Diskrétní 2D konvoluce
|
|
- Richard Veselý
- před 9 lety
- Počet zobrazení:
Transkript
1 ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz
2 Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí pro něj {, t = 0 + δ(t) = lim f (t) = t 0 0, t 0, δ(t)dt = v DSP technice se definuje δ-funkce δ(n) jako normalizovaný impulz, který má ve vzorku 0 hotnodu a ostatní vzorky mají hodnotu 0.
3 Popis vzorkovaného signálu A analogový vstup t sample and hold A vzorky analogového signálu n Č n analogově číslicový převodník číslicová data násobení signálu posloupností Diracových impulzů je ekvivalentní vzorkování signálu v okamžicích těchto impulzů jakýkoliv impulz může být reprezentován jako posunutá a škálované δ-funkce.
4 Reprezentaze impulzu Jakýkoliv impulz může být reprezentován jako posunutá a škálované δ-funkce, např x(n) = 2,5δ(n )
5 Odezva systému h(n) na jednotkový impulz Delta funkce [n] Impulzní odezva [n] Lineární systém h[n] Odezvou lineárního systému na Diracův impulz je impulzní odezva (váhová funkce) h(n). Konvolucí impulzní odezvy systému a vstupního signálu je výstupní signál systému.
6 Diskrétní konvoluce Jak rozumět tomu, jak lin. systém mění vstupní signál x(n) na výstupní y(n)? Vstupní signál je dekomponován na množinu impulzů, každý impulz představuje posunutá a škálovaná δ-funkce. Výsledný výstup každého impulzu je škálovaná a posunutá verze impulzní odezvy. x(n) = 2,5δ(n ) y(n) = 2,5h(n ) Znalost impulzní odezvy systému umoňuje stanovit výstup pro libovolný vstupní signál. Pokud je lineární systém koncipován jako filtr, pak impulzní odezva se nazývá konvoluční jádro (convolution kernel), nebo maska.
7 Konvoluce y(n) = x(n) h(n) = h(n) x(n) y(n) = M j 0 h(j) x(i j) x(n) h(n) 4,0,0 2,0,0 0,0,0 2,0 4,0,0 2,0,0 0,0,0 2,0, ,0 0 2
8 Příklad konvoluce I. x 0 5 = {0,0;,0;,2; 2,0;,4;,4} x(0)h(n 0) x()h(n ) x(2)h(n 2) 4,0 4,0 4,0,0,0,0 2,0 2,0 2,0,0,0,0 0,0 0,0 0,0,0,0,0 2,0 2,0 2,0, , , x()h(n ) x(4)h(n 4) x(5)h(n 5) 4,0 4,0 4,0,0,0,0 2,0 2,0 2,0,0,0,0 0,0 0,0 0,0,0,0,0 2,0 2,0 2,0, , ,
9 Příklad konvoluce II. x 6 8 = {0,5; 0,0; 0,6} x(6)h(n 6) x(7)h(n 7) 4,0 4,0 4,0 x(8)h(n 8),0 2,0,0 0,0,0 2,0,0 2,0,0 0,0,0 2,0,0 2,0,0 0,0,0 2,0, , , ,0 Po sečtění všech složek y(n):,0 2,0,0 0,0,0 2,0,
10 aplikace v počítačové grafice a pro zpracování obrazu y(m, n) = y(m, n) = x(m, n) h(m, n) M k=0 ( N l=0 ( ) ) h(m k, n l) x(k, l) pomocí konvolučních jader lze definovat filtry provádějící: vyhlazování (filtr dolní propust) doostřování (filtr horní propust) detekce hran (gradientní operátory)
11 Jak udělat z jednorozměrné 2D Filtr pro klouzavé průměrování Převod do 2D: Binomický fitr H = (,, ) H 2 = (, 4, 6, 4, ) 6 6 h = (,, ) = 9 h 2 = (, 4, 6, 4, ) =
12 Výpočet 2D diskrétní konvoluce /9 79 / / /9 /9 /9 /9 22 /9 2 /9 H = = 2 Postup: Máme vstupní a výstupní bitmapu, konvoluční jádro zpracovává bod po bodu vstup(i, j) a vypočítanou hodnotu zapisuje na odpovídající pozici výstup(i, j).
