Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Rozměr: px
Začít zobrazení ze stránky:

Download "Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická"

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje vysokých škol v roce 2013 (projekt č. 1256/2013)

2 Obsah Číslicové filtry typu FIR a IIR Pojem filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky v prostředí MATLAB SPTOOL, FDATOOL problém kvantování koeficientů Snímek 2 z 24

3 Co je to filtrace signálů 1D, 2D? Odstranění jedné nebo více frekvenčních částí (složek) ze spektra zpracovávaného signálu (např. odstranění rušivých nežádoucích složek). Filtr lze aplikovat jak na zpracování jednodimenzionálního signálu, tak dvoudimenzionálního (např. obrazu) Typy filtrů analogové popsány pomocí modelů spojitých soustav - vyjádření přenosu pomocí Laplaceovy transformace (LT), výpočet spektra pomocí Fourierovy transformace (FT) digitální popsány pomocí modelů diskrétních soustav vyjádření přenosu popis pomocí Z-transformace, výpočet spektra pomocí diskrétní Fourierovy transformace (DFT) Snímek 3 z 24

4 Souvislost mezi filtrací a konvolucí Spojité soustavy Příklad - vstupní signál X(jobsahující dvě složky f R, f S a filtr s přenosem H(j- typ dolní propust s mezním kmitočtem f 0 x(t) X H y(t) Y Konvoluce v časové oblasti odpovídá prostému násobení ve frekvenční oblasti Snímek 4 z 24

5 Souvislost mezi filtrací a konvolucí Diskrétní soustavy Uvažujme stejný příklad jako v předchozím případě analogické jako pro spojité signály, jen místo FT se používá Z-transformace diskrétní konvoluce Snímek 5 z 24

6 Souvislost mezi filtrací a konvolucí Nechť H(z) má přenos b i jsou přímo koeficienty filtru (FIR) Pak v časové oblasti platí: x(n) až x(n-n) jsou vzorky signálu Snímek 6 z 24

7 Definice číslicových filtrů Z hlediska teorie systémů - ČF = LTI čili Linear Time-Invariable system Velice významná část v oblasti DSP vykazují vynikající vlastnosti ve srovnání s analogovými filtry Slouží pro separaci nebo pro rekonstrukci signálů Základní stavební prvky : zpožďovací člen (paměť) sčítačka násobička Z -1 Snímek 7 z 24

8 Obecný přenos filtru Každý ČF lze popsat např. přenosovou funkcí, vyjádřenou v z-transformaci (diferenční rovnice) Obecný přenos filtru vyjádřený z-transformaci Je-li polynom A(z)=1 (a i =0) pak se jedná o FIR filter Je-li polynom A(z)1 (a i =0) pak se jedná o IIR filter Obecně polynom A(z) definuje zpětnou vazbu mezi výstupem a vstupem z toho důvodu IIR nemusí být vždy stabilní Snímek 8 z 24

9 Základní rozdělení číslicových filtrů ČF typu FIR ČF typy IIR Finite Impulze Response Vždy stabilní dáno n-násobným polem v nule (n-tý řád filtru) Pro dosažení veliké strmosti nutno zvolit vysoký řád filtru Mají lineární fázi Nevýhodou je nárůst zpoždění Infinite Impulze Responce Nemusí být vždy stabilní Analogie k analogovým filtrům Požadovanou strmost charakteristiky lze dosáhnout při nižším řádu než-li u FIR Nelineární fáze 9

10 Struktura číslicových filtrů typu FIR Přímá forma (DIRECT FORM I) Transponovaná forma* (DIRECT FORM II TRANSPOSED) duální struktura * k přímé formě I Podstata transpozice: změnit tok dat, zaměnit vstup a výstup, uzly nahradit sčítačkami, sčítačky nahradit za uzly Snímek 10 z 24

11 Kaskádní řazení FIR Výsledný přenos Při paralelním řazení bloků výsledný přenos dán součtem dílčích přenosů Snímek 11 z 24

12 Paralelní řazení bloků Při paralelním řazení bloků výsledný přenos dán součtem dílčích přenosů x(n) Z -1 Z -1 Výsledný přenos b 0 b 1 b 2 y(n) H 0 Z -1 Z -1 b 0 b 1 b2 H 1 Snímek 12 z 24

13 Struktura číslicových filtrů typu IIR Snímek 13 z 24

14 Struktura číslicových filtrů typu IIR Tato realizace využívá minimální počet zpožďovacích členů Jedná se o tzv. kanonický tvar Snímek 14 z 24

15 Problém s kvantováním koeficientů Pracujeme-li s konečným rozlišením čísel, nutně tento problém musí nastat V MATLABu jsi spočítám koeficienty filtrů s daleko větší přesností než jsme schopni implementovat na DSP či FPGA Dochází tedy ke kvantování těchto koeficientů S tím souvisí změna frekvenční charakteristiky filtru Nutno kontrolovat může vybočit mimo rámec zadání, v případě IIR filtrů může být nestabilní! Snímek 15 z 24

16 Návrhové prostředky v prostředí MATLAB Nejdostupnější a nejrychlejší způsob využití prostředí MATLAB Definovány funkce pro návrh FIR i IIR filtrů (v základní knihovně): FIR1 FIR2 : b=fir1(n,wn), B = FIR1(N,Wn,'high') : B = FIR2(N,F,A) Butter : [B,A] = BUTTER(N,Wn), [B,A] = BUTTER(N,Wn,'low') Cheby1 : [B,A] = CHEBY1(N,R,Wp), CHEBY1(N,R,Wp,'stop') Cheby2 : [B,A] = CHEBY2(N,R,Wst), Ellip : [B,A] = ELLIP(N,Rp,Rs,Wp) Snímek 16 z 24

17 Návrhové prostředky v prostředí MATLAB Vykreslení frekvenční charakteristiky navrženého filtru - funkce freqz [H,W] = FREQZ(B,A,N) Existuje speciální grafický toolbox pro návrh ČF - Filter Design and Analysis Tool (FDATOOL) Je-li řád filtru M, filter má M+1 koeficientů!!! Snímek 17 z 24

18 FDATOOL grafický nástroj pro design ČF Snímek 18 z 24

19 FDAtool co dokáže Intuitivní ovládání Design FIR, IIR (Butterworth, Chebysev I, II, Eliptický) Volitelné typy frekvenční charakteristiky DP,HP,PP, PZ Výběr fyzické realizace (přímá, transpovaná, atd.) Vykreslení průběhu frekvenční a fázové charakteristiky Zobrazení rozložení pólů a nul filtru v komplexní rovině Koeficienty navrženého filtru lze exportovat do textového souboru nutno definovat též formát dat (např. double-float, unsigned-16 a další) Snímek 19 z 24

20 Vliv kvantování koeficientů na frek. char. Příklad : FIR, N=100, Fm =0,3*f s (f s =) Snímek 20 z 24

21 Detail frek. char okolo f m Snímek 21 z 24

22 Vliv kvantování koeficientů - shrnutí Při kvantování koeficientů obecně dochází ke změně ve frekvenční charakteristice Při implementaci na DSP nutno ověřit, zda-li filtr splňuje veškeré požadavky U IIR filtrů nutno zkontrolovat polohu pólů (ověřit stabilitu filtru) Snímek 22 z 24

23 Návod na implementaci digitálního filtru typu FIR Je potřeba vytvořit dvě proměnné typu pole (na DSP formou kruhového bufferu) a jeden pointer Jedná proměnná slouží pro ukládání koeficientů FIR b i Do druhé proměnné se průběžně (v reálném čase) se ukládají vzorky signálu x(n) Pointer p slouží jako ukazatel na buffer s daty Nyní stačí implementovat výpočet diferenční rovnice popisující FIR filter N-tého řádu, např. pomocí for cyklu Fragment kódu v jazyce C: p++; // p je ukazatel na poslední ( nejnovější) vzorek nutno ošetřit meze!!! y = 0; // nulování výstupní proměnné for (i = 0 ; i < N; i++) { y = y + b(i) * x( [p - i + N] % N ) // adresace pole dat s využitím operátoru modulo } DAC =y //výstup filtrů dej na výstup DA převodníku Snímek 23 z 24

24 Návod na implementaci digitálního filtru typu FIR V přerušovací rutině se inkrementuje ukazatel p o jedničku, nový vzorek dat získaný např. z A/D převodníku se uloží na adresu danou ukazatelem p, provede se výpočet diskrétní konvoluce, na DSP je hw podpora adresace kruhových bufferů, rozhodně není výpočetně efektivní datový buffer posouvat o jednu pozici zpět. Pole koeficientů FIRu vzorky signálu vzorky signálu vzorky signálu b 0 x(n-6) x(n-7) x(n-8) b 1 x(n-5) x(n-6) x(n-7) b 2 x(n-4) x(n-5) x(n-6) b 3 x(n-3) x(n-4) x(n-5) b 4 b 5 b 6 b 7 b 8 Kruhový buffer Aktuální pointer p x(n-2) x(n-1) x(n) x(n-10) x(n-9) Kruhový buffer Aktuální pointer p x(n-3) x(n-2) x(n-1) x(n) x(n-10) Kruhový buffer Aktuální pointer p x(n-4) x(n-3) x(n-2) x(n-1) x(n) Kruhový buffer b 9 x(n-8) x(n-9) x(n-10) b 10 x(n-7) x(n-8) x(n-9) čas n čas n+1 čas n+2 Snímek 24 z 24

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Základní metody číslicového zpracování signálu část I.

