční oblasti je dělení jω Připomeňme pro kapacitor: u(t) = q(t) C = 1 Z t i( ) d! U = C 0 Přenos obvodu je ale pro lze ve jmenovateli zanedbat 1, takže Časový průběh napětí na výstupu je tedy integrálem vstupního napětí; obvod ale není ideální, protože toto tvrzení platí pouze pro (ideální integrační obvod by musel být realizován s operačním zesilovačem) Uvažujme sériový RC obvod (derivační článek): u 1 (t) Impedance obvodu je: C R u 2 (t) Impedance obvodu je tedy stejná, jako v případě integračního obvodu, stejný bude i protékající proud Frekvenční charakteristika přenosu, vzhledem k tomu, že musí platit 2. (napěťový) Kirchhoffův zákon, bude inverzní k frekvenční charakteristice integračního článku. I j! C R = 1 kω, C = 1 µf, U 1m = 1V Frekvence f se bude měnit od 0 k
8 Výstupní napětí a přenos obvodu budou: 20 log P Modulová frekvenční charakteristika derivačního RC článku arg(p) k 100k Fázová frekvenční charakteristika derivačního RC článku k 100k ω ω
9 Proč se tento obvod nazývá derivační RC obvod? Obrazem derivace ve frekvenční oblasti je násobení jω Připomeňme pro kapacitor: i(t) = C du(t) ) I = j! C U dt Přenos obvodu je ale pro lze ve jmenovateli zanedbat jωrc, takže Časový průběh napětí na výstupu je tedy derivací vstupního napětí; obvod ale není ideální, protože toto tvrzení platí pouze pro jak je zřejmé z frekvenční charakteristiky obvodu (ideální derivační obvod by musel být realizován s operačním zesilovačem) u 1 (t) L Integrační a derivační LR obvod R u 2 (t) u 1 (t) R = 1 kω, L = 1 H, U 1m = 1V, frekvence f se bude měnit od 0 k R L u 2 (t)
10 ,5 1 1,5 Modulová a fázová frekvenční charakteristika integračního a derivačního LR článku w w Pokud normujeme jmenovatel tak, abychom dostali výraz 1 + jω, bude: 20 log P arg(p) k ω 100k k ω 100k Dostali jsme tak výraz ekvivalentní RC článkům, vzhledem ke zvolené hodnotě odporu a indukčnosti je zlomová frekvence:
11 V předchozí části jsme prostudovali frekvenční charakteristiky obvodu s jedním reaktančním prvkem; z grafů bylo zřejmé, že takový obvod má v logaritmických souřadnicích modulovou frekvenční charakteristiku, kterou je možné dobře aproximovat dvěma úsečkami, které se setkají v tzv. zlomové frekvenci. Připomeňme si derivační článek: RC: RL: BODEHO ASYMPTOTICKÉ CHARAKTERISTIKY 20 log P ~3 db +20 db/dek -20 db/dek k 100k V čitateli je výraz : s rostoucí frekvencí jeho amplituda roste; pokud frekvence vzroste 10x, jeho amplituda vzroste rovněž 10x, neboli o 20 db v logaritmických souřadnicích: tomuto výrazu odpovídá tmavě modrá přímka, která protíná osu ve frekvenci ω 0 Ve jmenovateli je výraz : pro frekvence lze imaginární část zanedbat, výsledkem je vodorovná úsečka; pro frekvence lze naopak zanedbat reálnou část, výsledkem je rostoucí (pokud je výraz v čitateli), nebo klesající (ve jmenovateli) úsečka se sklonem 20 db / dekádu největší chyba, které se dopustíme: ω
12 Podobně můžeme nakreslit asymptoticky fázovou charakteristiku: V čitateli je výraz : s rostoucí frekvencí se jeho fáze nemění, je stále Ve jmenovateli je výraz : pro velmi malé frekvence se výraz blíží reálnému číslu, fázový posun je nula; pro vysoké frekvence se výraz blíží výrazu s fázovým posunem Tentokrát ale nestačí jeden zlomový kmitočet výsledkem by byla schodovitá charakteristika fázová charakteristika má 2 zlomy. Dá se dokázat, že nejmenší odchylku bude mít asymptotická charakteristika se zlomy v 0.1 ω 0 a 10 ω 0. Obě části charakteristiky čitatele a jmenovatele graficky sečteme
13 Frekvenční charakteristika obvodu 2. řádu: Mějme úplný model transformátoru: u 1 (t) R 1 L 1 L 2 R 2 n = 9 Hodnoty obvodových prvků jsou: R 1 = 2 kω, L 1 = 1.9 mh, L 2 = 8.1 mh, R 2 = 8.1 kω (modelovaný transformátor měl odpor primáru 2 kω, sekundáru 100 Ω, indukčnost primáru 10 mh a sekundáru 0.1 mh a koeficient vazby 0.9) Nás zajímá frekvenční charakteristika tohoto obvodu, musíme proto vyjádřit přenos: Oproti elementárním RC / RL obvodům se v tomto přenosu objevily další dva prvky: Násobná konstanta Jmenovatel přenosu je polynom 2. řádu (kvadratická rovnice) Frekvenční charakteristiku je samozřejmě možné nakreslit přímo z uvedeného přenosu (Maple, Matlab, ) Jaká je ale zákonitost pro jednotlivé zlomové frekvence? u 2 (t)
14 Ve 30. létech minulého století navrhl Hendrik Wade Bode jednoduchou metodu kreslení amplitudových a fázových frekvenčních charakteristik Touto metodou je možné nakreslit velmi přesné charakteristiky bez grafiky počítače Frekvenční charakteristiky nám dávají informaci o časových konstantách obvodu (v přechodných dějích), činiteli jakosti rezonančního obvodu a pod. Přenos obvodu je obecně z k p k jsou kořeny polynomu v čitateli nuly jsou kořeny polynomu ve jmenovateli póly zde jsou ukryty časové konstanty obvodu Pozn.: obecně bychom přenos obvodu mohli zapsat pomocí Laplaceovy transformace: Proměnnou nebude frekvence ω, ale komplexní frekvence jω!!!