13 Kde běžný uživatel využije konvoluční jádra Tvorba vlastních filtrů a úpravy obrazu v rastrových editorech: Adobe Photoshop, Paint Shop Pro, GIMP,... Dávkové zpracování obrazu pomocí ImageMagick Podpora v některých vektorových editorech. Úprava vektorových elementů ve formátu SVG
14 Grafické editory a konvoluce Zadávání konvolučních jader v graf. editoru GIMP.
15 Vyhlazovací filtry I. Originál zarušeného snímku.
16 Vyhlazovací filtry II. H = 9
17 Vyhlazovací filtry III. H 2 =
18 Vyhlazovací filtry IV. H =
19 Gaussovo rozostření I. G(x, y) = x 2 +y 2 2πσ 2 e 2σ 2 0, 0,2 0,2 0,2 0, 0, 0, Rozptyl σ = 0,75.
20 Gaussovo rozostření II. H G = =
21 Vyhlazovací filtry závěr H =, H 2 = , H = Průměrovací filtry mají střední hodnotu všech členů, např. pro H 2 je průměr 6 ( ) =. Nevýhodou průměrovacích filtrů je to, že při vyhlazení dojde na ostrých barevných přechodech k mírnému rozmazání a kvůli tomu utrpí i tenké čáry a další detaily.
22 Detekce hran Hrany se v digitálním obrazu nacházejí v místech, kde se prudce mění jas. Vylepšování hran souvisí s doostřováním a dokáže zlepšit vnímání lidksého zraku. Důležité pro předzpracování obrazu v počítačovém vidění: rozeznávání objektů identifikace zpracování otisků prstů, tvarů obličeje určování pozice vzhledem ke kameře Optical Character Recognition (OCR)
23 Princip detekce hran Hrana je v obraze dána obrazovým elementem a jeho okolím, je určena tím, že se náhle změní hodnota obrazové funkce f (x, y). Pro studium změn funkce dvou proměnných se používají parciální derivace a změnu funkce udává její gradient, který určuje směr největšího růstu ψ funkce a strmost tohoto růstu f (x, y) : f (x, y) = ( f x Laplaceův operátor, vychází z 2. derivací: ) 2 ( ) f 2 + y 2 f (x, y) = 2 f x f y 2
24 Princip detekce hran, pokračování Laplaceův operátor 2 f (x, y) = 2 f y 2 V diskrétním obraze aproximujeme derivace pomocí diferencí: x f 2 f x 2 ( f (i, j) f (i, j) ) ( f (i, j) f (i +, j) ) 2 f y 2 ( f (i, j + ) f (i, j) ) ( f (i, j) f (i, j ) ) 2 f x 2 f (i, j) 2f (i, j) + f (i +, j))... (, 2, ) 2 f f (i, j + ) 2f (i, j) + f (i, j )... 2 y 2 H 4 = H 5 = 8
25 Laplacián, filtr typu horní propust H 4 = Laplacián je invariantní vůči otočení. Přičtení 28 slouží k posunutí jasu pixelů.
26 Operátor Prewittové Příklad operátoru, který aproximuje první derivaci (další možnosti např. Sobel, Kirch, Robinson,... ). Slouží pro odhad gradientu v okolí pro osm směrů (ty se získají pootočením matice). H P = 0 0 0, 0 0 H P = 0, H P = Větší matice s vyšším rozlišením může sloužit k vytváření reliéfu v různých směrech.
27 Operátor Prewittové, příklad všechny směry
28 Doostřování Ostrost vidění je pro lidské vnímání velmi důležitou vlastností. Často se stává, že obraz pro sejmutí kamerou, vyfotografování nebo naskenování nemá moc ostré hrany. Tady nám pomůžou filtry pro ostření, které zvýrazní hrany v obrazu. Nevýhoda dále popsaných filtrů je to, že kromě hran zvýrazní v obraze také šum a některé další nechtěné detaily. Pro doostřování využijeme Laplacián jehož hodnotu odečteme od hodnoty původního pixelu: g(i, j) = f (i, j) ( f (i, j) + f (i +, j) + + f (i, j + ) + f (i, j ) 4f (i, j) ) = = 5f (i, j) f (i, j) f (i +, j) f (i, j + ) f (i, j ) H 6 =
29 Příklad pro programátory int sharpen filter[][]={{0,,0}, {,5, }, {0,,0}}; for(x = 0 ; x < PIX WIDTH; x++){ for(y = 0; y < PIX HEIGHT; y++){ for(k = 0; k < ; k++){ for(l = 0; l < ; l++){ y = getpixel (INPUT, (x ) + k, (y ) + l); sum y += y sharpen filter[k][l]; } } putpixel(output, i, j, sum y); } }
