Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem

Rozměr: px
Začít zobrazení ze stránky:

Download "Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem"

Transkript

1 Spnový oent hybnost /anetcký oent, nterakce s anetcký pole Velkost jednoho elektronového spnu: Velkost jednoho jaderného spnu: s s( s ) 3 ( ) Sudé Sudé Z 0 Sudé Lché Z... apř: He, C, 6 O celočíselné apř: H: Ι 0 : Ι 3 Lché... poločíselné Manetcký dpólový oent volného elektronu: e.003 e Elektronový faktor ee µ s s γ es e T - Elektronový ohrův aneton e apř: H: Ι / : Ι 3/ 9 F: Ι / 3 C: Ι / Elektronový yroanetcký poěr

2 Spnový oent hybnost / anetcký oent, nterakce s anetcký pole aderný anetcký dpólový oent: µ γ s aderný yroanetcký poěr e jaderný faktor konstanta pro daný nukld (tabelované hodnoty) T - jaderný aneton p nterakční enere anetckého oentu s vnější anetcký pole: E µ µ nt Zjednodušující případ: ( µ µ ) x x y y -ová složka anetcké ndukce 0 3 x enší hodnota než e projeví se v rodílu fotonových enerí které se používají V ESR (EPR) a MR (v dál) nt H µ e e ( µ s ) s ( µ ) H H ee s (ESR) (MR)

3 Spnový oent hybnost / anetcký oent, nterakce s anetcký pole H nt Ψ Ψ, E nt Ψ H, E,,, nt nt nt E Platí tento vtah (víte předešlé přednášky o vlastních funkcí oentu hybnost) : L Ψ L Ψ -ová složka oentu hybnost Pak,, E nt, aderný Zeeanův jev, ; E nt Enere Ι /, ; ± hv, ; - Reonanční podínka ± 7T: 0.0 c - ( H) 0 Manetcká ndukce,

4 Spnový oent hybnost / anetcký oent, nterakce s anetcký pole H nt Ψ Ψ s, E nt s Ψ H s, E s, s, s, nt s nt e e s s nt s s E Platí tento vtah (víte předešlé přednášky o vlastních funkcí oentu hybnost) : L Ψ L Ψ -ová složka oentu hybnost Pak ee s s, s e e s s, s E nt s, s Elektronový Zeeanův jev e e s s, s ; E nt Enere s / s, s ; ± 0 Manetcká ndukce, hv s, s e ; e - Reonanční podínka s ± 7T: 6.5 c -

5 deenerace Enere 0 0 ±

6 MR / prncpy a -té jádro působí efektvní pole: 0 ( ) 0 eff externí vntřn 0 stínící faktor (konstanta stínění -tého jádra) Haltonán pro nterakc -tého jádra s vnější efektvní anetcký pole: ( ), 0 H, ( ) E, 0,, Obsahuje-l olekula více jader s nenulový spne: ( ) 0 H, ( ) 0 E,

7 MR / prncpy ) Stejná jádra v checky ekvvalentní prostředí: CH 3 v CH 3 CH OH: 3H ají stejné a ) Stejná jádra v checky rodílných prostředí CH 3 a CH v CH 3 CH OH: éž ale růné C) Růná jádra ají růné 0 Checký posun: 0 6 ( ) v v δ v Stínící konstanta protonu v referentní olekule tetraetylslanu

8 MR / prncpy yní budee uvažovat dva rolštelné vájeně nenteraující jaderné spny (rolštelnost případ předeslé strany), jako jsou jádra H v CH 3 a CH skupnách v etanolu: ( ) ( ) ( ) ( ) ( ) ( ) 3 ( ) ( ),,, ( ) ( ) H ( ) 0,, H ( ), k Ek k 0 k, k,,3, E k ( ) 0,,

9 ,,, 0 E 0 E 0 3 E 0 E Vyběrové pravdlo: ± ν ν ntenta ntenta ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) (

10 avoení Haltonánu pro spn-spn nterakc dvou jader s 0:... anetcké pole ndukované anetcký dpólový oente jádra nterauje s anetcký dpólový oente µ, jádra µ, Le očekávat: H µ µ nt,, Î nt H H nt h µ, neekvvalentní protony 0 0 Ĥ nt ( ) ( ) E 0 h ( ) ( ) 0 0, ( ) ( ), 3, ( ) ( ) E3 0 E 0 E h h 0 h

