PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D.

Rozměr: px
Začít zobrazení ze stránky:

Download "PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D."

Transkript

1 PODKLADY PRO PRAKTICKÝ SEMIÁŘ PRO ČITELE VOŠ Logartmcké velčny používané pro pops přenosových řetězců Ing. Bc. Ivan Pravda, Ph.D.

2 ATOR Ivan Pravda ÁZEV DÍLA Logartmcké velčny používané pro pops přenosových řetězců ZPRACOVALO České vysoké učení techncké v Praze Fakulta elektrotechncká KOTAKTÍ ADRESA Techncká 2, Praha 6 POČET STRA 59 IOVACE, PRAKTICKÉ ZKŠEOSTI A ATRAKTIVITA VE VZDĚLÁVACÍCH PROGRAMECH PRO VOŠ Evropský socální fond Praha & E: Investujeme do vaší budoucnost

3 VYSVĚTLIVKY Defnce Zajímavost Poznámka Příklad Shrnutí Výhody evýhody

4 AOTACE Pops přenosových soustav pomocí logartmckých velčn a možnost jejch využtí pro reálná měření. CÍLE Cílem modulu je v teoretcké rovně přehledně seznámt studenty s logartmckým velčnam používaným v prax pro výpočet provozních parametrů u přenosových soustav v návaznost na měřené velčny. Dále pak objasnt metodku měření klíčových přenosových parametrů optckých vláken, které s logartmckým velčnam velm úzce souvsí, resp. u kterých je výpočet provozních parametrů pomocí logartmckých velčn s výhodou uplatňován. LITERATRA [1] Svoboda, J. a kol.: Telekomunkační technka (I.díl) Zprávy, sgnály, přenosová prostředí. Odborné nakladatelství Hüthg&Beneš, Praha 1999, ISB [2] Grard, A. et al.: Gude To WDM Technology & Testng. Quebec Cty, Canada: EXFO Electro-Optcal Engneerng Inc., s. [3] Vodrážka, J.; Pravda, I.: Prncpy telekomunkačních systémů (skrptum ČVT FEL) (1.vydání). akladatelství ČVT, Praha 2005, ISB X. [4] Dubský, P. Kucharsk, M.: Měření přenosových parametrů optckých vláken, kabelů a tras. Praha: Mkrokom, s.

5 Obsah 1 Logartmcké velčny v telekomunkační technce Úvod do problematky Přehled logartmckých velčn Relatvní úrovně Absolutní úrovně Problematka mpedančního přzpůsobení Absolutní úroveň výkonu v místě s relatvní úrovní výkonu 0 dbr Útlumy výkonu a napětí Specfcké druhy útlumů Logartmcké velčny a jejch využtí pro optcká měření Úvod do problematky Absolutní úroveň výkonu Útlum a měrný útlum Optcká vlákna v telekomunkačních sítích a jejch útlum Specfka měření útlumu optckých vláken Problematka buzení optckých vláken Vybrané typy optckých konektorů a jejch vlastnost Zdroje záření pro optcká měření a jejch parametry Fotodetektory pro optcká měření a jejch parametry Měření absolutní hodnoty výkonu a útlumu optckých vláken Metoda dvou délek (Cut Back Method) Metoda vložných ztrát (Inserton Loss Method) Metoda měření zpětného rozptylu (Backscatterng Method)... 44

6 1 Logartmcké velčny v telekomunkační technce 1.1 Úvod do problematky kazuje se, že zejména pro praktcká měření ale všeobecně pro celkovou orentac v problematce přenosových systémů je třeba znát tzv. logartmcké poměrové jednotky, resp. logartmcké poměrové velčny. Vedle samotné teoretcké znalost logartmckých poměrových velčn je však velm důležté umět je správně užívat, pracovat s nm a chápat jejch význam z hledska správného vyhodnocení naměřených hodnot. ásledující text by měl důkladně osvětlt tuto problematku a pomocí názorných příkladů vytvořt základnu pro další studum. Část přenosového řetězce s vyznačeným důležtým velčnam Ze schématu uvedeného na předchozím obrázku vyplývá, že je možno celý přenosový řetězec ale jeho část považovat z hledska přenosu sgnálu za dvojbran. Velčny na vstupu přenosového článku jsou označené ndexem 1 a na výstupu ndexem 2. Každý přenosový článek považujeme za lneární systém, kterým prochází ustálený snusový sgnál. 6

7 Př praktckých měřeních určujeme nejčastěj efektvní hodnoty napětí (resp. proudů I) a zdánlvé výkony P. Pro efektvní hodnoty napětí a proudu I platí obdoba Ohmova zákona: Pro výkon P pak platí vztah: 2 2 P I I Z = Z I [V; Ω, A] (1.1) = = = [W; V, A; V, Ω; A, Ω] (1.2) Z kde Z je absolutní hodnota mpedance. 7

8 1.2 Přehled logartmckých velčn V přenosové technce obvykle používáme k vyjádření hodnot napětí a výkonu logartmcké poměrové velčny, které nazýváme úrovně L (Level). Blíže pak rozlšujeme především úroveň výkonu a úroveň napětí. Úrovně proudu se běžně nepoužívají. Výše uvedené úrovně výkonu a napětí pak mohou být buď relatvní, tj. porovnávají úrovně v určtém analyzovaném místě s úrovní ve zvoleném vztažném místě, nebo absolutní, tj. srovnávají efektvní hodnoty analyzované velčny ve sledovaném místě s normálovou hodnotou příslušné velčny. Díky transformac naměřených efektvních hodnot elektrckých velčn na příslušný typ úrovní, které mají logartmcký charakter, praktcky usnadníme počítání v přenosových řetězcích tím, že složtější operace násobení a dělení, užívané v rámc obvodových rovnc, převedeme na jednodušší operace sčítání a odčítání. Hodnoty úrovní se udávají pomocí logartmcké jednotky decbel [db], která není jednotkou v pravém smyslu slova, neboť fyzkálně představuje bezrozměrné číslo. 8

9 1.3 Relatvní úrovně Relatvní úrovně vyjadřují korelac hodnot analyzované velčny v různých místech přenosového řetězce. Pro tyto účely je zvoleno určté vztažné místo 0, ke kterému je možné přepočítat příslušné naměřené efektvní hodnoty velčny z analyzovaného místa x. V souladu s předchozí defncí pak lze matematcky zapsat relatvní úroveň výkonu L r : L r P = 10 log x [dbr; W, W] (1.3) P 0 Zcela analogcky lze vyjádřt a matematcky zapsat relatvní úroveň napětí L ru : L ru = 20 log x [dbru; V, V] (1.4) 0 kde P 0 je vztažný výkon (výkon ve vztažném bodě 0) a 0 je vztažné napětí (napětí ve vztažném bodě 0). Relatvní úroveň napětí vychází ze vztahu pro relatvní úroveň výkonu (1.3) a vztahu pro výkon (1.2) ěkdy je možné se setkat s označením pro vztažný výkon P v, přčemž označení P 0 se též využívá pro tzv. normálový výkon, který však bude v dalším textu označován jako P. Označení úrovní L je pro relatvní úrovně doplněno ndexem r a s tímto následně koresponduje označení jednotek. Pomocí relatvních úrovní jsou obvykle vyjádřeny jmenovté č měřcí hodnoty v přenosovém řetězc. Důležtým bodem je vztažné místo 0, pro které platí L r0 = 0 dbr. Do tohoto bodu jsou nejčastěj, jak s ještě ukážeme dále, přepočítávány ostatní úrovně výkonů a napětí z ostatních míst v zařízení. 9

10 1.4 Absolutní úrovně Smyslem defnování absolutních úrovní bylo stanovt jednoznačný transformační vztah mez efektvním hodnotam výkonu, respektve napětí a jejch příslušných úrovní. Pro tento účel bylo nutné zavést v rámc oboru přenosové technky obecně platné referenční, resp. normálové hodnoty. Pro stanovení normálové úrovně se hstorcky vyšlo ze dvou průměrných hodnot zjštěných př přenosu telefonních sgnálů. Absolutní hodnota charakterstcké mpedance používaných symetrckých vedení nabývá v nízkofrekvenčním pásmu kolem kmtočtu 800 Hz velkost Z = 600 Ω a průměrný výkon telefonního uhlíkového mkrofonu se pohybuje kolem P = 1 mw. Ze znalost předchozích dvou hodnot mpedance a výkonu je pak možné pomocí vztahu (1.2) stanovt normálové napětí: Z = 600 Ω; P = 1 mw = 0,775 V Absolutní úroveň výkonu P je defnována následujícím způsobem: L m P = 10 log [dbm; W, W] (1.5) P Absolutní úroveň napětí je pak analogcky defnována následujícím výrazem: L u = 20 log [dbu; V, V] (1.6) Výše uvedené vztahy vycházejí z rovnc (1.3) a (1.4), přčemž symbol m u absolutní úrovně výkonu naznačuje, že normálovou hodnotou je mw. Povšmněme s, že k jednotce decbel opět přdáváme rozlšovací písmena, aby bylo na první pohled zřejmé, jakou úroveň vyjadřujeme. 10

11 1.5 Problematka mpedančního přzpůsobení Jednotlvé část přenosového řetězce, velm často jednotlvé úseky vedení, by měly být vzájemně mpedančně přzpůsobené. Tato podmínka vychází ze skutečnost, že se na vedení snažíme vyhnout nežádoucímu odrazu elektromagnetcké vlny, ke kterému dochází, pokud jsou jednotlvé úseky vedení, resp. jednotlvé část přenosového řetězce, mpedančně nepřzpůsobené. Elektrcké náhradní schéma, které vysthuje stuac na rozhraní dvou článků přenosového řetězce, resp. dvou úseků vedení, je na následujícím obrázku. áhradní elektrcké schéma rozhraní dvou článků přenosového řetězce Absolutní hodnota vntřní mpedance Z výst výstupu předchozího dvojbranu je shodná s absolutní hodnotou vstupní mpedance následujícího dvojbranu Z vst. Vntřní napětí náhradního zdroje je pak = 2 (mpedanční dělč). x V přenosovém řetězc se především z praktckých důvodů neměří přímo efektvní hodnota výkonu. Důvodem je nutnost rozpojení vlastního obvodu tak, aby do něj bylo možné vložt proudovou sondu. Měří se tedy buď efektvní hodnota napětí pomocí elektronckého voltmetru, nebo přímo absolutní úroveň napětí měřčem úrovně. Z výše uvedených důvodů je důležtý převodní vztah mez napěťovou a výkonovou úrovní, se kterým se v prax velm často pracuje. Z předchozích poznatků a ze zavedených normálových hodnot plyne, že absolutní úroveň výkonu je př splnění podmínky mpedančního přzpůsobení, tj. Z = Z = 600 Ω, stejná jako absolutní úroveň napětí, tj. L m = L u. 11

12 V předchozím textu bylo konstatováno, že u provozuschopného systému by měly být jednotlvé část přenosového řetězce (např. jednotlvé úseky vedení) vzájemně mpedančně přzpůsobené. V případě mpedančního nepřzpůsobení, tzn. za stuace, kdy se mohou v různých místech provozovaného řetězce objevt různé mpedance, pak absolutní úroveň výkonu potom bude: 2 P Z L 10 log 10 log 20 log 10 log m = = Z = + = L 2 u +Δ Z [dbm] (1.7) P Z Z Z naměřené absolutní úrovně napětí dostaneme tedy pouhým přčtením korekčního členu ΔZ absolutní úroveň výkonu. Pro případy, kdy Z 0 > Z x, je hodnota korekčního členu kladná, resp. pro případy, kdy Z 0 < Z x, je pak hodnota korekčního členu záporná. Příklad 1: Elektronckým voltmetrem jsme naměřl na výstupu přenosového řetězce efektvní hodnotu napětí 38,8 mv na mpedančně přzpůsobené zátěž 300 Ω. Jaká tomu odpovídá absolutní úroveň výkonu? ŘEŠEÍ ejprve vypočteme absolutní úroveň výkonu napětí dosazením do následujícího vztahu: L u 0,0388 = 20 log = 20 log = 26dBu 0,775 Pak vypočteme absolutní úroveň výkonu dosazením do následujícího vztahu: L m Z 600 = Lu + 10 log = log = 23dBm Z 300 Př přepočtech můžeme v řadě případů používat jednoduchých pravdel. Efektvní hodnota normálového výkonu P = 1 mw je totž rovna absolutní úrovn výkonu 0 dbm, tj. jedná se přímo o vztažnou hodnotu). ásobky efektvních hodnot výkonu pak odpovídají změnám absolutních úrovní výkonu uvedených v pravé část následující tabulky. Obdobná zákontost platí pro hodnoty absolutní úrovně napětí (vz následující tabulka). 12

13 Transformační tabulka násobků efektvních hodnot výkonu a napětí na hodnoty příslušných úrovní V příkladu 1 bylo naměřené napětí právě 20 menší než normálové napětí, resp menší, což odpovídá násobkům 0,5 0,1. Odpovídající úroveň napětí tedy je = 26 dbu. Příklad 2: Máme nastavt absolutní úroveň výkonu na vstupu telekomunkačního přenosového řetězce na hodnotu 10 dbm. Jakou efektvní hodnotu napětí nastavíte na generátoru, jestlže máme absolutní hodnotu vstupní mpedance a) 600 Ω; b) 75 Ω? ŘEŠEÍ a) Úpravou následujícího vztahu vypočteme efektvní úroveň napětí na generátoru pro Z = 600 Ω (pro Z = Z): L m Lm = Lu = 20 log = 10 = 0, ,245V b) Úpravou následujícího vztahu vypočteme efektvní úroveň napětí na generátoru pro Z = 75 Ω (pro Z Z ): Z L = 20 log 10 log m L +Δ u Z = + Z Z 600 Lm 10 log log Z = 10 = 0, , 65mV 13

METODICKÝ NÁVOD. Aplikace logaritmických veličin pro výpočet útlumové bilance optické trasy. Ing. Bc. Ivan Pravda, Ph.D.

METODICKÝ NÁVOD. Aplikace logaritmických veličin pro výpočet útlumové bilance optické trasy. Ing. Bc. Ivan Pravda, Ph.D. METODICKÝ NÁVOD Aplikace logaritmických veličin pro výpočet útlumové bilance optické trasy Ing. Bc. Ivan Pravda, Ph.D. AUTOR Ivan Pravda NÁZEV DÍLA Aplikace logaritmických veličin pro výpočet útlumové

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

POROVNÁNÍ MEZI SKUPINAMI

POROVNÁNÍ MEZI SKUPINAMI POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Digitální přenosové systémy a účastnické přípojky ADSL

Digitální přenosové systémy a účastnické přípojky ADSL ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechncká LABORATORNÍ ÚLOHA Č. 2 Dgtální přenosové systémy a účastncké přípojky ADSL Vypracoval: Jan HLÍDEK & Lukáš TULACH V rámc předmětu: Telekomunkační

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

Měření výkonu v obvodech s pulzně řízenými zdroji napětí

Měření výkonu v obvodech s pulzně řízenými zdroji napětí Měření výkonu v obvodech s pulzně řízeným zdroj napětí doc. ng. Jaroslav Novák, CSc., ng. Martn Novák, Ph.D. ČV Praha, Fakulta strojní, Ústav přístrojové a řídcí technky V článku je věnována pozornost

Více

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje nastavíme synchronzac se sítí (označení LINE), což značí, že př kmtočtu 50 Hz bude počet záblesků, kterým osvětlíme hřídel, 3000 mn -1. Řízením dynamometru docílíme stav, kdy se na hřídel objeví tř nepohyblvé

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

Highspeed Synchronous Motor Torque Control

Highspeed Synchronous Motor Torque Control . Regulace momentu vysokootáčkového synchronního motoru Jaroslav Novák, Martn Novák, ČVUT v Praze, Fakulta strojní, Zdeněk Čeřovský, ČVUT v Praze, Fakulta elektrotechncká Hghspeed Synchronous Motor Torque

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran

Více

Přenosový kanál dvojbrany

Přenosový kanál dvojbrany STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Přenosový kanál dvojbrany PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol: Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

4 Parametry jízdy kolejových vozidel

4 Parametry jízdy kolejových vozidel 4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení techncké v Praze Fakulta bomedcínského nženýrství Úloha KA03/č. 4: Měření knematky a dynamky pohybu končetn pomocí akcelerometru Ing. Patrk Kutílek, Ph.D., Ing. Adam Žžka (kutlek@fbm.cvut.cz,

Více

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T. 7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras?

Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras? Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras? aneb zkušenosti s měřením tras a kalibrací přístrojů Martin Hájek, Karel Dvořák MIKROKOM s.r.o. Faktory ovlivňující naměřené výsledky

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra obecné elektrotechnky Fakulta elektrotechnky a nformatky, VŠB - T Ostrava 3. EEKTKÉ OBVODY STŘÍDAVÉHO POD rčeno pro posluchače všech bakalářských studjních programů FS 3.. Úvod 3.. Základní pojmy

Více

TEORIE ELEKTRICKÝCH OBVODŮ

TEORIE ELEKTRICKÝCH OBVODŮ TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl

Více

METODICKÝ NÁVOD. Analýza přenosových parametrů metalických vedení. Ing. Bc. Ivan Pravda, Ph.D.

METODICKÝ NÁVOD. Analýza přenosových parametrů metalických vedení. Ing. Bc. Ivan Pravda, Ph.D. METODICKÝ NÁVOD Analýza přenosových parametrů metalických vedení Ing. Bc. Ivan Pravda, Ph.D. AUTOR Ivan Pravda NÁZEV DÍLA Analýza přenosových parametrů metalických vedení ZPRACOVALO České vysoké učení

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

8a.Objektové metody viditelnosti. Robertsův algoritmus

8a.Objektové metody viditelnosti. Robertsův algoritmus 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn

Více

Určování parametrů elektrického obvodu v MS Excelu

Určování parametrů elektrického obvodu v MS Excelu XX. AS 003 Semnar nstrments and ontrol Ostrava May 6 003 47 rčování parametrů elektrckého obvod v MS Ecel OSÁG etr 1 SAÍK etr 1 ng. h.. Katedra teoretcké elektrotechnky-449 ŠB-T Ostrava 17. lstopad Ostrava

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

3.cvičen. ení. Ing. Bc. Ivan Pravda

3.cvičen. ení. Ing. Bc. Ivan Pravda 3.cvičen ení Úvod do laboratorních měřm ěření Základní měření PCM 1.řádu - měření zkreslení Ing. Bc. Ivan Pravda Měření útlumového zkreslení - Útlumové zkreslení vyjadřuje frekvenční závislost útlumu telefonního

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí Odraz a lom rovnné monochromatcké vlny na rovnném rozhraní dvou zotropních prostředí Doplňující předpoklady: prostředí č.1, ze kterého vlna dopadá na rozhraní neabsorbuje (má r r reálný ndex lomu), obě

Více

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia projekt GML Brno Docens DUM č. 16 v sadě 11. Fy-2 Učební materály do fyzky pro 3. ročník gymnáza Autor: Vojtěch Beneš Datum: 3.3.214 Ročník: 2A, 2C Anotace DUMu: Nestaconární magnetcké pole Materály jsou

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

Masarykova univerzita Ekonomicko správní fakulta

Masarykova univerzita Ekonomicko správní fakulta Masarykova unverzta Ekonomcko správní fakulta Fnanční matematka dstanční studjní opora Frantšek Čámský Brno 2005 Tento projekt byl realzován za fnanční podpory Evropské une v rámc programu SOCRATES Grundtvg.

Více

Přenos pasivního dvojbranu RC

Přenos pasivního dvojbranu RC Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání

Více

Interference na tenké vrstvě

Interference na tenké vrstvě Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

TRANZISTOROVÝ ZESILOVAČ

TRANZISTOROVÝ ZESILOVAČ RANZISOROÝ ZESILOAČ 301-4R Hodnotu napájecího napětí určí vyučující ( CC 12). 1. Pro zadanou hodnotu I C 2 ma vypočtěte potřebnou hodnotu R C a zvolte nejbližší hodnotu rezistoru z řady. 2. Zvolte hodnotu

Více

! Nebezpečí! Udává hrozící nebezpečí. Při neuposlechnutí tohoto varování hrozí smrt nebo možnost vážného zranění.