30 Doostřování, příklady I. Digitalizovaný videosignál snímku z CCD kamery.
31 Doostřování, příklady II. H 6 =
32 Doostřování, příklady III. H 7 = 9
33 Příklad uživatelského filtru pro vylepšení obrazu Originál
34 Příklad uživatelského filtru pro vylepšení obrazu Detekce hran pomocí jádra H
35 Příklad uživatelského filtru pro vylepšení obrazu Gaussovo rozostření, rozptyl 5 pixelů
36 Příklad uživatelského filtru pro vylepšení obrazu Překrytí Rozostření R Sloučení zrnitosti Detekované hrany D Originál O Sloučení zrnitosti: L S = O + D 28 Překrytí: L P = L S (L S + (2 T (255 L S ))/255)/255
37 Příklad uživatelského filtru pro vylepšení obrazu Výsledek
38 Příklad uživatelského filtru pro vylepšení obrazu Originál
39 Reference Smith, Steven W.: The Scientists and Engineer s Guide to Digital Signal Processing. California Technical Publishing, Goznales, Rafael C.; Woods, E. Richards: Digital Image Processing. Prentice Hall 2002, 2nd edition. Hlaváč, Václav; Sedláček Miloš: Zpracování signálů a obrazů. Vydavatelství ČVUT Dokumentace k programu GIMP
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/35 HLEDÁNÍ HRAN Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac FYZIOLOGICKÁ MOTIVACE 2/35 Výsledky
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Kosinová transformace 36ACS
Kosinová transformace 36ACS 10. listopadu 2006 Martin BruXy Bruchanov bruxy@regnet.cz Uplatnění diskrétní kosinové transformace Úkolem transformačního kódování je převést hodnoty vzájemně závislých vzorků
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod
VY_32_INOVACE_INF4_12 Počítačová grafika Úvod Základní rozdělení grafických formátů Rastrová grafika (bitmapová) Vektorová grafika Základním prvkem je bod (pixel). Vhodná pro zpracování digitální fotografie.
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
Úpravy rastrového obrazu
Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha
Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze
Hledání hran Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická, katedra kybernetiky
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
DZDDPZ6 Filtrace obrazu. Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ6 Filtrace obrazu Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava Prostorová zvýraznění - filtrace Ohnisková operace, použití pohyblivého okénka (kernel),
Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze
Hledání hran Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30
Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku Arnošt Nečas Marketing manager GRAFIE CZ Jan Štor Odborný konzultant GRAFIE CZ Agenda Základy digitálních obrazů Kvalita obrazu
Modelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
Analýza a zpracování signálů. 1. Úvod
Analýza a zpracování signálů 1. Úvod DSP matematická a algoritmická manipulace s číslicovými signály jejímž cílem je extrahovat důležité informace, které jsou přenášeny signálem Vstupní signál Zpracovaný
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
Neparametrické odhady hustoty pravděpodobnosti
Neparametrické odhady hustoty pravděpodobnosti Václav Hlaváč Elektrotechnická fakulta ČVUT Katedra kybernetiky Centrum strojového vnímání 121 35 Praha 2, Karlovo nám. 13 hlavac@fel.cvut.cz Statistické
Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky
A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
POČÍTAČOVÁ GRAFIKA. Počítačová grafika 1
Počítačová grafika 1 POČÍTAČOVÁ GRAFIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
Systém GIMP (barvy, vrstvy, transformace, průhlednost)
Semestrální práce z předmětu Kartografická polygrafie a reprografie Systém GIMP (barvy, vrstvy, transformace, průhlednost) Autor: Jiří Lejček, Ivan Majorník Editor: Jan Dolista Praha, květen 2010 Katedra
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování
Zpracování obrazu a fotonika 2006
Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400
REALIZACE HRANOVÉHO DETEKTORU S VYUŽITÍM VLNKOVÉ TRANSFORMACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
Základní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
1. března Organizace Základní informace Literatura Úvod Motivace... 3
Modelování systémů a procesů (611MSP) Děčín přednáška 1 Vlček, Kovář, Přikryl 1. března 2012 Obsah 1 Organizace 1 1.1 Přednášející....................................... 1 1.2 Základní informace...................................
