Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze
|
|
- Viktor Sedlák
- před 8 lety
- Počet zobrazení:
Transkript
1 Hledání hran Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická, katedra kybernetiky hlavac@ciirc.cvut.cz Poděkování: O. Drbohlav, T. Svoboda a T. Werner za několik obrazovek této přednášky. Osnova přednášky: Hrany, motivace, původ, hranový bod, definice obou. Tři rodiny hranových operátorů. Hledání hran pomocí konvoluce. Marr-Hildrethové hranový detektor. Cannyho hranový detektor. Prostor měřítek.
2 Předzpracování obrazu, úvod 2/45 Vstupem je obraz, výstupem je obraz. Obraz se neinterpretuje. Cíl Potlačit zkreslení (např. korekce geometrického zkreslení díky zakřivenosti Země u družicového snímku). Zvýšení kontrastu (jen pro prohlížení obrazu člověkem). Odstranění šumu. Zdůraznění charakteristik obrazu pro další zpracování, např. nalézání hran.
3 Motivace. Proč jsou hrany užitečné? 3/45 Neurofyziologický a psychofyzický výzkum ukazuje, že pro zrakové vnímání vyšších organismů jsou důležitá místa v obraze, kde se náhle mění hodnota jasu (významné hrany). Místa v obraze odpovídající významným hranám nesou více informace než jiná místa v obraze. Hrany často invariantní (do jisté míry) vůči změně osvětlení a místa pohledu. Tato místa chceme buď zvýraznit, tj. zvýraznit vysoké kmitočty operací ostření nebo detekovat významné hrany. Detekce má časté použití v počítačovém vidění: rozpoznání obsahu obrazu, 3D rekonstrukce scény, problém korespondence, sledování aj.
4 Příklad kresba 4/45 Pablo Picasso, La Sieste 1919
5 Příklad detekce hran 5/45
6 Původ hran 6/45 Hrany vznikají díky nespojitostem v normále k povrchu, hloubce, odrazivosti povrchu (barvě), odleskům nebo nespojitostech v osvětlení (stínům). surface normal discontinuity depth discontinuity highlights surface color/texture shadow/illumination discontinuity
7 Hrana, hranový bod 7/45 Hrana (angl. edge) je dána vlastnostmi obrazového elementu a jeho okolí; popisuje rychlost změny a směr největšího růstu obrazové funkce f(x, y); je vhodnou diskrétní aproximací gradientu f(x, y), je tedy vektorem o dvou složkách. Hranový bod (angl. edgel = edge element, jako pixel = picture element) je bod s velkým modulem gradientu; některé body v obraze jsou tedy hranové a jiné ne.
8 Typické jasové profily v okolí hranových bodů 8/45 g g g g skoková støechová linie zašumìná hrana x x x x První tři profily zleva, tj. skoková hrana, střechová hrana, tenká linie, jsou idealizované. Poslední profil odpovídá zašuměné hraně, kterou lze najít v reálném obrázku. V MATLABu je k dispozici funkce improfile.
9 Tři kategorie hranových detektorů 9/45 Detektory založené na 1. hledání maxim prvních derivací (Roberts, Prewittová, Sobel apod., Canny); 2. hledání průchodů druhých derivací nulou (Marr-Hildreth); 3. lokální aproximaci obrazové funkce parametrickým modelem, např. polynomem dvou proměnných (Haralick).
10 Gradient obrazové funkce Gradient spojité funkce n proměnných je vektor parciálních derivací f(x 1,..., x n ) = ( f,..., f ) x 1 x n 10/45 Pro n = 1 (jednorozměrný signál) je roven obyčejné derivaci. Pro n = 2 má velikost (nezávisí na natočení souřadné soustavy) a směr (daný jediným úhlem ψ), f(x, y) = ( f ) 2 + x ( ) 2 ( f f, ψ = arctan y x / ) f. y Derivace f(x, y) ve směru (u, v) je (u, v) f(x, y) = ( u f x, v f ) y.
11 Diskrétní aproximace derivace 11/45 Dva přístupy aproximace derivací diskrétní funkce, vzniklé vzorkováním spojité funkce (oba vedou k podobným algoritmům): rekonstruuj spojitou funkci a spočítej její derivaci; aproximuj derivace konečnými diferencemi. Nejjednodušší aproximace jednorozměrné funkce v celočíselném bodě i: Nesymetrická (vlastně odpovídá derivaci v bodě i 12): f (i) f(i) f(i 1). Symetrický tvar možný, ale zanedbává vliv pixelu i: f (i) f(i + 1) f(i 1). V termínech konvoluce: f [ 1, +1] f nebo f [ 1, 0, +1] f.
