V předchozí vyučovací hodině se žáci s problematikou kreslení obrázků jedním tahem teprve začali seznamovat a to zábavnou formou.
|
|
- Marcel Musil
- před 8 lety
- Počet zobrazení:
Transkript
1 ČÍSLO HODINY : 121. TÉMA : Kreslení jedním tahem - pravidlo OČEKÁVANÉ VÝSTUPY : Žáci rozhodují o možnosti či nemožnosti nakreslení obrázku jedním tahem, osvojí si pravidlo z teorie grafů a používají ho, vybrané obrázky kreslí jedním tahem. OBSAH HODINY : V předchozí vyučovací hodině se žáci s problematikou kreslení obrázků jedním tahem teprve začali seznamovat a to zábavnou formou. Další část tohoto tématu už bude věnována úvodu do problematiky teorie grafů, žáci se seznámí s Leonardem Eulerem a pokusí se vyřešit jeho problém s mosty. Tato část nelze opět zcela jasně rozčlenit do dvou vyučovacích hodin. Bude záležet na schopnostech žáků, ale i jejich chuti k práci a nadšení pro řešení úkolů a také tempu jejich práce. Nejprve si žáci osvojí pravidlo a aplikují ho na různé obrázky. Poté za pomoci teorie grafů žáci vyřeší Eulerovu hádanku s mosty ve městě. První část bude pravděpodobně delší než 45minutová vyučovací hodina a tato část tedy zasáhne i do druhé vyučovací hodiny. I. Lze či nelze obrázek nakreslit jedním tahem? Předložíme žáků dva obrázky, které jsou si poměrně dost podobné.
2 O prvním z nich domečku už víme, že ho lze nakreslit jedním tahem, a to dokonce několika způsoby. Vyzveme žáky, aby se pokusili jedním tahem nakreslit i druhý obrázek obdélník s úhlopříčkami. Necháme žáky několik minut pracovat. Postupně dojdou ke zjištění, že se jim nedaří, i když zkouší začínat kreslení z různých bodů a postupují různými směry. Stále ale nelze říci, zda druhý obrázek opravdu nelze nakreslit jedním tahem nebo jestli žáci pouze neměli to štěstí a nepodařilo se jim najít správný postup kreslení. Položíme tedy otázku, zda neexistuje nějaké pravidlo, které by žákům pomohlo při zjišťování možnosti či nemožnosti nakreslení obrázku jedním tahem. Necháme žáky chvíli přemýšlet a kombinovat ( třeba nás mile překvapí ). Vysvětlíme žákům, že tuto problematiku v matematice zpracovává teorie grafů a na příkladech jim osvětlíme pravidlo. Každý obrázek se skládá z uzlových bodů a úseček ( nebo křivek ), které je spojují. Uzlové body se liší tím, kolik čar z každého vychází. Je-li počet čar vycházejících z uzlového bodu sudý, znamená to, že po jedné čáře do uzlu vjedeme a po druhé čáře zase vyjedeme. Problematické jsou ovšem uzlové body, ze kterých vychází lichý počet čar dá se do nich vjet, ale už se z nich nedá vyjet. Nedá se do nich nakonec vrátit, i když jsme jimi v průběhu kreslení několikrát projeli. Kreslení obrázku v takovýchto uzlech musí tedy začínat nebo končit. a) uzlové body s lichým počtem vycházejících čar jsou přesně dva obrázek lze nakreslit vjednom z označených uzlů se začíná a ve druhém končí ( nebo naopak ( ostatní uzly jsou pouze přestupní stanice.
3 b) uzlových bodů s lichým počtem vycházejících čar je více než dva obrázek nelze jedním tahem nakresli ( to už si žáci vyzkoušeli ) c) neexistují uzlové body s lichým počtem vycházejících čar obrázek lze jedním tahem kreslit zcela libovolně lze začít v kterémkoli uzlovém bodě II. procvičování Na následujících obrázcích si žáci procvičí právě osvojené pravidlo. Obrázky žáci dostanou na papírech a zároveň jim je bude vyučující promítat na tabuli, na které budou také pracovat ( pro kontrolu ). Úkolem žáků bude vždy u každého uzlu číslem zapsat počet čar, které z něj vycházejí a poté rozhodnout, zda lze obrázek jedním tahem nakreslit či nikoliv.
