Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2"

Transkript

1 Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná síla: i =N F= F i, i =1 Moment síly: M = d L =r F, M =r F sin, Výsledný silový moment: i= N M = M i. i=1. Moment hybnosti hmotného bodu s konstantní hmotnosti m, rychlosti v a polohovém vektoru r je L=m r v. Velikost momentu hybnosti L je L=m r v sin. Dokonale pružná srážka: zachovává se hybnost a energie systému. Dokonale nepružná srážka: zachovává se pouze hybnost systému.

2 Řešený příklad č.1: Ukažte, že v poli centrální síly se zachovává moment hybnosti L hmotného bodu. Řešení: V poli centrální síly platí r F c r F c =0, současně je moment hybnosti L a moment síly M svázán vztahem Odtud a z předchozího vztahu ihned plyne, že d L = M=r F c. d L =0 L=konst. Řešený příklad č.2: Najděte pohybovou rovnici kuličky o průměru D=6mm a hmotnosti 1g, kterou ponoříme do odměrného válce s glycerinem a upustíme ji. Určete od kterého okamžiku se bude pohybovat prakticky rovnoměrným pohybem. Jakou celkovou dráhu urazí za dobu t=5s? Řešení: Na kuličku pohybující se prostředím působí odpor prostředí silou která je úměrná rychlosti kuličky a má opačný směr, tj. F o = k v. Dále na kuličku působí gravitační síla F g =m g, která směřuje ve směru rychlosti kuličky. Dostáváme potom následující pohybovou rovnici m dv dt =mg k v. (1) Když vydělíme obě strany rovnice (1) hmotností kuličky m a zavedeme nový parametr dostaneme rovnici = k m d v = g v. (2) Je snadné určit, že jednotkou veličiny g/ jsou m/s. Zavedeme další parametr v 1 =g/, což je maximální rychlost kterou v odporujícím prostředí kulička dosáhne. Snadno se o tom přesvědčíme dosazením v=v 1 do rovnice (2). V takovém případě totiž je zrychlení kuličky a=dv/dt = 0. Řešíme následující rovnici d v = v 1 v Abychom obdrželi jednoznačné řešení musíme specifikovat počáteční podmínky pohybu. V našem případě ze zadání plyne, že počáteční rychlost kuličky je v0=0 m/s, počáteční čas je t0=0s a položíme-li počátek souřadnic do ŕovně hladiny glycerinu, tak počáteční dráha je s0=0m. Zavedeme substituci a řešíme rovnici.(3) z=v 1 v d z = d v

3 která má řešení kde z 0 =v 1 d z dt = z d z z = dt, ln z ln z 0 = t,(4), protože v 0 =0. Z rovnice (4) dostaneme výsledek v t =v 1 1 e t. (5) Z tohoto výsledku je ihned vidět, že pro dostatečně velký exponent se kulička bude prakticky pohybovat rovnoměrným pohybem rychlostí v=v 1. Koeficient k je dán výrazem k=6 R, kde R je poloměr kuličky a je koeficient viskozity prostředí. Pro glycerin je kg m -1 s -1. Ze zadání je R=D/2=3mm=0.003m a m=1g=0.0001kg. Vezmeme-li za hodnotu gravitačního zrychlení g=9.81 ms -2 bude koeficient = 83.7 s -1. Řekněme, že se kulička bude pohybovat téměř rovnoměrně když dosáhne rychlosti v=0.995 v 1.Z rovnice (5) potom dostaneme, že Dráhu s(t) jako funkci času určíme integrací t= 1 ln v v 1 = 1 ln 0.005=0.06 s. v 1 t s t = v t ' ' =v 1 t v 1 e t v 1. 0 Rychlost v 1 =g/ = 0.12 m/s. Dráhu, kterou urazí kulička za 5 s z klidové polohy je potom s(t=5s)=59.8 cm. Pokud bychom nechali kuličku od začátku pohybu se pohybovat rovnoměrně rychlostí v 1, tak by urazila dráhu s=60 cm. Příklad č.1: Určete vektor síly působíci na hmotný bod o hmotnosti m=0.6kg, jehož polohový vektor je dán rovnicí r t = 1 3t 2 i 2 t 3 j t 4 k. Určete směr a velikost této síly v čase t=1s. Řešení: F t =3.6i 3.6t j 7.2t 2 k, F t=1s =8.8N, cos = F x F = =0.41, cos = F y F = = 0.41, cos = F z F = = Příklad č.2: Jaká síla působí hmotný bod s hmotností m pohybující se v rovině X-Y podle rovnic x t =a ct, y t =b 1 2 2? Určete po jaké trajektorii se hmotný bod pohybuje. Řešení: F= m d j. Trajektorie je parabola y=b 1 2 b c x a 2.