11 0 0 Ĥ nt ntenta ( ) ( ) ntenta ν ν ν 3 ν ( ) ( ),, 3, ( ) ( ) E h ν 3 ν ν ntenta νν 3 E E 0 ( ) h h Ĥ nt ν ν 3 E E3 0( ) h h ( ) ( ) ν ν 3 ν Cvčení: E h? Použjte: E k h k H nt k k x,, x, y, y,, k x x y y

12 MR / prncpy ntenta ntenta neekvvalentní protony νν 3 E nt 0 ν ν Ĥ [ s ] nt ntenta ntenta ntenta Poěr : : ntent: E nt 0 ν ν ν Ĥ nt Ĥnt [ s ] [ s a s ] Spn-Spn nterakce e ekvvalentní a neštěpí jejch ntentu (v apendx)

13 Zobecnění: n Pascalův trojúhelník: n 0 n n n 3 n n 7 n 6 n 5 6 n 9 n 0 n 8 Štěpení a ntenta H MR snálu je dána Pascalový trojúhleníke

14 Příklady / H MR nterace plochy pod snále: počet ekvvalentních protonů Checký posun: charakter protonů: enší stínění větší δ Multplety: počet sousedních (neekvvalentních) protonů?? kuste určt řešení apendx -pentanon

15 Příklady / 3 C MR Důvod proč není vdět štěpení spektrálních čar: sotop 3 C s / je poue astoupen.%, proto pravděpodobnost, že dva 3 C se nacháejí v jedné alé olekule, je níká a ještě nžší, že spolu sousedí, tak aby jejch spn-spn nterakce byla patrná. Referentní olekula: TMS

16 Doplněk

17 Elekronová spnová resonance / Elektronová paraanetcká resonance

18 Elekronová spnová resonance / Elektronová paraanetcká resonance 0 0 nterakce s jední jaderný spne ½ (protone) e, H nt h S e nteraující s e Enere 0 e e hv e e e, e, e nteraující s e nteraující s e h h e, S e, e, e nteraující s Cvčení: Ukažte, že H nt h S h S Použjte: L x L x L y L y L L

19 Výběrová pravdla s ± 0 Enere 0 e e hv e e e e e, e, e, e, h h h h hv hv h e e h ee v v v v v

20 Případ kdy dva ekvvalentní protony nteraují se anetcký dpólový oente elektronu. e,,,, e e,, e,, e,,,, e,,,, e,,,, Enere e 0 e e,,,, e,, e,,,, e e,,,, e,, e,,,, H nt h S ntenta: : :

21 Hyperjené štěpení v ESR Případ kdy n ekvvalentních protonů nterauje se anetcký dpólový oente elektronu. Paskalův trojúhelník n 0 n n n 3 n n 5 n 6 n 7 n 8 n 9 n 0 6 ekvvalentních protonů s / Obecně, počet pásů v důsledku hyperjeného štěpení: n V případě radkál-anontu benenu: n H 6 ; H ½ ( C 0) 6 7

22 n a n ekvvalentních protonů nterauje se anetcký dpólový oente elektronu. McConnel vtah (velkost hyperjeného štěpení je úěrné spnové husě): H C -O-CH 3 n n 3 Q ρ protože > ρ > ρ ( n )( n ) Obecně, počet pásů v důsledku hyperjeného štěpení n protony a n protony: ( n )( n )

23 ppendx MR

24 ásledující 3 sldy navoují vysvětlení proč se ekvvalentní protony v H MR spektrech neštěpí Celkovou jadernou funkc nerolštelných jaderných spnů le napsat jako:, M kde M,,,...,,, M M, M, M ( ), M Když jsou dva jaderné spny s Ι Ι / paralelně orentovány, pak je jaderná vlnová funkce př absenc anetckého pole 3x deenerována: Funkce jsou vlastní funkce těchto rovnc Ι Ι Ι Μ Ι -, 0,, M,,,0 ( )

25 Když jsou dva jaderné spny s Ι Ι / antparalelně orentovány, pak je jaderná vlnová funkce: Ι 0 Μ Ι 0 0,0 ( ) Spn je v přítonost vnějšího anetckého pole defnován jako ten, který je orentován ve sěru tohoto anetckého pole a spn prot jeho sěru: 0 0 x de. ( ) ( ) S anetcký pole se enere těchto hladn neění v: ( ) 0 E,

26 0 x de. 0 Dvě checky ekvvalentní jádra spolu anetcky nteraující : ( ) ( ) nt h H 3 Proč? ( )( ) { } { } ( ) ( ) ( ) { } M h M h M h M H,,,, nt,, nt h H

27 řešení k úloe na straně 5: sobutyrc acd

Lambertův-Beerův zákon

Lambertův-Beerův zákon Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla

Více

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly Molekulová vbrace dvojatomové molekuly Dsocační křvka dvojatomové molekuly x Potencální energe, E Repulsvní síly x Přtažlvé síly síly x Pro malé odchylky [(x-x ) ] možno aproxmovat parabolou, jak plyne

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

Úvod do magnetizmu pevných látek

Úvod do magnetizmu pevných látek Úvod do magnetzmu pevných látek. Úvod. Izolované magnetcké momenty 3. Prostředí 4. Interakce 5. agnetcké struktury 6. Doménová struktura a magnetzace .agnetzmus pevných látek -úvod. Zdroje magnetsmu -

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice.

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice. Fyzka bopolymerů Elektrostatcké nterakce makromolekul ve vodných roztocích Robert Vácha Kamence 5, A4 2.13 robert.vacha@mal.mun.cz Vodné roztoky ldské tělo se skládá z 55-75 % z vody (roztoků) většna roztoků

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Č ú Š Í Á É Č ú é é Ť š é ž é ž š é š ý é Ť é ů ý ž ž ý é ů é é ž Í é ž é é ž é Ť ú ý Ť é é ž Ž Ž é é š ň é ž š é š ý é Ť é ů ý ž Ž ý é é é ž é Š Ú ž é é ž é Š ý ú Ť ž ž é š ý ž ý é š š ý Ž Ť ž ž é é ů

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Vysokoúčinná kapalinová chromatografie

Vysokoúčinná kapalinová chromatografie MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Vysokoúčnná kapalnová chroatografe Josef Cvačka, 311011 3.11.011 1 MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Základy chroatografckého procesu

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

11 Kvantová teorie molekul

11 Kvantová teorie molekul 11 Kvantová teore molekul Pops molekul v rámc kvantové teore je ústředním tématem kvantové cheme. Na rozdíl od atomů nejsou molekuly centrálně symetrcké, což výpočty jejch vlastností komplkuje. V důsledku

Více

Úloha 21: Studium rentgenových spekter

Úloha 21: Studium rentgenových spekter Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

Relativistická kvantová mechanika

Relativistická kvantová mechanika Relatvstcká kvantová mechanka Mchal Lenc Poznámky k přednášce v jarním semestru Obrazy Postulát o kvantové kausaltě Evoluční operátor 3 Schrödngerův a Hesenbergův obraz 3 4 Interakční obraz4 Relatvta a

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Objevili Rutherford, Geiger, Marsden rozptyl alfa částic na zlaté folii. Asi krát menší než atom, obsahuje většinu hmoty atomu

Objevili Rutherford, Geiger, Marsden rozptyl alfa částic na zlaté folii. Asi krát menší než atom, obsahuje většinu hmoty atomu Jádro Připomínám, co jsme se dozvěděli na druhé hodině: Objevili Rutherford, Geiger, Marsden rozptyl alfa částic na zlaté folii Asi 100 000krát menší než atom, obsahuje většinu hmoty atomu Víme: Skládá

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna

Více

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ VYNUCENÉ TORSNÍ KITÁNÍ KLIKOVÝCH HŘÍDELŮ Vlstní torsní kmtání po čse vymí vlvem tlumení, není smo o sobě nebepečné. Perodcký proměnný kroutící moment v jednotlvých lomeních vybudí vynucené kmtání, které

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Hartreeho-Fockova metoda (HF)

Hartreeho-Fockova metoda (HF) Staonární Shrödngerova rovne H Ψ = EΨ Metoda konfgurační nterake Metoda vázanýh klastrů Poruhová teore Zahrnutí el. korelae Bornova-Oppenhemerova aproxmae Model nezávslýh elektronů Vlnová funke ve tvaru

Více

4. Střídavý proud. Časový průběh harmonického napětí

4. Střídavý proud. Časový průběh harmonického napětí 4. Střídavý prod 4. Vznk střídavého prod Doteď jse se zabýval poze prode, který obvode prochází stále stejný sěre (stejnosěrný prod). V prax se kázalo, že tento prod je značně nevýhodný. Zdroje napětí

Více

25 Měrný náboj elektronu

25 Měrný náboj elektronu 5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

Interakce fluoroforu se solventem

Interakce fluoroforu se solventem 18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú

Více

Lehký úvod do kvantové teorie II

Lehký úvod do kvantové teorie II 1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru

Více

Č é ě é ě ě š ř ů ó ú ů ě ě š ř ů ř š ř ě š é ě ř ě ř é š ě š ú Ř Ť Č é ě Č ř é š ě š ú š ř é š ě é š ě ž š Č ú ř ě ě é é ů ž é ž ť ě š š š é é é ě é š ďě ň é ě éž ů ě ř ř ě ř é š ě ž ě š ž š é ř ž ě é

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť

Více

Konstrukce točivých strojů a) střídavý generátor se sběracími kroužky b) dynamo s komutátorem

Konstrukce točivých strojů a) střídavý generátor se sběracími kroužky b) dynamo s komutátorem M-3 Stejnosměrné stroje 1/1 Stejnosměrné stroje - každý stejnosměrný stroj může pracovat jako motor nebo jako generátor (dynamo), - přes svoj vyšší cenu a složtější konstrukc mají nezastuptelné místo v

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn? Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou

Více

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment λ=21 cm 1) orbitální magnetický moment (... moment proudové smyčky) μ I S gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment 2 Zeemanův jev - rozštěpení spektrálních čar v

Více

ÚVOD DO KVANTOVÉ CHEMIE

ÚVOD DO KVANTOVÉ CHEMIE ÚVOD DO KVANTOVÉ CHEME. Navození kvantové mechanky Postuláty kvantové mechanky, základy operátorové algebry, navození kvantové mechanky, jednoduché modely.. Vodíkový atom 3. Základní aproxmace používané

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Chemie pro KS Anorganická a analytická část

Chemie pro KS Anorganická a analytická část Chemie pro KS Anorganická a analytická část Ing. Matyáš Orsák, Ph.D. ORSAK@AF.CZU.CZ Program přednášek. přednáška a) atom, jádro, obal, elektron, radioaktivita b) názvosloví anorg. sloučenin včetně koordinačních

Více

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové

Více

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech Spinový hamiltonián Hamiltonián soustavy jader a elektronů v magnetickém poli lze zapsat

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž

Více

Statický kvarkový model

Statický kvarkový model Statický kvarkový model Supermulltiplet: charakterizován I a hypernábojem Y=B+S Skládání multipletů spinových či izotopických, např. dvě částice se spinem 1/2 Tři částice se spinem 1/2 Kvartet a dva dublety

Více

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA ZATÍŽE Í TROJKLOUBOVÁ HALA Určete atížení a axiální ožné vnitřní síly na nejatíženější rá halového jednolodního objetu (vi obráe). Celová déla budovy je 48, a příčná vdálenost ráů s F 4,8. S odvolání na

Více

atom Lomonosov Lavoisier Dalton Proutova modely atomů Thomsonův kladným elektronů vysílají elektromagnetické záření nedostatky: počet původ

atom Lomonosov Lavoisier Dalton Proutova modely atomů Thomsonův kladným elektronů vysílají elektromagnetické záření nedostatky: počet původ Modely atomu Pojem atom byl zaveden již antickými filozofy (atomos = nedělitelný), v moderní fyzice vyslovili první teorii o stavbě hmoty Lomonosov, Lavoisier, Dalton (poč. 19 stol.): tomy různých prvků

Více

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických

Více

Alexander Kupčo. kupco/qcd/ telefon:

Alexander Kupčo.   kupco/qcd/   telefon: QCD: Přednáška č. 1 Alexander Kupčo http://www-hep2.fzu.cz/ kupco/qcd/ email: kupco@fzu.cz telefon: 608 872 952 F. Halzen, A. Martin: Quarks and leptons Kvarky, partony a kvantová chromodynamika cesta

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

Systémy pro využití sluneční energie

Systémy pro využití sluneční energie Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie

Více

Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické

Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické Stavba hmoty Atomová teorie Korpuskulární model látky - chemické látky jsou složeny z mikroskopických, chemicky dále neděčástic atomů. Později byl model rozšířen na molekuly a ionty (chemický druh - specie).

Více

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T. 7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:

Více

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D.

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D. PODKLADY PRO PRAKTICKÝ SEMIÁŘ PRO ČITELE VOŠ Logartmcké velčny používané pro pops přenosových řetězců Ing. Bc. Ivan Pravda, Ph.D. ATOR Ivan Pravda ÁZEV DÍLA Logartmcké velčny používané pro pops přenosových

Více