Základní metody číslicového zpracování signálu část I. A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového

Více

zpracování signálu a obrazu

zpracování signálu a obrazu A4M38AVS Aplikace vestavěných systémů Přednáška č. 6 Základní metody číslicového zpracování signálu a obrazu Radek Sedláček, katedra měření, ČVUT FEL, 2011 Obsah přednášky Úvod, motivace do problematiky

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014 A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

Číslicové filtry. Honza Černocký, ÚPGM

Číslicové filtry. Honza Černocký, ÚPGM Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky

Více

ÚPGM FIT VUT Brno,

ÚPGM FIT VUT Brno, Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již

Více

Rekurentní filtry. Matlab

Rekurentní filtry. Matlab Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů

Více

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2 A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

PSK1-9. Číslicové zpracování signálů. Číslicový signál

PSK1-9. Číslicové zpracování signálů. Číslicový signál Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Předmět A3B31TES/Př. 13

Předmět A3B31TES/Př. 13 Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

31SCS Speciální číslicové systémy Antialiasing

31SCS Speciální číslicové systémy Antialiasing ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Biofyzikální ústav LF MU Brno. jarní semestr 2011 pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Teoretická elektrotechnika - vybrané statě

Teoretická elektrotechnika - vybrané statě Teoretická elektrotechnika - vybrané statě David Pánek EK 63 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni September 26, 202 David Pánek EK 63 panek50@kte.zcu.cz Teoretická

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

7.1. Číslicové filtry IIR

7.1. Číslicové filtry IIR Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

Analýza a zpracování signálů. 1. Úvod

Analýza a zpracování signálů. 1. Úvod Analýza a zpracování signálů 1. Úvod DSP matematická a algoritmická manipulace s číslicovými signály jejímž cílem je extrahovat důležité informace, které jsou přenášeny signálem Vstupní signál Zpracovaný

Více

1 Zpracování a analýza tlakové vlny

1 Zpracování a analýza tlakové vlny 1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.

11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina. 11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Analýza a zpracování signálů

Analýza a zpracování signálů Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014 A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,

Více

UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU

UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Zpracování obrazů. Honza Černocký, ÚPGM

Zpracování obrazů. Honza Černocký, ÚPGM Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)

Více

Analýza a zpracování digitálního obrazu

Analýza a zpracování digitálního obrazu Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové

Více

do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE

do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou

Více

Primární zpracování radarového signálu dopplerovská filtrace

Primární zpracování radarového signálu dopplerovská filtrace ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace

Více

2. Číslicová filtrace

2. Číslicová filtrace Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik

Více

Struktura a architektura počítačů (BI-SAP) 3

Struktura a architektura počítačů (BI-SAP) 3 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr.

- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr. - DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr. Řada zdrojů informace vytváří signál v analogové formě,

Více

P7: Základy zpracování signálu

P7: Základy zpracování signálu P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou

Více

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

APLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL

APLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL David Matoušek, Bohumil Brtník APLIKACE ALGORITMÙ ÈÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLÙ 1 Praha 2014 David Matoušek, Bohumil Brtník Aplikace algoritmù èíslicového zpracování signálù 1. díl Bez pøedchozího písemného

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce Zadání Stávající

Více

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Číselné vyjádření hodnoty. Kolik váží hrouda zlata? Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží

Více

SYNTÉZA AUDIO SIGNÁLŮ

SYNTÉZA AUDIO SIGNÁLŮ SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické

Více

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt PROBLÉM ŠPATNÉ SYNCHRONIZACE VZORKOVACÍCH KMITOČTŮ U MLS SIGNÁLŮ: MODEL V PROSTŘEDÍ MATLAB F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Chceme-li hodnotit kvalitativní stránku

Více

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8 Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Fyzikální laboratoř Kamil Mudruňka Gymnázium, Pardubice, Dašická 1083 1/8 O projektu Cílem projektu bylo vytvořit

Více

A/D převodníky - parametry

A/D převodníky - parametry A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický

Více

Universální přenosný potenciostat (nanopot)

Universální přenosný potenciostat (nanopot) Universální přenosný potenciostat (nanopot) (funkční vzorek 2014) Autoři: Michal Pavlík, Jiří Háze, Lukáš Fujcik, Vilém Kledrowetz, Marek Bohrn, Marian Pristach, Vojtěch Dvořák Funkční vzorek universálního

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET

DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET Grobelný David, Martinák Lukáš, Nevřiva Pavel, Plešivčák Přemysl Department of measurement and control,

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

1 Základní funkce pro zpracování obrazových dat

1 Základní funkce pro zpracování obrazových dat 1 Základní funkce pro zpracování obrazových dat 1.1 Teoretický rozbor 1.1.1 Úvod do zpracování obrazu v MATLABu MATLAB je primárně určen pro zpracování a analýzu numerických dat. Pro analýzu obrazových

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH ČÍSLICOVÉHO FILTRU TYPU PÁSMOVÁ PROPUST DESIGN OF BANDPASS DIGITAL FILTER

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH ČÍSLICOVÉHO FILTRU TYPU PÁSMOVÁ PROPUST DESIGN OF BANDPASS DIGITAL FILTER VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Konvolučníkódy. MI-AAK(Aritmetika a kódy)

Konvolučníkódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Konvolučníkódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

04 Lineární filtrace filtry

04 Lineární filtrace filtry Modul: Analýza a modelování dynamických biologických dat Předmět: Lineární a adaptivní zpracování dat Autor: Daniel Schwarz Číslo a název výukové jednotky: 4 Lineární filtrace filtry Výstupy z učení: dokáží

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

Geometrické transformace

Geometrické transformace 1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/

Více

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4. CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného

Více