4
5
6 III. samostatná práce pracovní list Žáci obdrží pracovní list, na které je osm různých obrazců. Jejich úkolem je rozhodnout stejně jako v předchozím procvičování zda damý obrazec jde nebo nejde jedním tahem nakreslit. U každého obrazce musí uvést zdůvodnění je jedno jestli slovně nebo tím, že barevně označí a popíší rozhodující uzlové body. Na závěr si žáci libovolně vyberou alespoň dva obrázky, které nakreslit jedním tahem lze a pokusí se je nakreslit. Práci je dobré na závěr ohodnotit.
SMART Notebook verze Aug
SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 11.10.2012 Pro ročník: 7. Vzdělávací obor předmět: Informatika Klíčová slova:
Občas je potřeba nakreslit příčky, které nejsou připojeny k obvodovým stěnám, např. tak, jako na následujícím obrázku:
Příčky nepřipojené Občas je potřeba nakreslit příčky, které nejsou připojeny k obvodovým stěnám, např. tak, jako na následujícím obrázku: Lze využít dva způsoby kreslení. Nejjednodušší je příčky nakreslit
5.1.3 Obrazy těles ve volném rovnoběžném promítání I
5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Kreslení grafů na plochy Tomáš Novotný
Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom
Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_02_G
Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: IV/2 Inovace
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Hlavolamy a teorie grafů
Hlavolamy a teorie grafů Petr Kovář 1 petr.kovar@vsb.cz 1 Vysolá škola báňská Technická univerzita Ostrava, Škola matematického modelování, 2009 Přehled přednášky Úloha hanojských věží Část 1. Co není
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Prsten, bod, konstrukční čáry Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Karel Procházka
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702
74 Graf mocninných funkcí Předpoklad: 44, 70, 70 Pedagogická poznámka: Hodina se skládá ze dvou částí V první nakreslíme opakováním základní metod graf několika odvozenin z mocninných funkcí V druhé části
Matematika a její aplikace Matematika
Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl
2.1.9 Lineární funkce II
.1.9 Lineární funkce II Předpoklad: 108 Př. 1: Přiřaď k jednotlivým čarám na obrázku, jednotlivé variant zadání příkladu o Orlické přehradě: a) původní zadání (přítok 000 m /s, odtok je 1000 m /s, 500
Definice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:
OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Poznámky pro učitele Projekt učitelé Teorie grafů poznámky pro učitele
1.7.3 Výšky v trojúhelníku I
1.7.3 Výšky v trojúhelníku I Předpoklady: 010702 Pedagogická poznámka: Měřítka prvních tří obrázků jsou zapsána tak, aby žáci spočítali přibližné výšky skutečných památek. U posledního obrázku se mi nepodařilo
GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ ÚVOD
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 66-72. GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ MGR. JITKA NOVÁKOVÁ ABSTRAKT. S kvalitní výukou geometrie se musí začít již na základní škole.
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
Matematika a její aplikace Matematika 1. období 3. ročník
Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika
Kreslení úseček a křivek
Adobe Illustrator Kreslení úseček a křivek Volná kresba od ruky o Tužka (N) - stisknutím levého tlačítka pohybujte po výkrese o Úkol: zkuste si nakreslit čáru, označit ji a smazat Kreslení úseček o Nástroj
Jejich účelem je uvolnění potenciálu, který v sobě ukrývá spojení racionálního a emocionálního myšlení.
Lekce 1: Myšlení Teoretický úvod: Klíčovou a zároveň unikátní schopností lidského mozku, která nás odlišuje od ostatních živých tvorů, je myšlení. Myšlení bychom mohli definovat jako poznávací (kognitivní)
PŘIJÍMACÍ ZKOUŠKY 2007
MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání výpočty uvádějte s celým postupem
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
2.1.6 Graf funkce II. Předpoklady: 2105
.. Graf funkce II Předpoklad: 05 Pedagogická poznámka: Stejně jako u předchozí hodin, dávám studentům vtištěné zadání s obrázk, ab se mohli snáze orientovat a mohli pracovat rozdílným tempem. Horší studenti