4 Příklad č.3: Najděte závislost polohového vektoru r hmotného bodu, o hmotnosti 1kg, na čase t, který se v čase t=0s nacházel v bodě A=(0,1) a komponenty rychlosti byli v 0 =(1,0) m/s a na který působí síla daná rovnicí F t = 10N i 5 t N j. Řešení: r t =t 1 5t i 1 5 /6t 3 j. Příklad č.4: Ukažte, že zákon zachování hybnosti plyne z 2. a 3. Newtonova pohybového zákona. Pomůcka: F i =d p i / dt, F 1 = F 2. Příklad č.5: Dvě koule se pohybují před srážkou rychlostmi v 1 = 3 i 4 j k m /s a v 2. Po srážce se pohybují rychlostmi v ' 1 = 2i j 2 k m/s a v ' 2 = 4 i 3 j k m/s. Jakou rychlostí se pohybovala koule č.2 před srážkou? Hmotnosti koulí jsou m 1 =1kg a m 2 =0.5kg. Řešení: v 2 = 14 i 9 j 7 k m/ s. Příklad č.6: Dva mladí fyzikové Einstein a Newton se rozhodli uspořádat následující experiment. V tělocvičně umístnili dva míče následujícím způsobem. Míč E položili dorostřeělocvičny na zemi a míč N byl odvážně zavěšen ve výšce 3m nad podlahou a jeho kolmo vržený stín 10 m od míče E. Ve smluvený okamžik Newton přeřízne lano a uvolní míč N a Einstein vykopne míč E tak aby zasáhl padající míč N. Jaký musí být poměr x-ové a y-ové složky rychlosti vykopnutého míče, aby se experimet povedl? Řešení: v 0X v 0Y = Příklad č.7: Einstein a Newton provádějí experiment jehož konfigurace je stejná jako v příkladu č.6. Nyní se bude Einstein snažit zasáhnout míč N v okamžiku kdy bude 0.5 m nad podlahou. Pod jakým úhlem (sevřený vektorem rychlosti a tečným vektorem k podlaze) a jakou rychlostí musí být míč E vykopnut? Řešení: =ArcTan h s =16.7, v 0= g 2 h y2 h2 s 2 =14.6 m/s. Příklad č.8: Bruslař, vážící 70 kg, stojí v klidu na ledové dráze. Na zádech má připevněno speciální zařízení, které vystřeluje puky rychlostí 25 m/s vůči bruslaři s frekvencí 1 s -1. V zásobníku jich má 5 a každý váží 0.2 kg. Jakou rychlostí v se bude bruslař pohybovat v čase t=2 s? Jakou urazí dráhu za dobu 3 s? Řešení: v=0.17 m/s, s=0.37m.