15 Podstatou Bodeho charakteristik jsou vlastnosti logaritmu, jmenovitě: Logaritmus součinu je součet logaritmů Logaritmus podílu je rozdíl logaritmů log1 = 0 Vzhledem ke třetí uvedené vlastnosti je potřeba normovat závorky v rozkladu kořenových činitelů: Potom, pokud Modulová charakteristika: Fázová charakteristika: Graficky úsečka se sklonem 20 db / dekádu
16 Tím se dostáváme zpět k našemu příkladu ve jmenovateli musíme najít kořeny kvadratické rovnice a jmenovatel zapsat jako součin kořenových činitelů: Nyní již známe zlomové kmitočty póly přenosu , resp , neznáme ale ještě amplitudu přenosu obě závorky ve jmenovateli musíme normovat: Amplituda je ukryta v čitateli tato přímka nám posune celou charakteristiku směrem dolů:
17 Výsledná fázová charakteristika se skládá ze tří částí čitatel jω posouvá fázi o, člen 1 + jω ve jmenovateli má opět dvě zlomové frekvence na 0.1 a 10-ti násobku zlomové frekvence amplitudové charakteristiky; vzhledem k tomu, že tento výraz je ve jmenovateli, je fázový posun záporný
18 Nyní budeme zkoumat frekvenční charakteristiku RLC obvodu L 1. R = 4 kω R C L = 1 H C = 1 µf R = 4 kω, 2 kω a 1 kω
19 2. R = 2 kω (j! ) 1;2 = 1000 p = 1000 S klesajícím odporem se oba dva kořeny kvadratické rovnice přibližují na frekvenční ose, až při určité kritické frekvenci spolu splynou amplitudová i fázová charakteristika připomínají frekvenční charakteristiku integračního článku, ale hodnoty jsou dvojnásobné 40 db/dekádu u amplitudové charakteristiky, -π u charakteristiky fázové U přechodných dějů budeme v tomto případě hovořit o mezi aperiodicity!!!!!
20 3. R = 1 kω (j! ) 1; 2 = 500 p = j Pokud odpor dále klesá, budou kořeny kvadratické rovnice komplexně sdružené Na amplitudové frekvenční charakteristice se to projeví rezonančním převýšením nad (pro kvadratickou rovnici ve jmenovateli), nebo (teoreticky) pod osou V tomto případě budeme hovořit o napěťové rezonanci RLC obvodu V časové oblasti se totéž projeví harmonicky tlumenou odezvou přechodného děje, jak brzy uvidíme
21 S využitím elementárních (Ohmův zákon, dělič napětí / proudu, metoda postupného zjednodušování, ekvivalence - transformace zdrojů napětí a proudu, ) nebo obecných (MUN / MSP) metod analýzy vyjádříme přenos obvodu Vypočítáme kořeny polynomů v čitateli a jmenovateli jω (případně p) Polynomy zapíšeme jako součin kořenových činitelů ve tvaru Ze všech závorek čitatele i jmenovatele vytkneme kořeny z k, resp. p k, takže dostaneme upravený přenos Pro konstantu K, stejně jako každou závorku v čitateli a jmenovateli nakreslíme příslušné asymptoty a graficky je sečteme
Frekvenční charakteristiky
Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci
VíceX31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
VíceImpedanční děliče - příklady
Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí
VícePřechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
VíceKapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
Více3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
VícePřenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
Víceteorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
Více13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Více1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
VícePředmět A3B31TES/Př. 7
Předmět A3B31TES/Př. 7 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 7: Bodeho a Nyquistovy frekvenční charakteristiky PS Předmět A3B31TES/Př. 7 březen 2015 1 / 65 Obsah 1 Historie 2
VíceCzech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.
Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou
VíceMějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?
TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název
Více6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
VíceRezonanční obvod jako zdroj volné energie
1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Víceelektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory
Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů
VíceU1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
VíceFázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
VíceZáklady elektrotechniky (ZELE)
Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.
VícePŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
VíceISŠ Nová Paka, Kumburská 846, Nová Paka Automatizace Dynamické vlastnosti členů frekvenční charakteristiky
1. Přenos členu ISŠ Nová Paka, Kumburská 846, 50931 Nová Paka V praxi potřebujeme znát časový průběh výstupního signálu, vyvolaný vstupním signálem známého průběhu. Proto zavádíme tzv. přenos, charakterizující
VíceNelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
VícePraktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.
Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti
Více25.z-6.tr ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí
VíceISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory
Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,
VíceInverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
VíceHarmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
Vícer Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
Více1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
VíceZákladní elektronické obvody
Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =
VíceVítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
VícePřijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Více6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
VíceCzech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze
Z předchozích přednášek víme, že kapacitor a induktor jsou setrvačné obvodové prvky, které ukládají energii Dosud jsme se zabývali ustáleným stavem předpokládali jsme, že v minulosti byly všechny kapacitory
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
VíceElektromechanický oscilátor
- 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou
Více3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
VíceElektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
VíceELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY
EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceHarmonický průběh napětí a proudu v obvodu
Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceDěliče napětí a zapojení tranzistoru
Středoškolská technika 010 Setkání a prezentace prací středoškolských studentů na ČVUT Děliče napětí a zapojení tranzistoru David Klobáska Vyšší odborná škola a Střední škola slaboproudé elektrotechniky
Více, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.
Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení
VíceOsnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
VíceMěření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
VíceFyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
Vícepracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš
Výstup RVP: Klíčová slova: pracovní list studenta RC obvody Vojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant kondenzátor, kapacita kondenzátoru, nestacionární děj, nabíjení, časová
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VícePosudek oponenta bakalářské práce
U N I V E R Z I T A H R A D E C K R Á L O V É Fakulta přírodovědecká Katedra fyziky ========================================================= Posudek oponenta bakalářské práce Název: Základní měření pasivních
Více= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
VíceVLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník
VíceFunkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
VícePříklady k přednášce 5 - Identifikace
Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(
VíceSymbolicko - komplexní metoda II Sériové zapojení prvků R, L a C
Symboliko - komplexní metoda Sériové zapojení prvků, a Použité zdroje: Blahove, A.: Elektrotehnika, nformatorium spol.s r.o., Praha 2005 Wojnar, J.: áklady elektrotehniky, Tribun E s.r.o., Brno 2009 http://hyperphysis.phy-astr.gsu.edu
VíceSystém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
VíceHARMONICKÝ USTÁLENÝ STAV - FÁZOR, IMPEDANCE
HAMONICKÝ USTÁLENÝ STAV - FÁZO, IMPEDANCE Úvodem Fyzikální popis induktoru a kapacitoru vede na integrodiferenciální rovnice, jejichž řešení je značně obtížné, zvláště v případě soustav rovnic. Příklad
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceAnalýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
VíceObrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku
Laboratorní měření Seznam použitých přístrojů 1. 2. 3. 4. 5. 6. Laboratorní zdroj DIAMETRAL, model P230R51D Generátor funkcí Protek B803 Číslicový multimetr Agilent, 34401A Číslicový multimetr UT70A Analogový
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceTel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
VíceKreslení elipsy Andrej Podzimek 22. prosince 2005
Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy v obecné poloze O co půjde Ukázat přesný matematický model elipsy Odvodit vzorce pro výpočet souřadnic důležitých bodů Nalézt algoritmus
VíceOperační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Vícenapájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól
. ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož
VíceAsymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
VícePRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceZadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete
VíceFYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
VíceStudium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VíceCvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
Víceelektrické filtry Jiří Petržela filtry se syntetickými bloky
Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová
Více2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
VíceUrčeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
VícePŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah
PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru...
VíceNecht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
VíceZáklady elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
VíceII. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ
Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou
VícePokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední
VíceFYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)
FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance
VíceZáklady elektrotechniky a výkonová elektrotechnika (ZEVE)
Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky
VíceBIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
VíceLaboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku
Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá
Více4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru
4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)
VíceNerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Více14 - Moderní frekvenční metody
4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Loop shaping: Chování pro nízké frekvence Tvar OL frekvenční charakteristiky L(s)=KD(s)G(s) určuje chování, ustálenou odchylku a
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceLC oscilátory s transformátorovou vazbou
1 LC oscilátory s transformátorovou vazbou Ing. Ladislav Kopecký, květen 2017 Základní zapojení oscilátoru pro rezonanční řízení motorů obsahuje dva spínače, které spínají střídavě v závislosti na okamžité
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
VíceV následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
VíceNerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Více