! Nebezpečí! Udává hrozící nebezpečí. Při neuposlechnutí tohoto varování hrozí smrt nebo možnost vážného zranění. Návod k použtí Art. 71ML český překlad Obsah: Pro Vaš bezpečnost. 2/13/1 Pops. 4/15/2 Techncká data. 5/16/3 Provozní pokyny.. 5/16/3 Péče a údržba 10/21/7 Lkvdace odpadu. 10/21/7 Řešení problémů 11/22/7

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE OBVODŮ I. Studijní opora. Jaromír Kijonka a kolektiv

Vysoká škola báňská Technická univerzita Ostrava TEORIE OBVODŮ I. Studijní opora. Jaromír Kijonka a kolektiv Vysoká škola báňská Techncká unverzta Ostrava TEOE OBVODŮ Studjní opora Jaromír Kjonka a kolektv Ostrava 7 ecenze: rof. ng. Josef aleček, Sc. Název: Teore obvodů Autor: Jaromír Kjonka a kolektv Vydání:

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra obecné elektrotechnky Faklta elektrotechnky a nformatky, VŠB - T Ostrava 3. ELEKTRCKÉ OBVODY STŘÍDAVÉHO PROD 3.1 Úvod 3.2 Základní pojmy z teore střídavého prod 3.3 Výkon střídavého prod 3.4 Pasvní

Více

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,

Více

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad:

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad: Elektroncký obvod skládá se obvodových součástek navájem pospojovaných vodč působí v něm obvodové velčny Příklad: část reálného obvodu schéma část obvodu Obvodové velčny elektrcké napětí [V] elektrcký

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Účinnost spalovacích zařízení

Účinnost spalovacích zařízení Účnnost spalovacích zařízení Účnnost je ukazatelem míry dokonalost transformace energe v zařízení. Jedná se o techncko-ekonomcký parametr. Vyjadřuje poměr mez energí využtou a energí přvedenou do zařízení,

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku

Více

11 Tachogram jízdy kolejových vozidel

11 Tachogram jízdy kolejových vozidel Tachogram jízdy kolejových vozdel Tachogram představuje znázornění závslost rychlost vozdel na nezávslém parametru. Tímto nezávslým parametrem může být ujetá dráha, pak V = f() dráhový tachogram, nebo

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody Měření základních materálových charakterstk propustnost řetězového fltru Mgr Radek Melch Př pozorování Slunce pomocí dvojlomných fltrů se většnou používá fltrů pevně naladěných na určtou zajímavou spektrální

Více

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ Energe z bomasy III semář Brno 2004 VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ ŘI OČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ avel Slezák V příspěvku je popsána jedna z varant přístupu k počítačovému modelování ohnšť. ozornost

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část

MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbran, část 3-12-1 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím ICT

Více

Specifikace, alokace a optimalizace požadavků na spolehlivost

Specifikace, alokace a optimalizace požadavků na spolehlivost ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 47. SEMINÁŘ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupny pro spolehlvost k problematce Specfkace, alokace a optmalzace

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU Rudolf Kampf ÚVOD Pro marketng, management a vůbec pro člověka je jstě důležté vědět, jak se bude vyvíjet stuace v ekonomce, stuace v určtém státě z hledska

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice.

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice. Fyzka bopolymerů Elektrostatcké nterakce makromolekul ve vodných roztocích Robert Vácha Kamence 5, A4 2.13 robert.vacha@mal.mun.cz Vodné roztoky ldské tělo se skládá z 55-75 % z vody (roztoků) většna roztoků

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Konstrukce zásobníkového automatu LALR(1)

Konstrukce zásobníkového automatu LALR(1) Konstrukce zásobníkového automatu LALR(1) Vlém Vychodl 5. lstopadu 2001 Tento text se zabývá technckým aspekty konstrukce významné třídy zásobníkových automatů určených pro determnstckou syntaktckou analýzu

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

Implementace bioplynové stanice do tepelné sítě

Implementace bioplynové stanice do tepelné sítě Energe z bomasy XVII, 13. 15. 9. 2015 Lednce, Česká republka Implementace boplynové stance do tepelné sítě Pavel MILČÁK 1, Jaroslav KONVIČKA 1, Markéta JASENSKÁ 1 1 VÍTKOVICE ÚAM a.s., Ruská 2887/101,

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC Vždy na Vaší straně Užvatelská příručka Thermolnk P Thermolnk RC OBSAH ÚVOD 1 Základní dokumentace... 3 2 Označení CE... 3 INSTALACE 3 Instalace zařízení... 3 3.1 Seznam balení... 3 3.2 Uchycení... 3 4

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULATION OF STABILITY LOSS OF SLENDER BEAM UNDER TORSION Petr Frantík Abstract Paper deals wth the stablty loss of straght shape of slender deal

Více