5 Příklad č.9: Automobil o hmotnosti 1000 kg se pohybuje konstantní rychlostí v=50km/h ve směru osy x. V určitém okamžiku řidič přidá plyn a tím efektivně způsobí, že na auto působí výsledná síla o velikosti 1200 N ve směru pohybu auta. Jakou rychlostí se bude automobil pohybovat 10s po začátku akcelerace a jakou dráhu za těch 10 s urazí? Řešení:v(t=10s)=25.9 m/s = 93.2 km/h, s=199m. Příklad č.10: Automobil jede z kopce, jehož úhel klesání je 12. V okamžiku, kdy auto začalo sjíždět z kopce ukazoval jeho tachometr rychlost 60 km/h.ridič vyřadil rychlostní stupeň a pohybuje se na volnoběh. Jakou rychlostí v se bude pohybovat v okamžiku, kdy sjede z kopce v případě, že převýšení je 40m? Jak dlouho bude trvat než auto sjede z kopce dolů? Řešení: v=118.3km/h, t=7.7s. Příklad č.11: Kulečníková koule o hmotnosti 0.2 kg narazila na mantinel stolu pod úhlem 40 rychlostí 4 m/s a odrazila se stejně velkou rychlostí jak je naznačeno na obrázku. Náraz trval po časový interval o velikosti t = 0.1s. Určete: 1. změnu hybnosti koule p, 2. střední sílu F s, kterou působí mantinel na kouli, 3. střední sílu F' s, kterou půsbí koule na mantinel. Řešení: 1. p= p 2 p 1 = 1.23 i[ kgm s 1 ], 2. F s = p t = 12.3 i [ N ], 3. F ' s = F s. Příklad č.12: Výtahová zdviž má hmotnost m=1200 kg. 1. Zdviž se pohybuje zrychleně směrem vzhůru s konstantním zrychlením a=2m/s. Jakou silou T působí lano na zviž? 2. Jaké je v laně napětí T v případě, že zviž zrychluje směrem dolů se zrychlením a=2m/s. Řešení: 1) T = N, 2) T = N. Příklad č.13: Hokejista vypálí svou hokejkou puk o hmotnosti 170g. Urychlí jej z klidu na rychlost 20 m/s na dráze 0.5 m. Jakou silou F působí hokejista na puk za předpokladu, že tření mezi pukem a ledem je zanedbatelné a zrychlení puku je konstantní?

6 Řešení: F = 68 N. Příklad č.14: Chlapec táhne vláček silou F=10N, který se skládá ze dvou vozíků. První vozík má hmotnost m 1 =4kg a druhý vozík má hmotnost m 2 =2 kg. Šňůra, která spojuje oba vozíky má zanedbatelnou hmotnost. Určete: 1) normálovou sílu, kterou působí podlaha na každý vozík, 2) napětí T je v provázku, 3) zrychlení vláčku Řešení: 1) N 1 =40 N, N 2 =20 N, 2) T=m 2 /(m 1 +m 2 ) F=3.33N, 3) a=f/(m 1 +m 2 )=1.67 m/s 2. Příklad č. 15: Kvádr o hmotnosti m 1 =20 kg se může volně pohybovat po horizontálním povrchu je pomocí lana spojen přes kladku s druhým kvádrem o hmotnosti m 2 =10kg (viz. obr). Za předpokladu, že hmotnosti lana i kladky jsou zanedbatelné určete: 1) síly působící na kvádry, 2) jejich zrychlení, 3) za předpokladu, že byly na začátku v klidu, kam se posunou za 2 s. Řešení: 1) N 1 =F g1 =200N, F g2 =100N, T=m 1 m 2 g /(m 1 +m 2 ) = 66.7 N, 2) a 1 =a 2 =a=t/m 1 =3.33 m/s 2, 3) l=6.7 m. Příklad č. 16: Síla F=1.5y i 3x 2 j 0.2 x 2 y 2 k N působí na částici o hmotnosti 1 kg. Při t = 0 má částice polohový vektor r=2i 3 j metrů a pohybuje se rychlostí v=2 j k m/s. Při t = 0 určete 1) sílu, která působí na částici, 2) zrychlení částice, 3) kinetickou energii částice, 4) rychlost změny kinetické energie. Řešení: 1) F t=0 =4.5i 12 j 2.6k N, 2) a t=0 =4.5i 12 j 2.6k m/s 2, 3) E k =5/2 J, 4) d E k /=21.4 J / s.

7 Příklad č.17: Automobil má hmotnost 1 t. Maximální výkon jeho motoru je 120 kw. Nechť automobil dosahuje tohoto maximálního výkonu při rychlosti 60 km/h. Jaké je zrychlení automobilu při této rychlosti? Řešení: a = 7.2 m/s 2. Příklad č. 19: Golfový míček je odpálen střední silou F =2600 N, působící po dobu = s. S jakou rychlostí je míček odpálen, je-li jeho hmotnost m=0.047 kg? Řešení: v=69.1 m/s = km/h. Příklad č. 20: Proveďme následující experiment. Máme dva kvádry o hmotnostech 3 kg a 2 kg, které se pohybují takřka bez tření v koridoru na vzduchovém polštáři. Rychlost prvního je 1 m/s a kvádr jedoucí za prvním v témže směru jede rychlostí 2 m/s. Jakými rychlostmi (velikost a směr) se budou pohybovat oba kvádry po dokonale pružné srážce? Jaké budou rychlosti obou kvádrů po dokonale pružné srážce v případě, že rychlost druhého kvádru je 7 m/s? Řešení: a) v 2 = m 2 P m 1 m 2 [2 m 1 m 2 K P 2 ] m 2 m 1 m 2 = 1 10 m/s, v 1= m P 1 m 1 m 2 [2 m 1 m 2 K P 2 ] =1,1 m/s, m 1 m 1 m 2 kde je K celková kinetická energie soustavy a P celková hybnost soustavy. b) v 2 = 1 5 m/s, v 1 = 29 5 m/s. Příklad č. 21: Jakou rychlostí se musí druhé těleso, z předchozího příkladu, pohybovat, aby se po srážce zastavilo? Řešení: v 02 = 2P 01 m 1 m 2 =6 m/s. Příklad č.22: Umělý satelit se pohybuje po eliptické dráze se Zemí v jednom ohnisku (viz obr.). V bodě A je márychlost v a jeho vzdálenost od středu Země je r. V bodě B je jeho vzdálenost od středu Země 2r. Jaká je rychlost satelitu v bodě B? Řešení: v B =v/2.

8 Příklad č.23: V Bohrově modelu atomu vodíku má elektro na své nejnižší kruhové dráze moment hybnosti kg m 2 /s. Poloměr této orbity je m a hmotnost elektronu je kg. Určete: a) rychlost eletronu na této orbitě, b) určete poměr v/c, kde c= m/s je rychlost světla. Řešení: a) v= m/s, b) v/ c=0.007.

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

Kinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1.

Kinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1. Kinematika Definice: Známe-li časový průběh polohového vektoru r(t), potom určíme vektor okamžité rychlosti hmotného bodu časovou derivací vektoru r(t), v= d r dt Naopak, známe-li časový průběh vektoru

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1 Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

Dynamika pro učební obory

Dynamika pro učební obory Variace 1 Dynamika pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Newtonovy pohybové zákony

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF Dynamika systémů s proměnnou hmotností Buquoyovy úlohy Práce a energie v řešení Buquoyových úloh Mnohočásticové modely Problém rakety Pružné a nepružné srážky Fundemtální zákon vs. kinematická podmínka

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

III. Dynamika hmotného bodu

III. Dynamika hmotného bodu III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh. kola 49. ročníku fyzikální olympiády. Kategorie C Autořiúloh:J.Jírů(),P.Šedivý(2,3,4,5,6),I.VolfaM.Jarešová(7)..Označme v 0souřadnicirychlostikuličkyohmotnosti3mbezprostředněpředrázem a v

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Počty testových úloh

Počty testových úloh Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Senzor může být připojen ke všem měřícím rozhraním platformy einstein.

Senzor může být připojen ke všem měřícím rozhraním platformy einstein. Optická brána Produktové číslo: FU-ENFTG137 Optická brána měří čas, jak dlouho se vyskytuje mezi jejími dvěma rameny nějaká překážka. Pro optickou bránu je speciálně navržen nástroj Časový průvodce, který

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální

Více

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

FYZIKA DIDAKTICKÝ TEST

FYZIKA DIDAKTICKÝ TEST NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_18_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule). Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu. Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony. Dynamika I Kinematika se zabývala popisem pohybu, ale ne jeho příčinou. Například o vrzích jsme řekli, že zrychlení je konstantní a směřuje svisle dolů, ale neřekli jsme proč. Dynamika se zabývá příčinami

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Soubor úloh k Mechanice (komb. studium)

Soubor úloh k Mechanice (komb. studium) Soubor úloh k Mechanice (komb. studium) 1. úloha Pozrite si nasledujúce grafy, pričom si všimnite odlišné osi: Ktorý z grafov predstavuje pohyb s konštantnou rýchlosťou? (A) I, II a IV (B) I a III (C)

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více