2.4.13 Kreslení graf obecné funkce II
..1 Kreslení graf obecné funkce II Předpoklady: 0, 0, 1 Stejně jako v minulé hodině budeme kreslit grafy funkcí odvozených od funkce y = f ( x), která je dána grafem na obrázku: Př. 1: Nakresli graf funkce
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
Grafy funkcí odvozených z funkcí sinus a cosinus I
4..0 Grafy funkcí odvozených z funkcí sinus a cosinus I Předpoklady: 409 Pedagogická poznámka: Kvůli následující hodině je třeba dát pozor, příliš se nezaseknout na začátku hodiny a postupovat tak, aby
Zavedení kvadratické funkce
Předmět: Matematika Doporučený ročník: 2 Vazba na ŠVP: Funkce Cíle Odvození grafu - paraboly Uvědomění, kde se s kvadratickou funkcí setkáváme ve světě kolem nás Stručná anotace Celohodinová aktivita,
4.2.9 Vlastnosti funkcí sinus a cosinus
4..9 Vlastnosti funkcí sinus a cosinus Předpoklady: 408 Grafy funkcí y = sin a y = cos, které jsme získali vynesením hodnot v minulé hodině. 0,5-0,5 - Obě křivky jsou stejné, jen kosinusoida je o π napřed
Střední vzdělání gymnaziální vzdělání
Vyoral VY_32_INOVACE_IVT_GRAF1 Tematická oblast - počítačová grafika Program Gimp Otevření obrázku Žák si po osvojení teoretické lekce procvičí otevírání obrázků v různých režimech, pohyby s nimi po pracovní
Funkce rostoucí, funkce klesající II
.. Funkce rostoucí, funkce klesající II Předpoklad: Př. : Rozhodni, zda funkce = na následujícím obrázku je rostoucí nebo klesající. = - - - - Pro záporná jde funkce dolů, pro kladná nahoru není ani rostoucí
Marielle Seitz Napiš to do písku Hravé kreslení pro rozvoj koncentrace, jemné motoriky a koordinace pohybů
Marielle Seitz Napiš to do písku Hravé kreslení pro rozvoj koncentrace, jemné motoriky a koordinace pohybů Téměř všichni lidé se cítí přitahování teplým, jemným pískem. Ve vlhkém stavu je písek hutný a
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
MATEMATIK A. U ž i v a t e l s k á p ř í r u č k a p r o ŠKOLNÍ VERZI
I N T E R A K T I V N Í MATEMATIK A U ž i v a t e l s k á p ř í r u č k a p r o ŠKOLNÍ VERZI 1. Struktura učebnice 2. Spuštění Interaktivní matematiky Interaktivní matematiky (školní verze) vydávané pedagogickým
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
2.1.9 Lineární funkce II
.1.9 Lineární funkce II Předpoklad: 108 Pedagogická poznámka: Je třeba postupovat tak, ab na příklad 6, kde se poprvé kreslí graf lineárních funkcí, zblo minimálně 10 minut. Př. 1: Přiřaď k jednotlivým
DOTAZNÍK PRO URČENÍ UČEBNÍHO STYLU
DOTAZNÍK PRO URČENÍ UČEBNÍHO STYLU Projekt MOTIVALUE Jméno: Třida: Pokyny Prosím vyplňte vaše celé jméno. Vaše jméno bude vytištěno na informačním listu s výsledky. U každé ze 44 otázek vyberte a nebo
Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:
..10 Kvadratické nerovnice Předpoklady: 01, 0, 0, 07 Př. 1: Vyřeš nerovnici 0. 0 - mohu rozložit na součin není to nic nového + 1 0 ( )( ) Hledám nulové body: 0 ( ) = = ( ) ( ; 1) ( 1; ) ( ; ) ( ) - -
[ ] Parametrické systémy lineárních funkcí I. Předpoklady: 2110
..6 Parametrické sstém lineárních funkcí I Předpoklad: 0 Pedagogická poznámka: Tato hodina vznikla až v Třeboni kvůli problémům, které studenti měli s následující hodinou. Ukázalo se, že problém, kterých
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 13. 11. 2006 Obsah přednášky 1 Literatura
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást
Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku
Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku MASARYKOVA ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VELKÁ BYSTŘICE projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Číslo DUMu:
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
MALUJEME. ZÁKLADNÍ VZDĚLÁVÁNÍ, INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE, 1. STUPEŇ ZŠ. Autor prezentace Mgr. Hana Nová
MALUJEME ZÁKLADNÍ VZDĚLÁVÁNÍ, INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE, 1. STUPEŇ ZŠ. Autor prezentace Mgr. Hana Nová K ČEMU SLOUŢÍ PROGRAM MALOVÁNÍ Program Malování slouží ke kreslení, barvení a úpravám obrázků.
