vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %"

Transkript

1 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (,, 3, 4, 5, 7), I. Čáp (6).a) Předpokládáme-li impuls třecích sil puků o led vzhledem k velmi krátké době srážky za zanedbatelný, lze použít zákon zachování hybnosti, podle kterého Z rovnice () u v sinα sinβ vsinα usinβ 0 () vcosα + ucosβ v 0 () v u sinβ sinα 5,4. b) Dráha puku do zastavení s v a v, poměr drah fg s s v fg u fg v u ( ) sinβ 9,3. sinα c) Dosazením z rovnice () do rovnice () vcosα + v sinα sinβ cosβ v 0 vsin (α + β) v 0 sinβ Umocněním rovnic () a () a jejich sečtením sinβ v v 0 sin (α + β) v sin α vusinαsinβ + u sin β 0, v cos α + vucosαcosβ + u cos β v 0, 3 body a u v 0 sinα sin (α + β). v + u + uv (cosαcosβ sinαsinβ) v0. Úbytek kinetické energie bude E k mv 0 m ( u + v ) mvucos (α + β). Na teplo se tedy přeměnilo E k mvucos (α + β) sinαsinβcos (α + β) E k mv0 sin 0, ,85 % (α + β) 5 bodů.a) V rovnováze je součet všech sil, které na soustavu působí roven nule. Označíme-li tíhové síly válečků F G a F G a vztlakové síly F vz a F vz, platí F G + F vz F G + F vz, ρ π d 4 h 0g + ρ v π d 4 (h 0 a ) g ρ π d 4 h 0g + ρ v π d 4 (h 0 a ) g,

2 h 0 ρ + a ρ v h 0 ρ + a ρ v, ρ ρ a h 0 + a 7,0. ρ v b) Pro x 0 ; 3 se bude horní podstava levého válečku nacházet pod hladinou vody a spodní podstava pravého válečku nad hladinou vody. Pro složku F x platí F x F G + F vz F G ρ π d 4 h 0g + ρ v π d 4 h 0g ρ π d 4 h 0g π d 4 h 0g (ρ + ρ v ρ ) 0,85 N. Pro x ( 3 ; 7 ) se síla působící na soustavu mění: F x π d 4 h 0 (ρ ρ ) g + π d 4 ρ vg (h h ) π d 4 h 0 (ρ ρ ) g + π d 4 ρ vg (h 0 a x h 0 + a x) π d 4 h 00, 4ρ v g + π d 4 ρ vg (a a x) π d 4 h 0 (ρ ρ ) g + π d 4 ρ vg (a a x) π d 4 h 00, 4ρ v g + π d 4 ρ vg (0, 4h 0 x) π d 4 ρ vgx. () kde h h 0 a x je výška ponořené části levého válečku a h h 0 a + x výška ponořené části pravého válečku. Když horní podstava levého válečku dosáhne hladiny, začne se velikost vztlakové síly na levý váleček zmenšovat a poroste velikost vztlakové síly na pravý váleček. Velikost síly otáčející soustavou se bude zmenšovat a v okamžiku, kdy se horní podstava levého válečku nachází ve výšce a (x 0 ) nad hladinou, bude tato síla rovna nule. Protože se velikost vztlakové síly na levý váleček bude zmenšovat a naopak velikost vztlakové síly na druhý váleček zvětšovat, bude výsledná síla pohyb soustavy brzdit a její absolutní hodnota se bude zvětšovat, dokud se levý váleček úplně nevynoří a pravý váleček úplně neponoří (x 7 ). Pro x 7 ; 0 pak bude pro výslednou sílu platit: F x F G F vz F G ρ π d 4 h 0g ρ v π d 4 h 0g ρ π d 4 h 0g π d 4 h 0g (ρ ρ v ρ ) 0,437 N a při dalším pohybu už se její velikost měnit nebude. 4 body Závislost velikosti síly otáčející soustavou ve směru hodinových ručiček zapíšeme do tabulky a sestrojíme graf (viz obr. R).

3 x h h F N x h h F N ,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,3 0, ,06-0,3-0,85-0,46-0,303-0,369-0,437-0,437-0,437-0,437 Obr. R Alternativní výpočet v části b): Pro x 0, tj. v rovnovážné poloze soustavy, je F x 0. Otáčíme-li z této polohy doprava, pak pro x 0 ; 0 se vztlaková síla na levý váleček, který je vytahován z vody, zmenší o π d 4 ρ vgx a o tutéž hodnotu se naopak zvětší vztlaková síla na pravý váleček, který je ponořován hlouběji. Složka F x výsledné síly působící na levý váleček se tedy změní z nulové hodnoty na hodnotu F x π d 4 ρ vx. Výsledná síla působící na levý váleček bude směřovat svisle dolů a bude mít snahu vrátit váleček do rovnovážné polohy. Snadno nahlédneme, že týž výsledek pro F x dostaneme i v případě, že soustavou otáčíme z rovnovážné polohy doleva v rozmezí x 3 ; 0. V tomto intervalu F x > 0, tedy se výsledná síla opět snaží

4 vrátit soustavu do rovnovážné polohy. Zjistili jsme tak, že F x π d 4 ρ vgx pro x 3 ; 7. Mez x 3 odpovídá krajní poloze soustavy, kdy při otáčení doleva z rovnovážné polohy se právě levý váleček zcela ponoří a pravý zcela vynoří z vody. Pro x 0 ; 3 se tak vztlakové síly na oba válečky již nemění a F x nabývá konstantní hodnoty dané vztahem () pro x a 3, tj. F x π d 4 ρ vga 0,85 N pro x 0 ; 3. Mez x 7 přitom odpovídá druhému krajnímu stavu, kdy při otáčení soustavy z rovnovážné polohy doprava se právě pravý váleček zcela ponoří a levý zcela vytáhne z vody. Při dalším zvětšování x se tedy vztlakové síly působící na válečky již nebudou měnit a F x bude rovno hodnotě dané vztahem () pro x a 7. Platí tedy F x π d 4 ρ vga 0437 N pro x 7 ; 0. c) Z grafu i vztahu () je zřejmé, že v rozmezí x 3 ; 3 je síla přímo úměrná výchylce, ale má opačný směr; pohyb soustavy je tedy harmonický. m Periodu harmonického oscilátoru určíme ze vztahu T π k. Protože složka síly, která vrací soustavu do rovnovážné polohy, závisí na vzdálenosti x podle vztahu (), můžeme napsat F x π d 4 ρ vgx kx, pak k π d 4 ρ vg, π d 4 h 0 (ρ + ρ ) h T π 0 (ρ + ρ ) π,0 s. π d 4 ρ ρ v g vg 3.a) Drátek se ohřívá Jouleovým teplem: hmotnost drátku je odpor drátku mc c u T RI t, () m ρ m V ρ m l 0 S, () R ρ e l 0 S. (3) Z rovnice () vyjádříme změnu teploty a po dosazení za m z rovnice () a za S z rovnice (3) dostaneme

5 l 0 x l 0 l 0 + l 0 T RI t mc cu RI t ρ m l 0 Sc cu Obr. R R I t ρ m l 0ρ e c cu 9 0,09 0, ,09, K 76,6 K 4 body b) Drátek se zahřátím prodlouží o l l 0 α T α R I t 3,66 0 ρ m l 0 ρ e c 4 m. cu pro vzdálenost x pak platí (viz obr. R) (l0 x + l ) ( ) l0 (l 0 + l) l 0 ( ) l 0 + α R I t l ρ m l 0 ρ e c 0 7,430 mm cu 4 body c) Protože l l 0, můžeme napsat x (l 0 + l) l 0 l0 l α R I t ρ m ρ e c cu RI α t 7,4004 mm. ρ m ρ e c cu Odchylka x 0,006 mm, relativní odchylka δx 0,030 %. 4.a) Nejprve odvodíme rychlost, jakou obíhá kulička kuželového kyvadla po kružnici. Pro poměr velikostí setrvačné odstředivé síly a síly tíhové platí: tg α mv r mg v gl sin α v lg sin α tg α.

6 Pro dobu oběhu kuželového kyvadla platí: Z poměru period T K πr v πl sin α lg sin α tg α π 5T K 50T M 5 cos α 50 ( s použitím přibližných vzorců 5 odtud pak α ( + 4 sin α ) α l cos α. g ), ( ) ( ) 5 α 50 + α, 4 6 0,5 rad 4. 6 bodů b) Velikost síly napínající nit u kuželového kyvadla je ( ) mv F K + (mg) (mg tg α) + (mg) mg tg l sin α α +, velikost síly napínající nit v rovnovážné poloze matematického kyvadla je F M mg + mv mg + mg ( cos α) mg (3 cos α). l Poměr velikostí těchto sil: F M 3 cos α cos α (3 cos α),03. F K tg 4 body α + eu 5.a) Urychlením v elektrickém poli získá elektron rychlost v x m. V elektrickém poli kondenzátoru na elektron ještě působí síla F y ma ee eu d a elektron tak ve směru osy y získá rychlost v y at F y m m l, dostáváme po dosazení eu v y leu m lu dm eu d Platí tg α v y v x y s y v y v x s lu s d eu m t. Protože t l v x e mu. () e mu lu s du 8,0.

7 Svítící bod na stínítku tedy bude mít souřadnice y 8,0, z 0. 5 bodů b) Po zapnutí magnetického pole bude na elektron působit magnetická síla až po jeho vychýlení v elektrickém poli kondenzátoru. Její směr bude kolmý k oběma složkám rychlosti. Průmětem trajektorie pohybu elektronu do roviny y z bude kružnice. Magnetická síla je silou dostředivou, proto platí: mv y r Bev y r mv y eb. () Že se stopa elektronu objeví počátku souřadnic znamená, že v rovině y z vykonal elektron právě jednu otáčku. Pak platí: T πr πm v y eb a také T s m s. v x eu Z rovnosti výrazů odvodíme e m 8π U s B, 75 0 C kg. (3) 3 body c) Dosazením vztahu () a (3) do vztahu () dostaneme pro poloměr šroubovice: r mv y eb B s v y 8π U B lu s 4πdU,30. 7.a) Graf je na obrázku R3. Z rovnice regrese vidíme, že platí RC 0,33 (ms) 0, s C Kapacita kondenzátoru je tedy C 5,0 µf. 0, F 5,0 0 6 F.

8 b) V sériovém obvodu RC platí: Z U I R + XC R + 4π f C, I R U + 4π U C f. Tabulku doplníme s využitím EXCELu o dva řádky: Sestrojíme graf: f Hz 0,0 5,0 0,0 30,0 50,0 I ma 8,5,54 3,7 6,33 8,4 f s 0,0 0, ,005 0,00 0,0004 I ma 0, , ,0053 0, ,0095 Z rovnice regrese odečteme: R U 0, A, 4π U C, V F. Odtud C π0 F 5,0 µf. 6, body c) Ze jmenovitých hodnot určíme efektivní hodnotu proudu, který by měl žárovkou procházet a odpor jejího vlákna: I P U 0, 83 A a R ž U 44 Ω. Při napětí U je celkový odpor R C obvodu s rezistorem R C Z U I UU P 76 Ω a do obvodu ještě musíme připojit odpor R R C Rž 3 Ω. Nahradíme-li odpor kondenzátorem, určíme kapacitu kondenzátoru ze vztahu P

9 Z ( ) U R I ž + XC R ž + 4π f C C πf (U Kdybychom kondenzátor nahradili ideální cívkou, pak ze vztahu Z Rž + XL Rž + 4π f L L (U ) Rž πf I I ) 3,5 µf. R ž 0, 749 H 3 body d) V obvodu je teď zapojena žárovka s odporem Rž 44 Ω, cívka o indukčnosti L 0,749 H a kondenzátor o kapacitě C 3,5 µf. Aby žárovka stejně svítila, musí být i impedance stejná jako v předešlých případech tedy Z 76 Ω. Protože (X L X C ) Z Rž, bude X L X C ± Z Rž, ωl ± Z ωc Rž. Po úpravě dostáváme dvě kvadratické rovnice s neznámou ω ω LC ± ωc Z R ž 0. Dosazením číselných hodnot dostáváme dvě rovnice:,0 0 5 { ω } ± 3,8 0 3 {ω} 0, odkud {ω } 509 f 8 Hz a {ω } 94 f 3 Hz. Žárovka tedy bude svítit stejně jako ve spotřebitelské síti při frekvencích 3 Hz nebo 8 Hz.

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B Řešení úloh 1 kola 55 ročníku fyzikální olympiády Kategorie B Autořiúloh:JJírů(1,2),JThomas(3,5,7),MJarešová(4),MKapoun(6) 1a) Během celého děje tvoří vozík s kyvadlem ve vodorovném směru izolovanou soustavu,

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4) Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L.

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Ledvina (4) 1.a) Na dosažení rychlosti v 0 potřebuje každý automobil dobu t v 0

Více

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1 Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti

Více

III. Dynamika hmotného bodu

III. Dynamika hmotného bodu III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]

Více

Řešení úloh krajského kola 52. ročníku fyzikální olympiády Kategorie B Autořiúloh:M.Jarešová(1,3),J.Thomas(2),P.Šedivý(4)

Řešení úloh krajského kola 52. ročníku fyzikální olympiády Kategorie B Autořiúloh:M.Jarešová(1,3),J.Thomas(2),P.Šedivý(4) Řešení úloh krajského kola 5. ročníku fyzikální olympiády Kategorie utořiúloh:m.jarešová,3),j.thomas),p.šedivý).a) Kdyžjespínačrozepnut,potomjemožnoobvodzobr.překreslitnaobr.. Obr. Celkový odpor obvodu

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B Řešení úloh kola 9 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová,,,5),PŠedivý3,7)aVKoubek6) a) Označme hvýškunadzemí,kdedojdekesrážcespodní kuličkadopadnenazemrychlostíovelikosti v 0 Hg

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A Řešení úloh kola 53 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),MJarešová(2,6),JThomas(4,7),PŠedivý(3,5) a) Vzhledemktomu,že v c,můžemesdostatečnoupřesnostípoužítzákony klasické fyziky Elektrické

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je

Více

Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4)

Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4) Řešení úloh regionálního kola 47 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová(1,,3)MCvrčekaPŠedivý(4) 1a) Pro pohyb úlomků platí zákon zachování hybnosti: mv 01 + mv 0 + mv 03 0 Protože

Více

Řešení úloh 1. kola 50. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 50. ročníku fyzikální olympiády. Kategorie A Řešení úloh kola 50 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),PŠedivý(,,5,6,7),úlohajepřevzatazMoskevskéFO a) Zvolme vztažnou soustavu podle obr R Po přestřižení vlákna koná kulička šikmý

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2 Řešení úloh. kola 47. ročníku fyzikální olympiády. Kategorie C Autořiúloh:R.Baník(3),I.Čáp(),M.Jarešová(6),J.Jírů()aP.Šedivý(4,5,7).a) Pohybtělesajerovnoměrnězrychlenýsezrychlením g. Je-li v rychlost u

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(1),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4)

Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(1),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4) Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4).a) Zaveďme vztažnou soustavu Oxy podle obr. R. Pohyb lodí popisují vztahy

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G Řešení úloh celostátního kola 47 ročníku fyzikální olypiády Autor úloh: P Šedivý 1 a) Úlohu budee řešit z hlediska pozorovatele ve vztažné soustavě otáčející se spolu s vychýlenou tyčí okolo svislé osy

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

Elektřina a magnetismus úlohy na porozumění

Elektřina a magnetismus úlohy na porozumění Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Počty testových úloh

Počty testových úloh Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých

Více

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1. Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na

Více

Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie D

Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie D Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Ksestrojenígrafupotřebujemevypočítatdobu t 2rovnoměrnéhopohybuadobu t 3jízdyběhemzrychlování: v m s 1 t 2= (366+210)m

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

ELEKTROMAGNETICKÉ POLE

ELEKTROMAGNETICKÉ POLE ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Derivace goniometrických. Jakub Michálek,

Derivace goniometrických. Jakub Michálek, Derivace goniometrických funkcí Jakub Michálek, Tomáš Kučera Shrnutí Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech limitách, odvodí se také dvě důležité limity. Vypočítá

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

8.6 Dynamika kmitavého pohybu, pružinový oscilátor

8.6 Dynamika kmitavého pohybu, pružinový oscilátor 8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou. S p e c i f i c k ý n á b o j e l e k t r o n u Ú k o l : Na základě pohybu elektronu v homogenním magnetickém poli stanovit jeho specifický náboj. P o t ř e b y : Viz seznam v deskách u úlohy na pracovním

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

9 V1 SINE( ) Rser=1.tran 1

9 V1 SINE( ) Rser=1.tran 1 - 1 - Experimenty se sériovou rezonancí LC (c) Ing. Ladislav Kopecký Pokud jste přečetli nebo alespoň prohlédli články zabývající se simulacemi LC obvodů, které mají představovat rezonanční řízení střídavých

Více

Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC

Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Kondenzátor i cívka kladou střídavému proudu odpor, který nazýváme kapacitance

Více