Rekurentní filtry. Matlab
|
|
- Danuše Staňková
- před 7 lety
- Počet zobrazení:
Transkript
1 Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná zpětná vazba v koeficientech, někde ne. Občas se říká jinak koeficientům u vstupu a výstupu,. Příklad: Moudrá kniha Matlab [ ] = 0 [ ] + [ ] + 2 [ 2] + by[ n ] by[ n 2] by[ n 3] yn axn axn axn L L 2 3 [ ] = [ ] + 2 [ ] + 3 [ 2] + ayn [ ] ayn [ 2] ayn [ 3] yn bxn bxn bxn L L Dále budeme používat Matlabovskou notaci, tedy koeficienty b budou jsou u vstupů a koeficienty a jsou u zpětné vazby. A protože Matlab indexuje od jedničky, budeme tak indexovat i my. Koeficienty a a b plně určují chování filtru návrh filtru = nalezení příslušných koeficientů Proč se vůbec dělají filtry se zpětnou vazbou? (zpětná vazba = zdroj potenciálních potíží, stabilita, ) FIR filtr, např založený na sinc bude fungovat výborně, když bude jádro dlouhé (nebudu moc ořezávat). Konvoluční jádro = impulsní odezva. Čím delší jádro, tím lepší filtrace. Čím delší jádro, tím větší je výpočetní náročnost. Nejlepší by bylo nekonečné jádro. IIR filtr má nekonečné jádro a přitom má jen pár koeficientů, to vypadá slibně!. Je to všelék? Není, protože jádro je sice nekonečně dlouhé, ale nemá ten správný tvar. Takže filtr je sice rychlý, ale kvalita filtrace je často bídná.
2 Nejjednodušší IIR filtr Single pole Vztahy mezi hodnotami koeficientů a odezvou filtru vycházejí ze z-transformace (diskrétní Laplaceova transformace). Buď si vzpomenete na předměty jako je automatizace, nebo se kouknete do chytré knihy, nebo budete filtry jen používat, aniž budete vědět, co přesně a proč se děje. Nejjednodušší IIR filtr typu dolní propust má jen dva koeficienty, b a a 2. Například b = 0,5, a 2 =-0,85. Nejjednodušší IIR filtr typu horní propust má tři koeficienty: b, b 2 a a 2. Např. b =0,93, b 2 =-0,93, a 2 = -0,86. Máme tedy dolní i horní propust a k popisu potřebujeme jen pár čísel! Jak najdeme ty správné koeficienty? Napíšeme jednoduché parametrické rovnice, a volbou parametru budeme měnit chování filtru. Parametr nazveme třeba w. Dolní propust Horní propust b a 2 = w = w b b a 2 2 ( w) ( w) = + /2 = + /2 = w Jak budeme parametr volit? To záleží na tom, co od filtru chceme. Základem je hraniční frekvence (cutoff frequency) f C. 2 f C w= e π, kde f C je v rozsahu 0 0,5 (půlka vzorkovací frekvence)
3 Jak to vypadá pro různé hraniční kmitočty? Dolni propust - single pole fc = 0.0 fc = 0. fc = Horni propust - single pole fc = 0.0 fc = 0. fc = 0.25 Magnituda Magnituda Frekvence Frekvence Frekvenční odezvy pro různé hraniční kmitočty Cvičení pro zadaný signál vytvořte a vyzkoušejte IIR single pole filtry, které vyhladí vysoké frekvence (dolní propust) a které naopak ponechají pouze vysoké frekvence (horní propust)
4 Vychytanější IIR filtry Single pole IIR filtr je vhodný pro filtraci v časové oblasti. Ve frekvenční oblasti jsou lepší složitější filtry: Butterworthův filtr bez překmitu Čebyševův filtr typu překmity v propustné oblasti Čebyševův filtr 2 typu překmity v nepropustné oblasti Eliptický filtr překmity úplně všude
5 Vždy je něco za něco! Butterworth nemá překmity ale je děsně pomalý / Eliptický filtr je děsně rychlý, ale kmitá všude Čebyševův filtr má překmity v časové oblasti / funguje dobře ve frekvenční Čím víc pólů, tím líp filtr filtruje / je pomalejší (ale pořád je to řádově lepší než FIR) Čím víc pólů, tím líp filtr filtruje / maximální počet pólů je závislý na hraniční frekvenci Příklad: dolní propust Čebyšev má koeficienty b řádově 0-9, koeficienty a řádově 0 0. Protože máme k dispozici omezený počet bitů na číslo, bude zaokrouhlovací chyba u koeficientů a větší, než hodnoty koeficientů b filtr nebude fungovat! Cebysev - fc = poly 4 poly 6 polu Magnituda Frekvence Obr. Čebyšev s různým počtem pólů a fixním překmitem
6 IIR filtry v Matlabu Pokud nechceme divoce klikat v fdatool, můžeme vyrábět filtry přímo, a koukat na jejich vlastnosti. Čebyšev typu Syntaxe: [b,a] = cheby(n,rp,wn) Kde b,a koeficienty n počet pólů (řád filtru) Rp překmit v propustné oblasti Wn normalizovaná frekvence Příklad: Data máme navzorkovaná na khz, chceme filtr 4 řádu, s hraniční frekvencí 300Hz a maximálním překmitem v propustné oblasti 0,5dB. [b,a] = cheby(4,0.5,300/000); Příklad2: Stejná vzorkovací frekvence, ale chtěl bych pásmovou propust Hz pomocí Čebyševa desátého řádu: n= 0; Rp = 0.5; Wn = [00 200]/500; [b,a] = cheby(n,rp,wn);
7 Když už mám k dispozici koeficienty, můžu si snadno zobrazit frekvenční odezvu, impulsní odezvu, atd. Většina funkcí rovnou nakreslí příslušný graf. Frekvenční odezva Syntaxe: [h,w]= freqz(b,a,l) Kde h frekvenční odezva (komplexní) b,a koeficienty filtru l délka (FFT, default 52) Impulsní odezva Syntaxe: [h,t] = impz(b,a) Kde h impulsní odezva Další IIR filtry obdobná syntaxe jako u Čebyševa typu: Čebyšev 2 typu: [b,a] = cheby2(n,rs,wn) Eliptický filtr: [b,a] = ellip(n,rp,rs,wn) Butterworth: [b,a] = butter(n,wn)
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
VíceA7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
VíceČíslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Vícezákladní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
VíceČíslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VíceZákladní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
VíceLineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
VíceLineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Více2. Číslicová filtrace
Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik
Více7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceMĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
VíceFILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
VíceSpektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
Více31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
VíceFiltrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
VíceFourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
VíceVlastnosti Fourierovy transformace
Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy
Více1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Vícepolyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2
A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace
Vícer Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
VíceÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
VíceFlexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Víceelektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech
Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se
VíceKomplexní obálka pásmového signálu
České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového
VíceZpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceSinusové filtry pro měniče kmitočtu řady TZS třífázové
U Mototechny 107 251 62 Tehovec Czech Republic Tel.: +420 323605511 +420 323660013 Fax: +420 323607922 http://www.skybergtech.com E-mail: info@skybergtech.com Sinusové filtry pro měniče kmitočtu řady TZS
VíceOpakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Více[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
VíceNávrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
VíceZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceKapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
VíceZásady regulace - proudová, rychlostní, polohová smyčka
Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma
VíceSinusové filtry pro měniče kmitočtu řady TZS třífázové
U Mototechny 107 251 62 Tehovec Czech Republic Tel.: +420 323607922 +420 323660013 Fax: +420 323607922 http://www.skybergtech.com E-mail: info@skybergtech.com Sinusové filtry pro měniče kmitočtu řady TZS
VíceIdeální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.
Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,
VícePSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
VíceParametrické přístupy k filtraci ultrazvukových signálů
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra měření Parametrické přístupy k filtraci ultrazvukových signálů Bakalářská práce Luboš Kocourek 2010 Studijní program: Elektrotechnika
VíceAPLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL
David Matoušek, Bohumil Brtník APLIKACE ALGORITMÙ ÈÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLÙ 1 Praha 2014 David Matoušek, Bohumil Brtník Aplikace algoritmù èíslicového zpracování signálù 1. díl Bez pøedchozího písemného
VíceMĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE
26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip
VícePředmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
VíceA2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,
VíceAutomatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
VíceZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ
VíceDIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET
DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET Grobelný David, Martinák Lukáš, Nevřiva Pavel, Plešivčák Přemysl Department of measurement and control,
VíceQuantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
VíceSPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK
SPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK V této části prezentujeme výsledky použití metody SPM Spectrum (Shock Pulse Method Metoda rázových pulsů) jako metody pro monitorování stavu valivých
Více11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
VíceČíslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
VíceLaboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
VíceZákladní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
VíceÚvod do číslicové filtrace
jindrich.zdansky@tul.cz Ústav infromačních technologií a elektroniky Technická univerzita v Liberci 2008 Osnova 1 2 3 4 5 Osnova 1 2 3 4 5 Pojem filtr a filtrace Filtrace je proces, kdy systém (filtr)
VíceOperační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
VíceKONVERZE VZORKOVACÍHO KMITOČTU
VOLUME: 8 NUMBER: 00 BŘEZEN KONVERZE VZORKOVACÍHO KMITOČTU Jan VITÁSEK Katedra telekomunikační techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava, 7. Listopadu 5, 708 33 Ostrava-Poruba, Česká
Víceteorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
VíceP7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
VíceTeoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
VíceDiskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
VíceZpráva k semestrální práci z předmětu Syntéza audio signálů. Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání:
Zpráva k semestrální práci z předmětu Syntéza audio signálů Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání: 31.12.2016 Obsah 1. Úvod... 2 2. Použité druhy syntéz... 3 2.1 Aditivní syntéza...
Víceelektrické filtry Jiří Petržela filtry se spínanými kapacitory
Jiří Petržela motivace miniaturizace vytvoření plně integrovaného filtru jednotnou technologií redukce plochy na čipu snížení ceny výhody koncepce spínaných kapacitorů (SC) koeficienty přenosové funkce
Více04 Lineární filtrace filtry
Modul: Analýza a modelování dynamických biologických dat Předmět: Lineární a adaptivní zpracování dat Autor: Daniel Schwarz Číslo a název výukové jednotky: 4 Lineární filtrace filtry Výstupy z učení: dokáží
VíceOCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ
OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a
Víceþÿ K o n v e r z e v z o r k o v a c í h o k m i t o t u
DSpace VSB-TUO http://www.dspace.vsb.cz Advances in Electrical and Electronic Engineering (AEEE) AEEE. 00, vol. 8 þÿ K o n v e r z e v z o r k o v a c í h o k m i t o t u 0-0-08T:48:3Z http://hdl.handle.net/0084/8453
VíceRádiové funkční bloky X37RFB Krystalové filtry
Rádiové funkční bloky X37RFB Dr. Ing. Pavel Kovář Obsah Úvod Krystalový rezonátor Diskrétní krystalové filtry Monolitické krystalové filtry Aplikace 2 Typické použití filtrů Rádiový přijímač preselektor
VíceLineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
VíceAkustika. 3.1 Teorie - spektrum
Akustika 3.1 Teorie - spektrum Rozklad kmitů do nejjednodušších harmonických Spektrum Spektrum Jedna harmonická vlna = 1 frekvence Dvě vlny = 2 frekvence Spektrum 3 vlny = 3 frekvence Spektrum Další vlny
VíceTeorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech
Více- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
VíceStudijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení
6AA Automatizace Studijní opory k předmětu Ing. Petr Pokorný 1/40 6AA Obsah: Logické řízení - Boolova algebra... 4 1. Základní logické funkce:... 4 2. Vyjádření Booleových funkcí... 4 3. Zákony a pravidla
Více(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy
Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.424.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XIV. ANALÝZA
VíceALGORITMY ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ
Bohumil BRTNÍK, David MATOUŠEK ALGORITMY ÈÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLÙ Praha 2011 Tato monografie vznikla pøedevším pro podporu výuky oboru Poèítaèové systémy na Vysoké škole polytechnické v Jihlavì.
VícePŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13
OBSAH PŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13 1 ÚVOD, Z. Raida 15 1.1 Mikrovlnné kmitočtové pásmo 15 1.2 Diferenciální formulace Maxwellových rovnic 16 1.3 Integrální formulace Maxwellových rovnic 18 1.4 Obecný
VíceObr. 1 Činnost omezovače amplitudy
. Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti
VíceLaboratorní úloha 7 Fázový závěs
Zadání: Laboratorní úloha 7 Fázový závěs 1) Změřte regulační charakteristiku fázového závěsu. Změřené průběhy okomentujte. Jaký vliv má na dynamiku filtr s různými časovými konstantami? Cíl měření : 2)
Vícedo magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou
VíceExperiment s FM přijímačem TDA7000
Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního
VíceVykreslete převodní, modulovou a fázovou charakteristiku C-R článku. Zjistěte rezonanční frekvenci tohoto článku. Proveďte šumovou analýzu obvodu.
1 Střídavé analýzy Cílem cvičení je osvojení práce s jednotlivými střídavými analýzami, kmitočtovou analýzou, a šumovou analýzou. Prováděna bude analýza kmitočtových závislostí obvodových veličin v harmonickém
VíceDirect Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
Vícezpracování signálu a obrazu
A4M38AVS Aplikace vestavěných systémů Přednáška č. 6 Základní metody číslicového zpracování signálu a obrazu Radek Sedláček, katedra měření, ČVUT FEL, 2011 Obsah přednášky Úvod, motivace do problematiky
VíceFyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Vícedoc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
VíceTeorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
VíceModelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
Více12 - Frekvenční metody
12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji
Více1.1 Pokyny pro měření
Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)
Více1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
VíceAKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu
AKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu Stáhněte si z internetu program Praat a Madde (viz seznam pomůcek) a přineste si vlastní notebook. Bez tohoto nelze praktikum absolvovat (pokud budete
VíceUŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
VíceAnalýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
VíceSYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
VíceZesilovače. Ing. M. Bešta
ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného
Více