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
DIGITÁLNÍ FOTOGRAFIE
DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Obraz jako data. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.2487/2011
Získávání a analýza obrazové informace Obraz jako data Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Datové formáty obrazu 2 Datové
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
ROZPOZNÁVÁNÍ ZNAKŮ POMOCÍ UMĚLÉ INTELIGENCE CHARACTERS RECOGNIZING BY ARTIFICIAL INTELLIGENCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF CONTROL AND INSTRUMENTATION
MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt
PROBLÉM ŠPATNÉ SYNCHRONIZACE VZORKOVACÍCH KMITOČTŮ U MLS SIGNÁLŮ: MODEL V PROSTŘEDÍ MATLAB F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Chceme-li hodnotit kvalitativní stránku
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická
POROVNÁNÍ HRANOVÝCH DETEKTORŮ POUŽITÝCH PŘI PARAMETRIZACI POHYBU Z OBRAZOVÉHO ZÁZNAMU Jan HAVLÍK Katedra teorie obvodů, Fakulta elektrotechnická České vysoké učení technické v Praze Abstrakt Tento článek
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ DETEKTOR OBJEKTŮ S VYUŽITÍM VLNKOVÉ TRANSFORMACE DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKACNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2
A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické
Direct Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
PARCIÁLN LNÍ ROVNICE
PARCIÁLN LNÍ DIFERENCIÁLN LNÍ ROVNICE VE ZPRACOVÁNÍ OBRAZU Autor práce: Vedoucí práce: Anna Kratochvílová Ing.Tomáš Oberhuber Zadání Najít vhodný matematický model pro segmentaci obrazových dat Navrhnout
Konverze grafických rastrových formátů
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Konverze grafických rastrových formátů semestrální práce Jakub Hořejší Ondřej Šalanda V
Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz
Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo
3. Restrukturalizace nebo manipulace s údaji - práce s rastrovými daty
3. Restrukturalizace nebo manipulace s údaji - práce s rastrovými daty Většina systémových konverzí je shodná nebo analogická jako u vektorových dat. změna formátu uložení dat změny rozlišení převzorkování
ZPRACOVÁNÍ OBRAZU přednáška 4
ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
1. Polotóny, tisk šedých úrovní
1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně 1. ÚVOD...
5 OBSAH. ÚVOD... 7 2. ZÁKLADNÍ POJMY... 8 2. POČÍTAČOVÉ VIDĚNÍ... 8 2.2 REPREZENTACE OBRAZU... 9 2.3 ZPRACOVÁNÍ OBRAZU... 3. DIGITALIZACE OBRAZU... 3. VZORKOVÁNÍ... 3.2 KVANTOVÁNÍ... 2 4. FILTRACE A DETEKCE
Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28 2 FEKT Vysokého učení technického v
Reprezentace bodu, zobrazení
Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Pulzní (diskrétní) modulace
EVROPSKÝ SOCIÁLNÍ FOND Pulzní (diskrétní) modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Pulzní modulace
7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy
Kompresní metody první generace
Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese
VY_32_INOVACE_INF.10. Grafika v IT
VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky
Využití lokálních filtrací ve zpracování obrazu
26.10.2012, Brno Připravil: Václav Sebera, Martin Brabec, Jan Baar Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství strana 2 Obsah a) Vyhlazování obrazu Odstranění šumu Abstrakce (zjednodušení)
Číslo DUM: VY_32_INOVACE_04_01 Autor: Mgr. Ivana Matyášková Datum vytvoření: březen 2013 Ročník: prima Vzdělávací obor: informační technologie
Číslo DUM: VY_32_INOVACE_04_01 Autor: Mgr. Ivana Matyášková Datum vytvoření: březen 2013 Ročník: prima Vzdělávací obor: informační technologie Tematický celek: počítačová grafika Název projektu: Zvyšování
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských
Jaroslav Tuma. 8. února 2010
Semestrální práce z předmětu KMA/MM Odstraňování šumu z obrazu Jaroslav Tuma 8. února 2010 1 1 Zpracování obrazu Zpracování obrazu je disciplína zabývající se zpracováním obrazových dat různého původu.
8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMEDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
IVT. Úprava fotografií. 8. ročník
IVT Úprava fotografií 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu
5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data
Počítačová grafika 1. Úvod do grafiky, základní pojmy. Rastrová grafika.
Počítačová grafika 1 Úvod do grafiky, základní pojmy. Rastrová grafika. Proč vůbec grafika? Zmrzlinový pohár s převažující červenou barvou. Základem je jahodová zmrzlina, která se nachází ve spodní části
Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha
Videosignál A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer 1 Základ CCTV Základ - CCTV (uzavřený televizní okruh) Řetězec - snímač obrazu (kamera) zobrazovací jednotka (CRT monitor) postupné
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ZS 2013 ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních