6.1 Shrnutí základních poznatků
|
|
- Lukáš Konečný
- před 8 lety
- Počet zobrazení:
Transkript
1 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice ve tvaru τ τ τ τ. (1) σ Prvk, a σ ležící na hlavní diagonále představují normálové složk napětí a prvk τ, τ, τ, τ, a ležící mimo hlavní diagonálu repreentují smkové složk napětí. Orientace uvedených složek a rovin, v nichž působí, jsou patrné obr. 1, na kterém je náorněn elementární hranolek vjmutý tělesa. τ τ τ τ τ τ τ σ Pro smkové složk napětí přitom platí tv. ákon sdružených smkových napětí, který le apsat ve tvaru τ = τ =, τ = = τ, τ = = τ. () τ To však namená, že původních 9 složek napětí σ τ τ bývá poue 6 růných složek, toho tři normálové,, σ a tři smkové τ, τ a. Prostorovou napjatost le také popsat jednodušeji pomocí tv. hlavních napětí σ 1, σ a σ 3 σ (σ 1 σ σ 3 ), což jsou normálová napětí působící v tv. hlavních rovinách. Hlavní rovinou Obr. 1: Element vjmutý tělesa. roumíme takovou rovinu v tělese, ve které je smková složka napětí nulová. Velikost hlavních napětí le určit podmínk ( σ i ) τ ( σ i ) τ τ τ (σ σ i ) = 0, pro i = 1,, 3, (3) kde i představuje inde příslušného hlavního napětí. Včíslením determinantu dostaneme kubickou rovnici pro výpočet tří hlavních napětí. Speciálními případ prostorové napjatosti jsou tv. jednoosá a rovinná napjatost. Danou napjatost onačíme a jednoosou, je-li poue jedna normálová složka napětí nenulová a všechn ostatní složk jsou nulové. V takovém případě hovoříme o prostém tahu či tlaku. 1
2 β α σρ 0 τ ρ δ ρ (a) (b) Obr. : Rovinná napjatost. V případě rovinné napjatosti leží všechn nenulové složk napětí poue v jedné rovině, všechn ostatní složk jsou nulové. S takovým případem napjatosti se často setkáváme při kombinovaném namáhání. Příkladem je např. napjatost v rovině náorněná na obr. (a) popsaná složkami napětí, a. Předpokládejme, že náme složk napětí, a popisující rovinnou napjatost v rovině. Potom velikost složek napětí σ ρ a τ ρ působících v rovině ρ, která je vůči rovině pootočena o úhel α (vi obr. (b)), určíme pomocí vtahů σ ρ = + τ ρ = + cos α + sin α, sin α cos α, (4) přičemž úhel α považujeme a kladný, směřuje-li proti směru otáčení hodinových ručiček. Rovnice (4) představují parametrické vjádření kružnice s parametrem α a se středem na ose σ v Mohrově rovině napětí στ. Tato kružnice se naývá Mohrova a pro případ > > 0 je náorněna na obr. 3. Geometrická interpretace vtahů (4) je náorněna do tohoto obráku pomocí trojúhelníka SAρ. Z uvedeného obráku vplývá, že každý bod kružnice představuje obra jedné rovin (v tomto případě rovin ρ) patřící do svaku rovin, který je určen průsečnicí rovin, v nichž působí složk napětí, a, v tomto případě osou. Dále je obr. 3 řejmé, že se úhl do Mohrov kružnice (diagramu) vnášejí s dvojnásobnou velikostí a se stejnou orientací v porovnání se skutečností (vi obr. (b) a obr. 3). Podle výše uvedeného le snadno provést vlastní konstrukci Mohrov kružnice (diagramu) na ákladě nalosti složek napětí, a. Do Mohrov rovin potom vneseme bod představující obra dvou navájem kolmých rovin β a δ (vi obr. (b)), jejichž poloha je dána velikostmi normálových a smkových složek napětí působících v těchto rovinách (vi všrafované trojúhelník SA β a SA δ v obr. 3). Znaménka smkových napětí přitom
3 τ III IV δ II 0 A S σ α A α A ρ τ ma τ ρ I σ σ >0 β <0 IV V <0 σ ρ σ 1 >0 Obr. 3: Konstrukce Mohrov kružnice. Obr. 4: Znaménka smkových složek napětí při vnášení do Mohrov rovin. vnášíme podle úmluv náorněné na obr. 4. Tato úmluva plne e druhého vtahu (4) a obr. (b) pro úhel α = 0. Dodržíme-li pravidlo pro naménko smkových napětí, bude smsl otáčení rovin ρ v elementu na obr. (b) shodný se smslem pohbu jejího obrau (bodu) na Mohrově kružnici na obr. 3. Bod I a II v obr. 3 představují obra hlavních rovin. Z obráku je řejmé, že v těchto rovinách působí etrémní (maimální a minimální) napětí - hlavní napětí σ 1 > σ. Pokud OS onačíme vdálenost středu Mohrov kružnice od počátku souřadnicového sstému στ a R poloměr Mohrov kružnice, le velikosti těchto napětí stanovit podle vtahu (σ σ 1, = OS ± R = + ± ) + τ. (5) Z Mohrova diagramu můžeme dále také určit polohu hlavních rovin vhledem k rovině β či δ. Rovina I s napětím σ 1 je například od rovin β natočena o úhel φ (v Mohrově kružnici o úhel φ) proti směru hodinových ručiček, jehož velikost určíme pravoúhlého trojúhelníka SA β v obr. 3 jako tan φ = φ = 1 ( arctan τ ). (6) 3
4 Dalšími charakteristickými bod na Mohrově kružnici jsou bod IV a V (vi obr. 3). Tto bod představují obra rovin, v nichž působí stejně velká normálová napětí σ s a maimální smková napětí τ ma, pro jejichž velikost platí σ s = + a τ ma = (σ ) + τ. (7) Mohrovu kružnici le sestrojit i pro prostorovou napjatost. V takovém případě pak hovoříme o tv. Mohrově diagramu, který se skládá e tří Mohrových kružnic. Příklad takového Mohrova diagramu pro prostorovou napjatost popsanou hlavními napětími σ 1, σ a σ 3, pro která platí σ 1 > σ > σ 3 > 0, je náorněn na obr. 5. Bod I, II a III pak repreentují obra hlavních rovin. τ σ σ 3 τ ma 0 III II I σ σ σ 1 Obr. 5: Mohrův diagram pro prostorovou napjatost. Vtah mei složkami napětí a deformace při prostorové a rovinné napjatosti Vtah mei složkami napětí a deformace je v teorii pružnosti popsán tv. Hookeovým ákonem. V případě prostorové napjatosti le tento ákon apsat v obecněném tvaru ε = 1 E [ µ( + σ )], γ = 1 G τ, ε = 1 E [ µ( + σ )], γ = 1 G τ, (8) ε = 1 E [σ µ( + )], γ = 1 G, kde E [MPa] představuje modul pružnosti v tahu (tv. Youngův modul), µ [-] je Poissonovo číslo a G [MPa] je modul pružnosti ve smku. Mei těmito konstantami platí vtah E G = (1 + µ). (9) 4
5 Vhledem k tomu, že rovinná napjatost je speciálním případem napjatosti prostorové, le podobu Hookeova ákona pro tuto napjatost snadno odvodit e vtahů (8). Pro rovinnou napjatost v rovině potom platí ε = 1 E ( µ ), ε = 1 E ( µ ), γ = 1 G. (10) Inverí vtahů (10) pak dostáváme příslušné vtah pro složk napětí = E 1 µ (ε + µε ), = E 1 µ (ε + µε ), = G γ. (11) Teorie pevnosti (hpoté) - podmínk pevnosti V případě jednoosé napjatosti či napjatosti prostého smku má podmínka pevnosti jednoduchý tvar (blíže vi kapitola Tah (tlak) a Krut). Jedná-li se o složitější napjatost (rovinnou či prostorovou) je situace komplikovanější, protože chování materiálu ovlivní všechn složk napětí. Pro řešení uvedeného problému bla navržena růná kritéria a pro vjádření potřebné mechanické vlastnosti materiálu se vcháí jednoosé napjatosti, na kterou se pohlíží jako na vláštní případ napjatosti prostorové σ 1 = σ 0, σ = σ 3 = 0. Závislost mei těmito veličinami, kd b nastala porucha, le obecně vjádřit ve tvaru f(σ 1, σ, σ 3, R mt, R md ) = 0, (1) kde R mt je pevnost materiálu v tahu a R md pevnost v tlaku. Pro ajištění spolehlivého provou součásti je potřeba abepečit, že k uvedenému menímu stavu nedojde. Proto, jak již blo uvedeno u prostého tahu - tlaku (jednoosá napjatost), se avádí součinitelé bepečnosti k k > 1 vůči mei kluu a k p > 1 vůči mei pevnosti. Přípustná (dovolená) napětí le potom pro tvárné materiál vjádřit ve tvaru σ D = σ k k k, (13) kde σ k = Re pro materiál s výranou meí kluu a σ k = R p 0. pro materiál se smluvní meí kluu. Pro křehké materiál, pro které platí R mt < R md, jsou dovolené hodnot napětí definován vtah σ Dt = R mt k p a σ Dd = R md k p. (14) Pevnostní podmínk se vájemně liší podle toho, jakého předpokladu vcháejí. Na ákladě toho se obecná napjatost vjádří pomocí ekvivalentního napětí tv. redukovaného napětí σ red. Eistuje řada podmínek pevnosti, které jsou definován pro tvárný nebo křehký materiál. Zde uvedeme poue tři nejužívanější. 5
6 Podmínk pevnosti pro tvárné materiál: 1. Teorie (hpotéa) pevnosti podle maimálního smkového napětí - tv. Guestova hpotéa. Podle této teorie rohoduje o pevnosti součásti velikost maimálního smkového napětí. Pevnostní podmínku le obecně apsat ve tvaru což le přepsat do tvaru σ D σ i σ j σ D, kde i, j = 1,, 3, (15) σ red σ D. (16) Redukované napětí σ red v (16) le přitom podle této hpoté vjádřit jako σ red = σ 1 σ 3 = τ ma, (17) kde σ 1 je největší a σ 3 nejmenší hlavní napětí. Zde je potřeba dát poor u rovinné napjatosti, při které jsou obě hlavní napětí σ 1, σ stejného naménka. Protože o pevnosti rohoduje maimální smkové napětí, je nutné rovinnou napjatost chápat jako speciální případ napjatosti prostorové, tj. třetí hlavní napětí je σ 3 = 0 a pomocí toho pak správně určit σ red podle rovnice (17). V případě rovinné napjatosti dané dvěma složkami normálových napětí a jednou smkovou složkou (např., a ) bude velikost redukovaného napětí rovna σ red = ( ) + 4τ. (18). Teorie pevnosti podle hustot deformační energie na měnu tvaru - tv. hpotéa HMH (Huber-Mises-Henck). Podle této teorie rohoduje o pevnosti součásti velikost deformační energie na měnu tvaru. Pevnostní podmínku le opět apsat ve tvaru σ red σ D, (19) kde velikost redukovaného napětí σ red určíme jako σ red = σ1 + σ + σ3 (σ 1 σ + σ σ 3 + σ 3 σ 1 ), (0) nebo σ red = σ + σ + σ ( + σ + σ ) + 3 ( τ + τ + τ ). (1) V případě rovinné napjatosti dané např. složkami, a se vtah pro σ red redukuje na σ red = σ + σ + 3τ. () Redukované napětí určené dle této hpoté je v literatuře velmi často onačováno jako tv. Misesovo napětí (von Mises stress). 6
7 Podmínk pevnosti pro křehké materiál: 1. Mohrova hpotéa pevnosti. Tuto podmínku le apsat ve tvaru σ red σ Dt, (3) Hodnotu redukovaného napětí σ red přitom obecně stanovíme jako σ red = σ 1 ρσ 3, (4) kde konstantu ρ určíme v případě rodílných součinitelů bepečnosti v tahu a v tlaku jako ρ = σ Dt σ Dd. (5) Pokud uvažujeme stejné součinitele bepečnosti, přecháí vtah (5) do podob ρ = R mt R md. (6) Při posuování rovinné napjatosti pomocí této hpoté je nutné, stejně jako u Guestov hpoté, chápat danou napjatost jako prostorovou a správně tak určit maimální a minimální hlavní napětí. 7
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Z hlediska pružnosti a pevnosti si lze stav napjatosti
S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa
7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá
Normálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Rovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ
Podmínka plasticit rovnice popisující všechn stav napětí, které vedou k plastickému přetváření materiálu. ednoosá napjatost charakteriovaná jedinou složkou normálového napětí. Podmínka plasticit: nebo
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Přímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
3.1 Shrnutí základních poznatků
3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI
ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném
Vícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
Systém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Kap. 3 Makromechanika kompozitních materiálů
Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
Téma 10 Úvod do rovinné napjatosti
Pružnost a plasticita,.ročník bakalářského studia Téma 0 Úvod do rovinné napjatosti Složk napětí v šikmém řezu při rovinné napjatosti Hlavní napětí a největší smkové napětí Trajektorie hlavního napětí
MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
150 KAPITOLA 7. STĚNA ROVINNÁ NAPJATOST
150 KAPITOLA 7. STĚNA ROVINNÁ NAPJATOST pořádku, protože toto napětí vzniká na ploškách s normálou x, tj. na svislých ploškách, které v daném případě neleží na hranici stěny, ale oddělují elementární dílky
Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky
Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
EXPERIMENTÁLNÍ MECHANIKA 2. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 4. přednáška Jan Krystek 15. března 2018 ODPOROVÁ TENZOMETRIE Elektrická odporová tenzometrie je nepřímá metoda. Poměrné prodloužení je určováno na základě poměrné změny elektrického
Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
1.6 Singulární kvadriky
22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá:
Fika I mechanika Úvod Základní fikální pojm Fika (fsis je řeck příroda) bla původně vědou o přírodě, ted souhrnem všech přírodních věd, které se s postupem dějin osamostatnil. Fika si však achovává ústřední
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
Obr. 0.1: Nosník se spojitým zatížením.
Každý test obsahuje jeden příklad podobný níže uvedeným tpovým příkladům a několik otázek vbraných z níže uvedených testových otázek. Za příklad je možno získat maimálně bodů, celkový počet bodů z testu
Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka
1 Diferenciální počet funkcí dvou proměnných 1 Výnačné bod a množin bodů v prostoru Souřadnicová soustava v prostoru Každému bodu v prostoru přiřaujeme v kartéské souřadnicové soustavě uspořádanou trojici
Části a mechanismy strojů 1 KKS/CMS1
Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A3 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :
Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,
Pevnost kompozitů obecné zatížení
Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní
Rovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. DOC. ING. ZDENĚK KALA, Ph.D. ING. JIŘÍ KALA, Ph.D. PRUŽNOST A PEVNOST MODUL BD02-M03
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FKULT STVEBNÍ DOC. ING. ZDENĚK KL, Ph.D. ING. JIŘÍ KL, Ph.D. PRUŽNOST PEVNOST MODUL BD0-M0 SLOŽENÉ PŘÍPDY NMÁHÁNÍ PRUTU STBILIT VZPĚRNÁ PEVNOST TLČENÝCH PRUTŮ STUDIJNÍ OPORY
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
Souřadnicové výpočty. Geodézie Přednáška
Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Winklerovo-Pasternakovo dvouparametrické podloží
Winklerovo-Pasternakovo dvouparametrické podloží Řešení pružné vrstvy ve Westergardově duchu se řídí podmínkou rovnováhy ve směru gravitace směr osy : w w ( ) + ρgψ d () Výčet použitých symbolů následue:
6 Pohyb částic v magnetickém poli
Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova
Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:
7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.
.. HYPERBOLOIDY 71 Kvadratiká ploha, jejíž rovnie je a + b + = 1,.3 se naývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme rovnie.3, neobsahuje žádný reálný bod.. Hperboloid Hperboloid
Integrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Příloha č. 1. Pevnostní výpočty
Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.
trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.
Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě