PŘESNÁ MĚŘENÍ AKTIVNÍCH ELEKTRICKÝCH VELIČIN

Rozměr: px
Začít zobrazení ze stránky:

Download "PŘESNÁ MĚŘENÍ AKTIVNÍCH ELEKTRICKÝCH VELIČIN"

Transkript

1 PŘESNÁ MĚŘENÍ AKTIVNÍCH ELEKTRICKÝCH VELIČIN

2 Měření elektrického proudu 2

3 Proudové váhy I I I I C1 C2 C3 C 1 C 2 C 3 C 2 C 3 M C1 C3 13 F I I I f z μμ0 dσ1dσ2 M 13 4π a C1 C3 13 M F I I I f z C2 C3 23 f f f F F F f I

4 Proudové váhy ASMW R n U n R R 6 Ω, R 5 Ω C1 C2 C3 4

5 Manipulace s proudovými vahami Váhy se vyrovnají při takovém smyslu proudu v zavěšené cívce, že elektromagnetická ti ká síla působí na tuto cívku směrem dolů. Změní se smysl proudu v zavěšené cívce a provede se nové nastavení rovnovážného stavu zvýšením hmotnosti závaží na pravé misce vah o m. Změna F v silovém působení mezi cívkami vah je pak rovna změně v silovém působení závaží na pravé misce: 2 1 Δ mg. ΔF 4 f I Δ m. g I 2 f 5

6 Výpočet č thodnoty f z geometrických rozměrů ě ů lze obejít tak, že se provede další experiment, při němž se zavěšenou cívkou, kterou nyní neprochází žádný proud, pohybuje ve vertikálním směru rychlostí v. V cívce se přitom indukuje napětí M M z M u t 2I 13 2I 13 2 vi 13. t z t z V případě, že se v okamžiku průchodu vahadla rovnovážnou polohou toto napětí rovná úbytku U, který vytváří proud I na odporu známé hodnoty R, platí M13 M13 R 2 vi RI f. z z 2v 6

7 Elektronický kilogram Hmotnost závaží sloužícího k uchovávání jednotky hmotnosti se stanoví obráceným použitím proudových vah se známou hodnotou f. Rovnovážného stavu se tentokrát dosáhne vhodným nastavením proudu I,jehož hodnota se následně vypočte z napětí U, vytvářeného tímto proudem na odporu známé hodnoty R. Přesné změření hodnot U a R, potřebných pro výpočet, se provede navázáním na kvantové etalony napětí a odporu. 7

8 Měření elektrického napětí 8

9 Měření stejnosměrného ě napětí 9

10 Napěťové váhy Založeny na silovém působení mezi elektrodami kondenzátoru, k němuž je připojeno měřené napětí U. F 1 2 C z 2 U z Elektrody mohou být např. kruhového tvaru nebo válcové. C/ z se počítá buď přímo z geometrických rozměrů elektrod, nebo z naměřené závislosti C na z. 10

11 Josephsonův kompenzátor G U E 1,019 V G ZPP U n1 10,19 mv I 1mA R R δ R s δ 2 I 101δ Rp2 101δ2 s1 1 p1 1 U R E s1 U R n1 p2 11

12 Po vzájemném prohození Hamonových etalonů rovnováha nastává pro UE Un2. R R s2 p1 U U U R R U 1δ 1δ p2 p1 2 1 n1 n2 E 001 0,01 E Rs1 R s2 1δ1 1δ UE δ1 δ2 δ1 δ2 δδ 1 2 1δ 1δ 12δ δ 12δ δ 001 0,01 UE 0, δ 2δ 1δ δ ,01 UE 0, UE 1 2 U 50 U U E n1 n2 12

13 Testovaný etalon D Mikrovlnný zdroj Filtr Pole Josephsonových kontaktů Kalibrace elektronického referenčního etalonu napětí Filtr Číslicový voltmetr Napěťový zdroj 13

14 Měření střídavého napětí 14

15 Měření efektivní hodnoty napětí voltmetrem Požaduje-li se vyšší přesnost měření, než odpovídá třídě přesnosti použitého voltmetru, lze jí zpravidla dosáhnout tímto postupem: Voltmetr se připojí k měřenému napětí efektivní hodnoty U x a zaznamená se jeho výchylka α x. Voltmetr se připojí k regulovatelnému stejnosměrnému napětí, jehož hodnota U r se nastaví tak, aby pro odpovídající výchylku α r platilo α r = α x. Potom je U x = U r. 15

16 Napěťový komparátor se dvěma termoel. měniči 16

17 Ochrana termoelektrických měničů 17

18 Měření výkonu a práce střídavého elektrického proudu 18

19 Definice výkonů V případě, že napětí na zátěži u(t) a proud procházející touto zátěží i(t) jsou periodicky proměnné veličiny s periodou T, zátěž odebírá činný ý výkon T 1 P u t i t dt T 0 který představuje množství energie dodané do zátěže za jednotku času. Čistě sinusové průběhy napětí a proudu: P U I cos φ kde U a I jsou efektivní hodnoty napětí a proudu a φ je fázový posun napětí proti proudu. 19

20 Hodnota, které by činný ý výkon P nanejvýš mohl dosáhnout, kdyby napětí a proud nebyly navzájem fázově posunuty (cos φ = 1), se nazývá zdánlivý výkon a platí pro něj S U I Podle velikosti zdánlivého výkonu se musí dimenzovat elektrické stroje i zařízení rozvodu elektrické energie. Dále platí S P Q kde Q U Isinφ je tzv. jalový výkon, který je mírou střídavého přelévání energie mezi zdrojem a energetickými zásobníky zátěže (indukčnostmi a kapacitami). 20

21 I v případě, že periodické průběhy napětí a proudu nejsou sinusové, se zdánlivý výkon S počítá ze vztahu S U I kam se za efektivní hodnoty napětí a proudu dosazuje 2 2 n a n n1 n1 U U I I kde U n a I n jsou n-té harmonické napětí a proudu. Pro činný výkon platí P U I cos φ n1 n n n kde φ n je fázový posun n-té harmonické napětí proti n-té harmonické proudu. 21

22 Pokud jde o výkon jalový, v současné době je možno se setkat s celou řadou jeho různých definic, navržených různými autory. Definice jalového výkonu navržená C. I. Budeanem : n1 Q B U I sin φ n n n kde S P Q D Q B B D S P Q B B je tzv. deformační výkon, který nabývá nulové hodnoty při čistě sinusových průbězích napětí a proudu. 22

23 Návrh Pracovní skupiny IEEE pro nesinusové situace : Označíme-li efektivní hodnoty základních harmonických napětí a proudu U 1 a I 1, můžeme napsat a U U U U U H 1 n n1 I I I I I H 1 n n1 kde U n a I n, n 1, jsou efektivní hodnoty ostatních harmonických. Vynásobením těchto to vztahů ů dostáváme á ( U I) ( U I ) ( U I ) ( U I ) ( U I ) H H 1 H H 23

24 Součin U 1 I 1 se nazývá fundamentální zdánlivý výkon a platí pro něj U I S P Q U I cos φ U I sinφ kde P 1 je fundamentální činný výkon a Q 1 je fundamentální jalový výkon. Pomocí tří zbývajících členů ve vztahu pro (U I ) 2 je definován tzv. nefundamentální zdánlivý výkon, pro který platí S ( U I ) ( U I ) ( U I ) S S N 1 H H 1 H H 1 Konečně návrh obsahuje definici tzv. neaktivního výkonu N S P 24

25 Résumé : Zatímco činný a zdánlivý výkon jsou pro nesinusové průběhy proudu a napětí definovány jednoznačně, definic jalového výkonu existuje celá řada. Přitom je třeba mít na paměti, že měřicí algoritmy vycházející zrůzných definic mohou při měření stejného jalového výkonu dávat značně č ě rozdílné výsledky. 25

26 Využití elektrodynamometru při měření výkonu a práce střídavého elektrického proudu i i I c1 1 1 i i I c2 2 2 m p i i c1 c2 dm dα M m i i p p c1 c2 1 T mp mpdt T 0 1 T ic1ic2 ic1ic2dt T 0 dm dα 26

27 m i I i I p dm d α m 0 i I i I 0 p α 0 ii I I i u R, I U 2 2 Ur R ui i, U RI R 1 v 1 P uuui I1I2 Uv 27

28 Využití termoelektrických měničů při měření výkonu a práce střídavého elektrického proudu Pro ii 12 2 I je i i 2 i i I Př do polohy 1, při I p = 0 se změří napětí U t. 2. Př do polohy 2, proud I p se nastaví tak, aby napětí U t mělo stejnou hodnotu, jako v předchozím případě. Potom t 2 U uuui P 28

29 u U R R U v R R + Z1 TM2 + Z2 R TM1 R R u I + R Z3 2 2 U k u u u u 4k u u P v U I U I U I 29

30 Využití násobičky při kalibraci statického etalonového elektroměru ě u ux Ur uu Ur k ir uy Ur ui Ur k U I b 30

31 Rui Ri u i cu u c U U b b 2 m x y r r k Uk I ki k U i m i m cu RP k k I 2 b r U Ukk 0 P R 2 r U I Pokud je ve dvou různých časových okamžicích t 1 a t 2, t 2 > t 1, výchylka voltmetru V stejná, je t 1 2 imdt 0 t t 2 2 t 1 a elektroměr ě by měl v časovém é intervalu t 1 až t 2 naintegrovat práci 2 Ukk r U I A t t b R b

32 Kalibrační zařízení PTB: proudové rozsahy : 1 2 2, A napěťové rozsahy : 100/ V účiníky : 1 0,8 0,5 0,25 chyba : cca % (vztaženo ke zdánlivé energii) minimální i počet č načítaných impulzů ů z elektroměru ě :

33 Výpočet činného výkonu z okamžitých hodnot napětí a proudu získaných vzorkováním Napětí u(t) ( ) a proud i(t) ( ), které jsou periodicky proměnné a mají periodu T, jsou současně vzorkovány v okamžicích m t l p T n kde l = 0, 1,, n-1 a m > 1, n > 0 jsou celá čísla. To znamená, že první pár vzorků je odebrán v čase t = 0, v časovém intervalu délky mt je odebráno n párů vzorků a platí utl utl n i t l i t l n 33

34 Pokud jsou čísla m a n nesoudělná, odebrané páry tvoří soubor, který je až na pořadí párů identický se souborem, který by byl získán při vzorkování napětí a proudu pouze v průběhu první periody v okamžicích q tq T, q01 0,1,, n 1 n Nespornou výhodou vzorkování v časových ý okamžicích t l (tzv. stroboskopické vzorkování) přitom je, že vzorkovací kmitočet, který odběrům vzorků v těchto okamžicích odpovídá, je m-krát nižší, než by byl kmitočet, odpovídající odběrům vzorků v okamžicích t q. 34

35 Z hodnot u(t( l ) a i(t( l ) získaných vzorkováním můžeme přibližně vypočíst hodnotu činného výkonu mt mt 1 1 P p t d t u t i t d t mt mt např. pomocí vztahu 0 0 n1 ˆ mt P ut0 it0 utl itl utn itn mt 2 l1 2 n n1 n1 1 1 utl itl ptl n n l 0 l 0 který vychází ze složeného Newtonova-Cotesova vzorce 1. řádu (lichoběžníkové pravidlo) pro numerickou kvadraturu. 35

36 t p t PPksin2πk φk k1 T * k0 Δ P Pˆ P P k Označení sumačního symbolu hvězdičkou znamená, že se sčítají jen harmonické s kmitočty rovnými celistvým násobkům vzorkovacího kmitočtu. 36

5. MĚŘENÍ PROUDU, NAPĚTÍ a VÝKONU EL. PROUDU

5. MĚŘENÍ PROUDU, NAPĚTÍ a VÝKONU EL. PROUDU 5. MĚŘEÍ PROD, PĚTÍ a VÝKO EL. PROD Měření proudu a napětí: etalony, referenční a kalibrační zdroje (včetně principu pulsně-šířkové modulace) měření stejnosměrného napětí: přehled možností s ohledem na

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Elektrický proud (1) lab

Elektrický proud (1) lab Elektrický proud Elektrický proud je jedinou elektrickou veličinou, jejíž jednotka patří mezi základní jednotky mezinárodní soustavy jednotek SI. V této situaci je poněkud paradoxní, že metrologické laboratoře

Více

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud Elektrický výkon v obvodu se střídavým proudem Účinnost, účinník, činný a jalový proud U obvodu s odporem je U a I ve fázi. Za předpokladu, že se rovnají hodnoty U,I : 1. U(efektivní)= U(stejnosměrnému)

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Výkon v obvodu

Více

Harmonický průběh napětí a proudu v obvodu

Harmonický průběh napětí a proudu v obvodu Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,

Více

2. ANALOGOVÉ MĚŘICÍ PŘÍSTROJE

2. ANALOGOVÉ MĚŘICÍ PŘÍSTROJE 2. ANALOGOVÉ MĚŘCÍ ŘÍSOJE magnetoelektrické ústrojí: princip, pohybový moment, zapojení mgel. V-metru a A- metru - magnetoelektrické měřicí ústrojí s usměrňovačem (základní zapojení, co měří, kmitočtová

Více

3. Měření efektivní hodnoty, výkonu a spotřeby energie

3. Měření efektivní hodnoty, výkonu a spotřeby energie 3. Měření efektivní hodnoty, výkonu a spotřeby energie přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elektrická měření

Více

Energetická bilance elektrických strojů

Energetická bilance elektrických strojů Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU

ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU ANALÝZA PNUS, EFEKIVNÍ HODNOA, ČINIEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU EO Přednáška 4 Pavel Máša X3EO - Pavel Máša X3EO - Pavel Máša - PNUS ÚVODEM Při analýze stejnosměrných obvodů jsme vystačili

Více

Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C

Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C List 1 z 19 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C 1. Napětí stejnosměrné

Více

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ . MĚŘEÍ SŘÍDAVÉHO PROD A APĚTÍ Měření střídavého napětí a proudu: přehled použitelných přístrojů a metod měření Měřicí transformátory ( i, náhradní schéma, zapojení, použití, chyby) Číslicové multimetry

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D17_Z_OPAK_E_Stridavy_proud_T Člověk a příroda Fyzika Střídavý proud Opakování

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Měření frekvence a času

Měření frekvence a času Radioelektronická měření (MREM, LREM) Měření frekvence a času 7. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Tyto dvě fyzikální veličiny frekvence a čas jsou navzájem svázány.

Více

Profilová část maturitní zkoušky 2016/2017

Profilová část maturitní zkoušky 2016/2017 Tematické okruhy a hodnotící kritéria Střední průmyslová škola, 1/8 ELEKTRONICKÁ ZAŘÍZENÍ Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2016/2017 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý ě ú ě ú Ž Ž ú ř ě ě ř ů ů ů ř ů ů ě ě ř ů ú ů ř ů ů ř ů ů ř ě ú ř ě ě úř ř ě ÚČ Č ě ě ř Ž Č ě ú ř ř ě Ř ř Ň É ŘÍ ň ř ň ů ř ú ř ě ř ú ů ř Ů ř ř ě Ý ř Ě É ě ř š ě ú š ě ě š ě ú ů š ě ů ň ř Ý ř ř ě Á Í ě

Více

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry...

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry... Měření trojfázového činného výkonu Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Vznik a přenos třífázového proudu a napětí................ 3 2.2 Zapojení do hvězdy............................. 3 2.3 Zapojení

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

5. MĚŘENÍ PROUDU, NAPĚTÍ a VÝKONU EL. PROUDU

5. MĚŘENÍ PROUDU, NAPĚTÍ a VÝKONU EL. PROUDU 5. MĚŘEÍ ROD, ĚÍ a VÝKO EL. ROD Měření proudu a napětí: etalony, referenční a kalibrační zdroje (včetně principu pulsně-šířkové modulace) měření stejnosměrného napětí: přehled možností s ohledem na velikost

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 3. 4. 2014

Více

( ) C ( ) C ( ) C

( ) C ( ) C ( ) C 1. 2. Jaderná elektrárna Temelín, 373 05 Temelín Obor měřené veličiny: Teplota Kalibrace: Nominální teplota pro kalibraci: (23±3) C Nominální teplota mimo prostory laboratoře: (-10 až 50) C 1) Měřená veličina

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 25. 3. 2014

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Transformátory deální transformátor r 0; 0 bez rozptylu mag. toků 0, Φ Φmax. sinωt ndukované napětí: u i N d N dt... cos t max imax N..f. 4,44..f.N d ui N i 4,44. max.f.n

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ TROJE TOČIVÉ Určeno pro posluchače bakalářských studijních programů F ynchronní stroje Ing. Vítězslav týskala h.d. únor 00 říklad 8. Základy napětí a proudy Řešené příklady Třífázový synchronní

Více

VÝKON ELEKTRICKÉHO PROUDU, PŘÍKON

VÝKON ELEKTRICKÉHO PROUDU, PŘÍKON VÝKON ELEKTRICKÉHO PROUDU, PŘÍKON výkon P užitečná práce příkon P0 skutečná práce účinnost udává se v procentech Je-li mezi koncovými body vodiče napětí U a prochází-li jím stálý proud I, jenpříkon roven

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,

Více

úě č é úř ě ě ě ý ů š ý úř ů ý é Č ř é ě ž ý úř Ú ý ř ů é č ý úř ů ř é úř Ú é Ř ý ú ě ý ú ý úř ě ě č ú ě ý ů ě é ě ě é é ě š ř ů č ř é é š ř ů ř ě č ě

úě č é úř ě ě ě ý ů š ý úř ů ý é Č ř é ě ž ý úř Ú ý ř ů é č ý úř ů ř é úř Ú é Ř ý ú ě ý ú ý úř ě ě č ú ě ý ů ě é ě ě é é ě š ř ů č ř é é š ř ů ř ě č ě ř ý úř Ř Č ý ý úř ý č ř ě Í Í Č č ř ň š ř Í ý úř ý ýúř ý č ř ě ř š ý úř é é úř ě ě ě ý ů č ý ú ý úř ě ě č Í ú ě ý ů ů ě é ě ě é ě ě š ř ů č Í ě é š ř ů ů Ž ý ú ú ř ý č ú ž ý é ň ě é š ý úř ě ě ý ú ý ř

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

ř ř ř ď úř ř é ě ě ř ř ř ř š ě š ř ě ř ě ě š ř ů ť ě ě ě ř é ž ž ě ř Ž ž ó é š ě ř ě ř ě ř é é Ž ě ř ě ó ú é ě ě ů ěš é úř úř é ú ě žš é ú ě ú ů ěš

ř ř ř ď úř ř é ě ě ř ř ř ř š ě š ř ě ř ě ě š ř ů ť ě ě ě ř é ž ž ě ř Ž ž ó é š ě ř ě ř ě ř é é Ž ě ř ě ó ú é ě ě ů ěš é úř úř é ú ě žš é ú ě ú ů ěš ě ú Ž ě Č ú ů ě ř ů Ú ěř ě ě ř ů ů š é ě é Ž Ť é ď ř ě é ř ř ě ř ě ř ů ů ž ě ů ě ř ř ř š é ř é Ú ř š Í ď ů ř ú ě é úř Ž ě ů ěž é ú Č ř ů ú Č š ě é é é ř ů ú ů ů ř é ú ě š ř é ě ž ů é ě ě ž é é řď š ř ě

Více

č č Ť ď

č č Ť ď č č Ť ď Ě č úň č Ť Í Ť Ť Ť č Ť č ď č Ť Ů č Í ť Ó Í č č Ú ň č Í ď Í č Í ď č ď Ť č Ť Ť Ť ň Ť ď ď Ť Ú č č Ť č Ě č Ý Í ň č Ť Í ď úť Ť č Ť Ú ň Ť č Ť Ť Í Ť Ť ď Ť č Ů ň Ť č Ť Í Ť Í Ť ň ů Ú Ú ď ú Ó ď č Ó ú ň č

Více

Laboratorní cvičení č.11

Laboratorní cvičení č.11 aboratorní cvičení č.11 Název: Měření indukčnosti rezonanční metodou Zadání: Zjistěte velikost indukčnosti předložených cívek sériovou i paralelní rezonační metodou, výsledek porovnejte s údajem zjištěným

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ Třída: A4 Školní rok: 2010/2011 1 Vlastnosti měřících přístrojů - rozdělení měřících přístrojů, stupnice měřících přístrojů, značky na stupnici - uložení otočné

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

6. ÚČINKY A MEZE HARMONICKÝCH

6. ÚČINKY A MEZE HARMONICKÝCH 6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 5. ELEKTRICKÁ MĚŘENÍ

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 5. ELEKTRICKÁ MĚŘENÍ Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTRICKÁ MĚŘENÍ 5.1 Úvod 5. Elektrické měřící přístroje 5.3 Měření elektrických veličin 5.4 Měření neelektrických veličin

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU. Katedra elektrotechniky Fakulta elektrotechniky a informatiky VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM ANSFORMÁTORU Návod do měření Ing. Václav Kolář Ing. Vítězslav Stýskala Leden 997 poslední úprava leden

Více

é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě

é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě ě ž ůč ý ř ď ř é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě ř ě ř ř ř ě ř ř ú ř ř ě é ú ý ú ů ě ě š ř ů ě ř ů

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

TEORIE ELEKTRICKÝCH OBVODŮ

TEORIE ELEKTRICKÝCH OBVODŮ TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

1 ELEKTRICKÉ STROJE - ZÁKLADNÍ POJMY. 1.1 Vytvoření točivého magnetického pole

1 ELEKTRICKÉ STROJE - ZÁKLADNÍ POJMY. 1.1 Vytvoření točivého magnetického pole 1 ELEKTRICKÉ STROJE - ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak jde vytvořit točivé magnetické pole, co je výkon a točivý moment, jaké hodnoty jsou na identifikačním štítku stroje, směr otáčení, základní

Více

Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení

Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení Jiří Holoubek, ELCOM, a. s. Proč správně kompenzovat? Cenové rozhodnutí ERÚ č. 7/2009: Všechny regulované ceny distribučních služeb platí

Více

Simulační model a identifikace voice coil servopohonu

Simulační model a identifikace voice coil servopohonu Simulační model a identifikace voice coil servopohonu Tomáš Hladovec Prezentace diplomové práce 2.9.2014 1 / 48 Obsah Úvod Seznámení s voice coil motorem 1 Úvod Seznámení s voice coil motorem Magnetické

Více

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C 26. března 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná

Více

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C 5. října 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná

Více

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš Výstup RVP: Klíčová slova: pracovní list studenta RC obvody Vojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant kondenzátor, kapacita kondenzátoru, nestacionární děj, nabíjení, časová

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š Ú ú Č ř ě ě Č ř ěž ú Í ř ě ě ž ň řž ú Ú ě ř Í ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š ř Í ěž ú ř Š Š Í ř ř š ě Í Ž ň ř ě ň Í ř ě ř ř ě ě Í Í Í ě Í ř ě Í ř ěž Ú š Í ř ň ř ú ř Ž ú ř Ú

Více

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ Obor vzdělání: 2-41-M/01 Elektrotechnika (slaboproud) Forma vzdělávání: denní studium Ročník kde se předmět vyučuje: třetí, čtvrtý Počet týdenních vyučovacích hodin

Více

vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %

vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 % Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (,, 3, 4, 5, 7), I. Čáp (6).a) Předpokládáme-li impuls třecích sil puků o led vzhledem k velmi krátké době srážky za

Více

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (u stejnosměrných střední hodnota) a u střídavých efektivní hodnota napětí a kmitočet. Obr.

Více

š ř Ú ú ě ě ň ř ň ř ú ř š úř ě ú š š ě ú š š ě ú ó ě ě ů ě ř ú ě ú ě ňó ř ú Á Ó ř ř řš ř ú ú ě ň ř ě ů ň ř ě ř ř ě ř ě ě ř ř ě Ý ř Ý ě ř ř ě ú š ř ú ů ň ř ů ů ů ú š ě ÚÝ ň ú ú ú ř ě ě ě š Č ů úě ú ě ě

Více

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník... Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Elektromechanické měřicí přístroje

Elektromechanické měřicí přístroje Elektromechanické měřicí přístroje Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Materiál vznikl v rámci projektu ESF (CZ.1.07/2.2.00/07.0247),

Více

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu

Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu 5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet

Více

7 Měření transformátoru nakrátko

7 Měření transformátoru nakrátko 7 7.1 adání úlohy a) změřte charakteristiku nakrátko pro proudy dané v tabulce b) vypočtěte poměrné napětí nakrátko u K pro jmenovitý proud transformátoru c) vypočtěte impedanci nakrátko K a její dílčí

Více

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory ,Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 29. 11. 2013 Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti

Více

Frekvence. BCM V 100 V (1 MΩ) - 0,11 % + 40 μv 0 V 6,6 V (50 Ω) - 0,27 % + 40 μv

Frekvence. BCM V 100 V (1 MΩ) - 0,11 % + 40 μv 0 V 6,6 V (50 Ω) - 0,27 % + 40 μv Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) C 1. STEJNOSMĚRNÉ NAPĚTÍ generování BCM3751 0 mv 220 mv - 0,0010 % + 0,80 μv 220 mv 2,2 V - 0,00084 % + 1,2

Více

1. GPIB komunikace s přístroji M1T330, M1T380 a BM595

1. GPIB komunikace s přístroji M1T330, M1T380 a BM595 1. GPIB komunikace s přístroji M1T330, M1T380 a BM595 Přístroje se programují a ovládají tak, že se do nich z řídícího počítače pošle řetězec, který obsahuje příslušné pokyny. Ke každému programovatelnému

Více

9 V1 SINE( ) Rser=1.tran 1

9 V1 SINE( ) Rser=1.tran 1 - 1 - Experimenty se sériovou rezonancí LC (c) Ing. Ladislav Kopecký Pokud jste přečetli nebo alespoň prohlédli články zabývající se simulacemi LC obvodů, které mají představovat rezonanční řízení střídavých

Více

NÁVAZNOST EL. VELIČIN OD PRIMÁRNÍCH ETALONŮ K DMM A KALIBRÁTORŮM

NÁVAZNOST EL. VELIČIN OD PRIMÁRNÍCH ETALONŮ K DMM A KALIBRÁTORŮM NÁAZNOST EL. ELIČIN OD PRIMÁRNÍCH ETALONŮ K DMM A KALIBRÁTORŮM Ing. Jiří STREIT Laboratoř primární etalonáže ss a nf el. veličin ČMI OI Brno SOUSTAA SI Základní jednotka Ampér [ A ] Definice: Ampér je

Více

úě ě Č ě ň ě š ě ů ě ě ů ž ě š ě Ú ě ě š ů ú š ů ú ž ě

úě ě Č ě ň ě š ě ů ě ě ů ž ě š ě Ú ě ě š ů ú š ů ú ž ě ú Č ě ě ě Ý ú ě š ů ú ě úě ě Č ě ň ě š ě ů ě ě ů ž ě š ě Ú ě ě š ů ú š ů ú ž ě Ý ú ě ú Ů Ů š ě ů Ů Ú š É ú ů ú ě ň ň Č Ú ů Ů ů Č ň ě Ú ě ů Ú Á ň Č Ů ů ň ž ň ó ŮŮ š ňš Š Š Ť ě ú š ě ň ě Ů Ů ň ň Ď ň ň ó

Více

é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř

é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř Á É Ý ú é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř Á Ě Ýú é ě ú ě ě ř ů Ú ě ř ů ů ú ě ř ě ř ň é ř ř ň é ř ř é ř ř ř é ř ů ř ěž é ř é ů ř

Více

č ř š ě Č ě ř ě ů ě é ý ě ě ř ř š ř ř ě é Ů č ě ž ý ě ý ř ů ě ý é č ú ř é ě š ř ů š ě ř ž ř š úč š ň š ě ý úř ř ý é č é ý ř ů ě ý ěř é ý ě č ů ě ý ý č

č ř š ě Č ě ř ě ů ě é ý ě ě ř ř š ř ř ě é Ů č ě ž ý ě ý ř ů ě ý é č ú ř é ě š ř ů š ě ř ž ř š úč š ň š ě ý úř ř ý é č é ý ř ů ě ý ěř é ý ě č ů ě ý ý č ž ř ý č Č ó ř ý ě ě š ř ů ř é ž ř é ž ť č ý é č ě ý č Č ř ř Č č ř ě ř é ý é é úč č é ť č é é ěř ý ý ž ý ž ů ý é é ž ř ů ž ý ř ý č ě ů ě é č ý ř š ž ý ů ů ů ě ř ě ř é ě úř ž ě ů č č é č ř š ě Č ě ř ě ů

Více

METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN

METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN Milan Prášil Český metrologický institut Laboratoře primární metrologie E-mail: mprasil@cmi.cz Tato prezentace je spolufinancována Evropským sociálním fondem

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 5. ELEKTRICKÁ MĚŘENÍ

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 5. ELEKTRICKÁ MĚŘENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTRCKÁ MĚŘENÍ 5.1 Úvod 5. Elektrické měřící přístroje 5.3 Měření elektrických veličin 5.4 Měření neelektrických

Více

ZEL. Pracovní sešit. Základy elektrotechniky pro E1

ZEL. Pracovní sešit. Základy elektrotechniky pro E1 ZEL Základy elektrotechniky pro E1 T1 Základní pojmy v elektrotechnice: Základní jednotky soustavy SI: Základní veličina Značka Základní jednotky Značka Některé odvozené jednotky používané v elektrotechnice:

Více