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Přírodověda ve čtvrtém ročníku základní školy s využitím ICT ve výuce
Přírodověda ve čtvrtém ročníku základní školy s využitím ICT ve výuce Téma: Živá příroda houby Kňavová Michaela Cíl: Seznámení s živou přírodou houby (jejich stavba, výživa, dělení, význam pro člověka).naučit
Příšera. Autorka: Tereza Linhartová. Části těla jednotné - množné číslo (člověk/zvíře)
Příšera Části těla jednotné - množné číslo (člověk/zvíře) Výsledným výtvorem tohoto pracovního listu bude obrázek příšery či zvířete, který může kreslit podle plánku-tabulky dítě nebo učitel (pokud by
1.4.6 Stavba matematiky, důkazy
1.4.6 tavba matematiky, důkazy Předpoklady: 1401, 1404 Pedagogická poznámka: Tato hodina se velmi liší od většiny ostatních neboť jde v podstatě o přednášku. Také ji neprobíráme v prvním ročníku, ale přednáším
Práce s programem Malování Mgr. Petr Koníř
Práce s programem Malování Mgr. Petr Koníř konir@zsjesenice.cz 1. Téma: program malování Cíl: žáci umí používat vybraná tlačítka z panelu nástrojů, smazat obraz, vrátit se o krok zpět, změnit velikost
MATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_I.16.20 Autor Petr Škapa Datum vytvoření 31. 03. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický
5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
Metodické pokyny k pracovnímu listu č. 9 - Zlomky, ty jsou zábava
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9 - Zlomky, ty jsou zábava Pracovní list je vytvořen k využití v rámci kroužku Hravá matematika
Příprava na vyučování Českého jazyka a literatury s cíli v oblastech OSV a čtenářství. O lesíku. O lesíku. Název učební jednotky (téma)
Příprava na vyučování Českého jazyka a literatury s cíli v oblastech OSV a čtenářství Název (téma) O lesíku (Procvičování podstatných jmen rodu ženského) Stručná anotace V této vyučovací hodině si žáci
nelze projít pomocí tzv. eulerovského tahu tedy, nelze nakreslit jedním tahem
Teorie grafů je matematická disciplína. Spadá do oblasti diskrétní matematiky je to specifická matematická disciplína, diskrétní znamená nespojitá odvíjí se od toho, že procesy v počítačích popisujeme
INFORMATIKA 5. ROČNÍK TABULKY PROCVIČOVÁNÍ
INFORMATIKA 5. ROČNÍK TABULKY PROCVIČOVÁNÍ 1. PRACOVNÍ ÚKOL Rozvrh hodin Vytvoř si svůj vlastní rozvrh hodin pomocí zadaných úkolů. Rozvrh hodin 5. třída 1. 2. 3. 4. 5. Pondělí M ČJ AnJ ČaS HV Úterý ČJ
0,2 0,20 0, Desetinná čísla II. Předpoklady:
1.2.2 Desetinná čísla II Předpoklady: 010201 Pedagogická poznámka: Je třeba zahájit tak, aby se stihl ještě společný začátek příkladu 7 (pokud někdo příklad 7 začne s předstihem, nevadí to, ale jde o to,
Rovnice s neznámou pod odmocninou a jejich užití
Rovnice s neznámou pod odmocninou a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
Funkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
Logaritmická funkce I
.9. Logaritmická funkce I Předpoklady: 90 Porovnáváme hodnoty eponenciální a logaritmické funkce. Jak souvisejí dvojice čísel a y u obou funkcí? Eponenciální funkce y = Logaritmická funkce y = log Hodnoty
2.5.1 Kvadratická funkce
.5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou
Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace
Název: Stejnolehlost Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 4. (. ročník vyššího gymnázia)
MATEMATIKA A 3 Metodický list č. 1
Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy II. (AutoCAD) Praha 2012 Bc. Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura
Moravské gymnázium Brno s.r.o.
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby
5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
2.1.7 Zrcadlo I. Předpoklady: Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr
2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr edagogická poznámka: K pokusům používám obyčejné velké, které si beru z pánských záchodů, aby bylo
Kurz operačního výzkumu pro posluchače kombinovaného studia na FAST VUT v systému MOODLE
Kurz operačního výzkumu pro posluchače kombinovaného studia na FAST VUT v systému MOODLE Jiří Novotný Ústav matematiky a deskriptivní geometrie Stavební fakulta VUT v Brně Veveří 95, 602 00 Brno e-mail:
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Výukový materiál pro projekt Elektronická školička reg. č. CZ.1.07/1.3.05/ "Interaktivní DUMy"- interaktivity lze dosáhnout i v MS PowerPoint
Výukový materiál pro projekt Elektronická školička reg. č. CZ.1.07/1.3.05/02.0041 "Interaktivní DUMy"- interaktivity lze dosáhnout i v MS PowerPoint Ing. Lenka Satková, 2012, str. 11 Materiál je publikován
Matematika - 1. ročník Vzdělávací obsah
Matematika - 1. ročník Časový Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Přípravná část Poznávání vlastností předmětů, třídění podle vlastnosti Poznávání barev, třídění podle
1.8.5 Sčítání a odčítání celých čísel I
1.8.5 Sčítání a odčítání celých čísel I Předpoklady: 010804 Př. 1: Nepočítej, pouze rozhodni, zda výsledek bude kladné nebo záporné celé číslo. Rozhodnutí zdůvodni. a) 2015 1995 12581 4525 25152 + 9585
Předmět: Informační a komunikační technologie
Předmět: Informační a komunikační technologie Výukový materiál Název projektu: Zkvalitnění výuky prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0799 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím
Nepřijde a nedám 100 Kč měl jsem pravdu, o této
1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká
Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
K prostudování lekce budete potřebovat asi 2 hodiny.
Základy kreslení Lekce 6: Torba objektů Cíle kapitoly Lekce je věnována možnostem programu při tvorbě 2D objektů. Lekce kursu vás provede problematikou kreslení základních objektů 2D. Po prostudování lekce
Nepřímá úměrnost I
.. Nepřímá úměrnost I Předpoklady: 000 Př. : Která z následujících slovních úloh popisuje nepřímou úměrnost? Zapiš nepřímou úměrnost jako funkci. a) 7 rohlíků stojí Kč. Kolik bude stát rohlíků? b) Pokud
František Hudek. listopad 2012
VY_32_INOVACE_FH10_Z Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek listopad 2012
Eulerovské tahy. Pan starosta se pana matematika v dopise tázal, jestli je možné začít na některém
Historický problém Eulerovské tahy V roce 1735 se švýcarskému matematikovi Leonhardu Eulerovi na stůl dostal na první pohled jednoduchý problém, který mu předložil starosta města Královec (dnešní Kaliningrad).
2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.
.. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
1. Do tabulky napište kolik vyučovacích hodin matematiky týdně probíhá na Vaší škole v jednotlivých ročnících?
Příloha č. 1: Seznam otázek, které byly použity v rozhovoru s učiteli. Charakteristika učitele: Pohlaví: Věk: Vzdělání: Délka učitelské praxe: Ročníky, které učitel vyučuje: Vyučované předměty: Obecné
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
2.1.10 Lineární funkce III
..0 Lineární funkce III Předpoklad: 09 Minulá hodina Lineární funkce je každá funkce, která jde zapsat ve tvaru = a + b, kde a, b R. Grafem lineární funkce je přímka (část přímk), kterou kreslíme většinou
Zadání soutěžních úloh
20. až 22. dubna 2017 Krajské kolo 2016/2017 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Počet bodů za každou úlohu je uveden přímo v jejím zadání. Hodnotí se shoda
2.4.2 Kreslení grafů funkcí metodou napodobení výpočtu I
.. Kreslení grafů funkcí metodou napodobení výpočtu I Předpoklady: 01 Opakování metoda napodobení výpočtu: Nakreslím si graf funkce y = x a postupně s ním provádím úpravy odpovídající provádění výpočtů
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Oblast:
Vzdělávací oblast: a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Období: 1. Číslo a početní operace Používá přirozená čísla k modelování reálných situací Počítá předměty v daném souboru Vytváří
2.1.17 Parametrické systémy lineárních funkcí II
.1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů
ROZVOJ LOGICKÉHO MYŠLENÍ S ICT
ROZVOJ LOGICKÉHO MYŠLENÍ S ICT VLADIMÍRA SEHNALOVÁ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: OP VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST ČÍSLO OBLASTI PODPORY: 7.2.3 SVĚT VĚDY ZÁHADNÝ I ZÁBAVNÝ
1.4.3 Složené výroky implikace a ekvivalence
1.4.3 Složené výroky implikace a ekvivalence Předpoklady: 1401, 1402 Pedagogická poznámka: Látka zabere spíše jeden a půl vyučovací hodiny. Buď můžete využít písemku nebo se podělit o čas s následující
Výukový materiál zpracovaný v rámci projektu Zkvalitnění a zefektivnění výuky (OP Vzdělávání pro konkurenceschopnost)
Výukový materiál zpracovaný v rámci projektu Zkvalitnění a zefektivnění výuky (OP Vzdělávání pro konkurenceschopnost) Registrační číslo projektu: CZ.1.07/1.4.00/21.2327 Šablona: III/2 Sada: VY_32_INOVACE_vtv_2_01
2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru
ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího
Závěrečná práce. Odborný styl
Závěrečná práce Odborný styl Anotace - abstrakt Anotace je napsána na samostatném listu a má rozsah 10 až 15 řádků.je stručným a komplexním popisem obsahu práce, nově objevených skutečností a z nich plynoucích
Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit
Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo