b=1.8m, c=2.1m. rychlostí dopadne?
|
|
- Karel Pavlík
- před 9 lety
- Počet zobrazení:
Transkript
1 MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m 1. Vypočítejte za jaký čas toto těleso urazí dráhu h a jakou rychlostí dopadne?
2 MECHANIKA - PŘÍKLADY 2 Příklad 3 Vypočítejte za jaký čas urazí odvalující se těleso dráhu L=1.2m. Poloměr tělesa je R=0.1m. Určete potřebný součinitel tření tak, aby se těleso odvalovalo. v 0 =0.5m/s. Těleso je: a) koule b) válec c) tenkostěnná trubka Příklad 4 Vypočítejte, jakou dráhu urazí odvalující se těleso. R = 0.15m Těleso je: a) koule b) válec c) tenkostěnná trubka Příklad 5 Na lanu délky L je zavěšeno těleso o hmotnosti m. Vypočítejte hmotnost tělesa m. Tuhost lana k=5000n/m, L=10m, β=15
3 MECHANIKA - PŘÍKLADY 3 Příklad 6 Vypočítejte délky pružin L 1, L 2, L 3. Počáteční délky pružin jsou l 1 =0.1m, l 2 =0.15m, l 3 =0.2m. Tuhosti pružin jsou k 1 =2000N/m, k 2 =5000N/m, k 3 =3000N/m. Hmotnosti těles jsou m 1 =50kg, m 2 =20kg. Celková délka natažených pružin L= 0.6m. Příklad 7 Vypočítejte velikost momentu elektromotoru M E a) tak, aby se těleso pohybovalo konstantní rychlostí b) tak, aby se těleso zastavilo ve výšce h c) tak, aby těleso o hmotnosti m urazilo dráhu h za poloviční čas než v případě, kdy se pohybuje konstantní rychlostí
4 MECHANIKA - PŘÍKLADY 4 Příklad 8 Vozík o hmotnosti m s válcovými koly o hmotnosti m/10 (celková hmotnost vozíku 1.1m) má počáteční rychlost v 0 a do zastavení urazí dráhu L. Určete hmotnost kol tak, aby vozík se stejnou počáteční rychlostí v 0 urazil dráhu1.1l. Příklad 9 Vozík o celkové hmotnosti m c =10kg (rám + kola) má počáteční rychlost v 0 =4m/s. Vozík ujede po nakloněné rovině dráhu L=2m, kde se zastaví. Určete hmotnost kol.
5 MECHANIKA - PŘÍKLADY 5 Příklad 10 Na páce o ramenech b a c jsou upevněna tělesa o hmotnostech m 1 a m 2. Určete úhel natočení páky ϕ, kdy má páka maximální rychlost. V tomto okamžiku určete síly v ramenech b a c. Příklad 11 Vypočítejte maximální a minimální velikost síly F tak, aby se tyč nepohybovala. L=0.8m, m=9kg, β=60, µ 1 =0.1, µ 2 =0.8. Příklad 12 Vypočítejte maximální a minimální velikost síly F tak, aby se těleso nepohybovalo. Určete zrychlení a čas, za který urazí těleso dráhu L, je-li působící síla dvojnásobná. m=50kg, µ=0.2, β=25, L=2.5m. Příklad 13 Poloha bodu v souřadné soustavě xy je dána: x A (t)=2 0,2t+0,01t 2, y A (t)=1+0,3t 0,07t 2. Vypočítejte v čase t=5s polohu, rychlost a zrychlení bodu A. Vypočítejte velikost tečného a normálového zrychlení.
6 MECHANIKA - PŘÍKLADY 6 Příklad 14 Vypočítejte potřebnou sílu, která bude působit na těleso na nakloněné rovině, jestliže počáteční rychlost je v 0 a koncová v 1 a dráha L. Vypočítejte maximální výkon a práci vykonanou silou F. m=20kg, µ=0.3, β=30, L=10m, v 0 =2m/s, v 1 =1m/s. Příklad 15 Vypočítejte momentm E elektromotoru tak, aby těleso urazilo dráhu h nejprve se zrychlením 3m/s a poté zpomalením 2m/s. Počáteční a koncová rychlost je 0. Vypočítejte celkový čas, čas kdy dojde ke změně zrychlení a výšku h 1 v tomto okamžiku a maximální rychlost. Vypočítejte výkon a práci elektromotoru. I B =1.3kgm 2, I E =0.7kgm 2, R=0.15m. Příklad 16 Těleso se pohybuje rychlostí v. Vypočítejte velikost síly F tak, aby se těleso pohybovalo konstantní rychlostí. Vypočítejte výkon a práci, jestliže se těleso posune o dráhu L. m=50kg, µ=0.2, β=20, L=5m. Příklad 17 Těleso o hmotnosti m je v klidu. Vypočítejte velikost síly F tak, aby se pohybovalo se zrychlením 2m/s. Poté těleso musí zpomalovat se zrychlením 1m/s tak, aby urazilo dráhu L = 3m. Vypočítejte celkový čas pohybu, čas ve kterém změníme velikost síly(t 1 ), dráhu v tomto čase(l 1 ) a rychlost v 1.
7 MECHANIKA - PŘÍKLADY 7 Vypočítejte maximální výkon při zrychlování a zpomalování. Vypočítejte vykonanou práci. m=100kg, µ=0.3, β=15, L=3m, v 0 =0, v 2 =0. Příklad 18 Vypočítejte velikost momentu M v závislosti na úhlu natočení β. Vypočítejte velikost reakcí v rotačních vazbách A a B v závislosti na úhlu natočení β. Vypočítejte práci vykonanou momentem M, jestliže se úhel změní z β=0 na β=30. Vypočítejte velikost momentu M v závislosti na úhlu natočení β, jestliže má být úhlové zrychlení ǫ=0.2rad/s. Příklad 19 Válec o poloměru r a hmotnosti m je upevněn na rameni délky R (vzdálenost osy válce od osy otáčení). Vypočítejte velikost momentu M v závislosti na úhlu natočení β. Vypočítejte práci vykonanou momentem M, jestliže se úhel změní z β =0 na β=30. Vypočítejte velikost momentu M v závislosti na úhlu natočení beta, jestliže má být úhlové zrychlení ǫ=0.2rad/s.
7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
Příklady: 7., 8. Práce a energie
Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209
Dynamika hmotného bodu
Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj
http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru
INDEX. www.proline-tools.pl 217
www.proline-tools.pl 217 www.proline-tools.pl 218 00001............... 47 00002............... 47 00003............... 47 00006............... 47 00007............... 47 00008............... 47 00009...............
Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
Moment síly, páka Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/
Moment síly, páka Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Síla může mít otáčivé účinky. Působící síla může měnit otáčivý pohyb tělesa, můžeme těleso roztočit, zbrzdit nebo zastavit.
2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město
2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2 Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Ing. Zuzana Kučerová Název šablony III/2 Inovace
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
Vztlaková síla působící na těleso v atmosféře Země
Vztlaková síla působící na těleso v atmosféře Země (Učebnice strana 140 141) Na pouti koupíme balonek. Pustíme-li ho v místnosti, stoupá ke stropu.po určité době (balonek mírně uchází) se balonek od stropu
fyzika v příkladech 1 a 2
Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST
Škola: Autor: Šablona: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek VY_32_INOVACE_MGV_F_SS_1S1_D02_Z_MECH_Hmotny_bod_r ychlost_pl Člověk a příroda Fyzika Mechanika
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři
Gymnázium F. X. Šaldy PŘEDMĚTOVÁ KOMISE FYSIKY SBÍRKA ÚLOH Z FYSIKY pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Sazba: Honsoft, 2006 2007.
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly:
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 4 Jméno: Třída:
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ
POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2
Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná
Dynamika I - příklady do cvičení
Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k
GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?
GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak
F - Dynamika pro studijní obory
F - Dynamika pro studijní obory Určeno jako učební text pro studenty dálkového studia a jako shrnující a doplňkový text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven
Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t
7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: MANAGEMENT STAVEBNICTVÍ TEST A.1 MATEMATIKA 1) Je-li F distribuční funkce spojité náhodné veličiny
7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?
7. Speciální teorie relativity 7.1 Kosmonaut v kosmické lodi, přibližující se stálou rychlostí 0,5c k Zemi, vyšle směrem k Zemi světelný signál. Jak velká je rychlost signálu a) vzhledem k Zemi, b) vzhledem
Předmět: Seminář z fyziky
Pracovní list č. 1: Kinematika hmotného bodu a) Definujte základní kinematické veličiny, charakterizujte tečné a normálové zrychlení. b) Proveďte rozbor charakteristik jednotlivých konkrétních neperiodických
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA
U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto
Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015
Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.
Příklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
Domácí úlohy k zápočtu z předmětu Panorama fyziky I Tomáš Krajča, 255676, Podzim 2007
Domácí úlohy k zápočtu z předmětu Panorama fyziky I Tomáš Krajča, 255676, Podzim 2007 Úloha 1 V jaké vzdálenosti od Země (v násobcích AU a v km) byla nejvzdálenější místa vesmíru v okamžiku, kdy bylo detekované
2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.
.8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Jednoduché stroje JEDNODUCHÉ STROJE. January 11, 2014. 18. jednoduché stroje.notebook. Páka
Jednoduché stroje Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Název materiálu:
Technická mechanika - Statika
Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Fyzikální veličiny. Převádění jednotek
Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.
m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.
Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka
S = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý
3. Způsoby namáhání stavebních konstrukcí
3. Způsoby namáhání stavebních konstrukcí Každému přetvoření stavební konstrukce odpovídá určitý druh namáhání, který poznáme podle výslednice vnitřních sil ve vyšetřovaném průřezu. Lze ji obecně nahradit
EVROPSKÝ SOCIÁLNÍ FOND. Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI. J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha
EVROPSKÝ SOCIÁLNÍ FOND Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha Klid a pohyb Co je na obrázku v pohybu? Co je na obrázku v klidu? Je
Příklady 2 - Kinematika - 27.9.2007
Příklady 2 - Kinematika - 27.9.2007 1. Počáteční poloha míčku je dána polohovým vektorem r 1 = ( 3, 2, 5), koncová poloha je určena vektorem r 2 = (9, 2, 8). Určete vektor posunutí míčku. Určete velikost
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12
Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,
Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6
Stereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Úlohy pro 52. ročník fyzikální olympiády, kategorie EF
FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
Vzájemné působení těles
Vzájemné působení těles Podívejme se pozorně kolem sebe. Na parapetu stojí květináč, na podlaze je aktovka, venku stojí auto Ve všech těchto případech se dotýkají dvě tělesa. Květináč působí na parapet,
Variace. Mechanika kapalin
Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti
Frézování ozubených kol
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Frézování ozubených kol Zuby čelních OK, které patří k nejčastěji používaným můžeme zhotovit těmito způsoby
Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv
Podniková norma energetiky pro rozvod elektrické energie ČEZ Distribuce, E.ON Distribuce, E.ON ČR, Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv PNE 34 8211 3. vydání Odsouhlasení
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost
Příklad oboustranně vetknutý nosník
Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
V. Zatížení stavebních konstrukcí stroji
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz V. Zatížení stavebních konstrukcí stroji 1. Typy základových konstrukcí 2. Budicí síly 3. Výpočet odezvy 4. Zmenšování dynamických
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 OBOR: POZEMNÍ STAVBY (S) A. MATEMATIKA TEST. Hladina významnosti testu α při testování nulové hypotézy
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V
KONKURENCESCHOPNOST na všech frontách NOVÝ ROBOT od TOSHIBA MACHINE pro každé použití
KONKURENCESCHOPNOST na všech frontách NOVÝ ROBOT od TOSHIBA MACHINE pro každé použití Typ První z nové generace SCARA S bezkonkurenčním časem cyklu 0,29 sekundy je THP550 SCARA první z nové řady robotů
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz,
6. Měření veličin v mechanice tuhých a poddajných látek
6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických
Úlohy pro 52. ročník fyzikální olympiády kategorie G
FO52G1: Kolik naložíme Automobilový přívěs, který využívají chalupáři k přepravě materiálu, má nákladovou plochu o rozměrech: šířka 1,40 m, délka 1,60 m a výška hrazení 40 cm. Přívěs má nosnost 560 kg.
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Kuličkové dopravní jednotky
Kuličkové dopravní jednotky Katalog 005 THIKÉ IRMA Konstrukce & provedení Kulièkové dopravní jednotky jsou komponenty urèené pro sestavování systémù pro manipulaci s materiálem. Tyto systémy umožòují snadný
Seminární práce k předmětu Didaktika matematiky. Téma práce: Aplikační matematické úlohy
Seminární práce k předmětu Didaktika matematiky Téma práce: Aplikační matematické úlohy Vypracovala: Kateřina Fišerová 25. dubna 2009 Příklad 1 (Derivace funkce jedné proměnné) Do stejnosměrného elektrického
4 Spojovací a kloubové hřídele
4 Spojovací a kloubové hřídele Spojovací a kloubové hřídele jsou určeny ke stálému přenosu točivého momentu mezi jednotlivými částmi převodného ústrojí. 4.1 Spojovací hřídele Spojovací hřídele zajišťují
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.19 Strojní opracování dřeva Kapitola 8 Pily
Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí
Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu i ii Výpočet bez chyb. Informace o o projektu? 1.0 1.1 Kapitola vstupních parametrů Volba režimu zatížení, provozních a výrobních parametrů
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
Horské kolo (Downhill, freeride) Downhill (neboli sjezd) je cyklistická MTB disciplína. Historie
Horské kolo (Downhill, freeride) Horské kolo bylo zkonstruováno na přelomu 70-80 let,často též označované zkratkou MTB (z anglického mountain bike), je bicykl navržený pro jízdu v horských oblastech, jízdu
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
Xella CZ, s.r.o. Vodní 550 664 62 Hrušovany u Brna Česká republika IČ 64832988 05 EN 845-2 Překlad YTONG NOP II/2/23 z vyztuženého pórobetonu
Překlad YTONG NOP II/2/23 z vyztuženého pórobetonu P4,4-600 Únosnost: 21 kn Průhyb: 0,5 mm při 21 kn Hmotnost, hmotnost na jednotku plochy: 54 kg, 168 kg/m 2 Typ překladu: NOP II/2/23 Délka: 1290 mm Šířka
Tlak ke stanovení sil na píst. Ø pístu [mm] 12 16 20
1 Teplota okolí min./max. +0 C / +65 C Médium Stlačený vzduch Max. velikost částic 50 µm Obsah oleje stlačeného vzduchu 0 mg/m³ - 5 mg/m³ Tlak ke stanovení sil na píst 6,3 bar 00131410 Materiály: Pouzdro