12 Citlivost derivace na šum 12/45 jasový profil s šumem jeho derivace Kde je v derivovaném zašuměném obrazu hrana?
13 Před derivováním nutno vyhladit 13/45
14 Záměna derivace a konvoluce 14/45 Díky komutativitě derivace a konvoluce lze oba operátory zaměnit, díky asociativitě je lze shrnout do jediného operátoru: d dh (h f) = dx dx f.
15 Vztah hrany a hranice 15/45 Nalezené hranové body v obraze lokálními operátory se někdy používají pro hledání hranic objektů. Za předpokladu, že objektu odpovídá oblast homogenního jasu, jsou body hranice právě pixely s vysokou hodnotou gradientu. Hranové body se spojují do hranic, a proto se směr hrany Φ někdy definuje jako kolmý na směr gradientu Ψ. èerná 0 gradient bílá 255 smìr hrany
16 Derivace a konvoluční masky /45 Roberts, jen 2 2 Prewittová Sobel Robinson Kirsch Laplacián (aproximuje 2. všesměrovou derivaci)
17 Robertsův operátor v okolí /45 Konvoluční masky h 1 = [ ], h 2 = [ ]. Velikost gradientu se počítá podle g(x, y) g(x + 1, y + 1) + g(x, y + 1) g(x + 1, y). Nevýhoda: velká citlivost na šum, protože okolí použité pro aproximaci je malé.
18 Operátor Prewittové 18/45 h 1 = , h 2 = , h 3 = ,...
19 Příklad, operátor Prewittové hrany v severním směru 19/45 originál západní gradienty prahované hrany = severní hrany
20 Příklad, operátor Prewittové hrany ve východním směru 20/45 originál severní gradienty prahované hrany = východní hrany
21 Sobelův operátor 21/45 h 1 = , h 2 = , h 3 = ,...
22 Robinsonův operátor 22/45 h 1 = , h 2 = , h 3 = ,...
23 Kirschův operátor 23/45 h 1 = , h 2 = , h 3 = ,...
24 Laplacián obrazové funkce 24/45 2 f(x, y) = 2 f(x, y) x f(x, y) y 2 2 f je skalár, oproti gradientu přicházíme tedy o směr hrany. Podobně jako velikost gradientu f, také 2f je invariantní vůči natočení souřadné soustavy. Pro monotónně rostoucí jasovou funkci f(x, y) v příslušném okolí je Laplacián nulový tam, kde je velikost gradientu f(x, y) maximální průchody nulou (angl. zero-crossings).
25 Diskrétní aproximace Laplaciánu Diskrétní druhá derivace je složením (konvolucí) prvních derivací: 25/45 d 2 [ 1, +1] [ 1, +1] = [+1, 2, +1] dx2 Diskrétní Laplacián je součtem druhých parciálních derivací: = Alternativní používané tvary (8-okolí, zvýraznění středu): , ,
26 Ostření Laplaciánem 26/45 Někdy nechceme detekovat hranové body, ale pouze zvýraznit hrany (ostření). Laplacián je vhodný, neboť zdůrazňuje vysoké frekvence (srov. DoG) a je všesměrový.. originál Hrany (Laplace) Ostření (- 0,4 )
27 Detektor založený na 2. derivaci (Marr-Hildreth) Extrém 1. derivace funkce jedné proměnné (1D signálu) odpovídá místu průchodu 2. derivace nulovou hladinou. f(x) f (x) f (x) 27/45 x x x f(x) f (x) f (x) x (a) (b) (c) Pro funkce dvou proměnných to není totéž: do hry vstupuje Laplaceův operátor 2. x x
28 Odvození LoG operátoru 28/45 Laplacián 2, viz průsvitka 24, je ještě citlivější na šum než gradient opět kombinujeme s vyhlazením Gaussiánem G. Oba operátory lze spojit do jediného, označovaného jako LoG (Laplacian of Gaussian). Všimněte si použití asociativity operátorů. 2 (G f) = ( 2 G) f = LoG(f) Odvodíme analytický tvar 2 G. Zavedeme substituci x 2 + y 2 = r 2, která uvažuje rotační symetrii: G(r) = e r2 2σ 2, G (r) = 1 r2 r e 2σ σ2 2, G (r) = 1 ( ) r 2 σ 2 σ 2 1 e r2 2σ 2. Návrat k původním souřadnicím x, y a zavedení normalizačního koeficientu c 2 G(x, y) = c ( x 2 + y 2 σ 2 ) σ 4 e x2 +y 2 2σ 2.
29 2D operátory, s nimiž jsme se setkali 29/45 Gaussián x G y G 2 G 2 G x 2 y 2 Laplacián Gaussiánu
30 DoG jako aproximace LoG 30/45 Cílem je aproximovat LoG operátor (Laplacian of Gaussian), tj. 2G. Aproximovat lze pomocí diference dvou obrazů, které vznikly konvolucí s Gaussiánem o různém σ.
31 Jak počítat průchody nulou? 31/45 Při implementaci detektoru založeného na hledání průchodů nulou je třeba se vyhnout naivnímu řešení pomocí prahování LoG obrazu v intervalu hodnot blízkých k nule. Výsledkem by byly hodně nespojité hrany. Lepší je použít opravdový detektor průchodů nulou, např. v masce 2 2 s reprezentativním bodem třeba v levém horním rohu. Hrana se zde indikuje tehdy, pokud se uvnitř okna opravdu mění znaménko.
32 Příklad průchodů nulou 32/45 Originál DoG σ 1 = 0, 1 σ 2 = 0, 09 Průchody nulou Nevýhody: Příliš vyhlazeny ostré tvary. Například ostré rohy se ztrácejí. Snaží se spojovat hranové body do uzavřených křivek. Talíř špaget.
33 Odstranění nevýznamných hranových bodů 33/45 Průchody nulou Odstr. nevýzn. edgels LoG, σ = 0, 2
34 Biologické opodstatnění LoG operátoru 34/45 Sítnice je evolučně součást mozku. Probíhá v ní nejen zachycení světla (tyčinky, čípky), ale i předzpracování. Data jsou komprimována asi 1:100 omezná přenosová kapacita očního nervu. Kruhová receptivní pole. Jejich vnější část přispívá k odezvě opačným znaménkem než střed (tzv. uspořádání center-surround).
35 Problém volby měřítka vyhlazení (1) 35/45
36 Problém volby měřítka vyhlazení (2) 36/45 Jaké zvolit σ Gaussiánu při počítání derivací? Čím větší σ, tím... lepší potlačení šumu, více slabých hran zanikne, menší přesnost lokalizace hran. Problém není omezen na detekci hran. Je to obecný problém při detekci primitiv (lokálních vlastností) v obrazech (např. významných bodů). Často nás nezajímají detaily, i když nevznikly díky šumu. Jako bychom se chtěli podívat na obraz z větší dálky a detekovat jen významnější hrany (či jiná primitiva).
37 ... Prostor měřítek pro 1D signál 37/45 S rostoucím měřítkem σ hrana může zaniknout (spojením s jinou hranou), ale nová hrana se nikdy nevytvoří. Ve 2D: T. Lindeberg (1994) Scale-Space Theory in Computer Vision, Kluwer Academic Publishers/Springer, Dordrecht, Netherlands, 1994.
38 Cannyho hranový detektor 38/45 V jistém smyslu završení období hledání nejlepšího hranového detektoru. Používán pro většinu aplikací. Dostupné implementace. Algoritmus: 1. Najdi přibližně směry gradientu. 2. Pro každý pixel najdi 1D derivaci ve směru gradientu pomocí optimální masky spojující vyhlazení a derivaci. 3. Najdi lokální maxima těchto derivací. 4. Hranové body získej prahováním s hysterezí. 5. Proveď syntézu hran získaných pro různě velká vyhlazení (málokdy se používá).
39 Optimální lineární operátor pro detekci hran Předpokládán zjednodušený model: ideální schodová hrana; aditivní gaussovský a v každém pixelu stejný a nezávislý šum. Požadavky, které chceme maximalizovat: spolehlivá detekce (nalezeno co nejvíce existujících hran); dobrá lokalizace (malá chyba detekované pozice hrany); jednoznačná odezva (nalezeno co nejméně neexistujících hran). 39/45 skutečná nespolehlivě špatně nejednoznačně hrana detekovaná lokalizovaná detekovaná
40 Optimální lineární operátor pro detekci hran 40/45 Požadavky protichůdné: čím lepší detekce, tím horší lokalizace. Hledáme tedy nejlepší kompromis: optimalizujeme součin kritérií 1 a 2 a nakonec přidáme kritérium 3 (podrobnosti vynechány). Výsledek nelze napsat vzorečkem, ale je velmi podobný derivaci Gaussiánu.
41 Nalezení maxim první derivace v 1D Prahování je nevhodné (ledaže maxima jsou velmi ostrá). 41/45 threshold Správné je hledat lokální maxima derivace (non-maxima suppression). window Umožňuje subpixelovou (tj. lepší než celočíselnou) přesnost nalezení maxima: např. proložíme parabolu a analyticky spočítáme maximum.
42 Nalezení maxim gradientu ve 2D 42/45 Hledáme 1D maxima v (přibližném) směru gradientu. Funkci ve směru gradientu vzorkujeme mřížkou.
43 Nalezení hranových bodů prahováním s hysterezí 43/45 Chceme potlačit krátké (tj. typicky nevýznamné) řetězy hranových bodů, ale přitom zabránit fragmentaci dlouhých řetězů. Nelze dosáhnout jediným globálním prahem prahování dvěma prahy s hysterezí: slabší hranový bod zachováme pokud je součástí řetězu obsahujícího silnější body.
44 ... Problém volby měřítka vyhlazení 44/45
45 Spojování hranových bodů do úseček Filtrováno Laplaciánem. Průchody nulou. 45/45 Spojeno do úseček.
Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze
Hledání hran Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz
HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/35 HLEDÁNÍ HRAN Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac FYZIOLOGICKÁ MOTIVACE 2/35 Výsledky
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30
Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce
M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U
M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami rozpoznání objektů v obraze 2. Vyzkoušení detekce objektů na snímcích z kamery a MRI snímku ÚKOL
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Diskrétní 2D konvoluce
ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
DZDDPZ6 Filtrace obrazu. Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ6 Filtrace obrazu Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava Prostorová zvýraznění - filtrace Ohnisková operace, použití pohyblivého okénka (kernel),
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků lukas.mach@gmail.com Přílohy (videa, zdrojáky, ) ke stažení na: http://mach.matfyz.cz/sift Korespondence
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Jasové a geometrické transformace
Jasové a geometrické transformace Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně 1. ÚVOD...
5 OBSAH. ÚVOD... 7 2. ZÁKLADNÍ POJMY... 8 2. POČÍTAČOVÉ VIDĚNÍ... 8 2.2 REPREZENTACE OBRAZU... 9 2.3 ZPRACOVÁNÍ OBRAZU... 3. DIGITALIZACE OBRAZU... 3. VZORKOVÁNÍ... 3.2 KVANTOVÁNÍ... 2 4. FILTRACE A DETEKCE
REALIZACE HRANOVÉHO DETEKTORU S VYUŽITÍM VLNKOVÉ TRANSFORMACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Derivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
Digitální obraz, základní pojmy
Digitální obraz, základní pojmy Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická,
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
ANALÝZA A SEGMENTACE TOMOGRAFICKÝCH OBRAZŮ ANALYSIS AND SEGMENTATION OF TOMOGRAPHIC IMAGES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMUNICATION
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských
Omezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE PLZEŇ, 202 Pavel Jedlička TÉMA ČESKY: Předzpracování medicínských obrazů pro následnou segmentaci NÁZEV ANGLICKY:
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného
Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28 2 FEKT Vysokého učení technického v
Úpravy rastrového obrazu
Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Analýza pohybu. Karel Horák. Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok.
1 / 40 Analýza pohybu Karel Horák Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok. 2 / 40 Analýza pohybu Karel Horák Rozvrh přednášky:
Diferenciál a Taylorův polynom
Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Dodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Matematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
DIGITÁLNÍ FOTOGRAFIE
DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
1 Extrémy funkcí - slovní úlohy
1 Extrémy funkcí - slovní úlohy Příklad 1.1. Součet dvou kladných reálných čísel je a. Určete 1. Minimální hodnotu součtu jejich n-tých mocnin.. Maximální hodnotu součinu jejich n-tých mocnin. Řešení.
Hledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka
Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro
Změna koeficientů PDR při změně proměnných
Změna koeficientů PR při změně proměnných Oldřich Vlach oto pojednání doplňuje přednášku M. Šofera na téma Nalezení složek tenzoru napjatosti pro případ rovinné úlohy s povrchem zatíženým kontaktním tlakem
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMEDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ LOKALIZACE HERNÍCH NÁSTROJŮ DIPLOMOVÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
MATEMATIKA V MEDICÍNĚ
MATEMATIKA V MEDICÍNĚ Tomáš Oberhuber Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika pro život TOMÁŠ OBERHUBER (FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ MATEMATIKA
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39
Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 53
Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 53
Matematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ DETEKTOR OBJEKTŮ S VYUŽITÍM VLNKOVÉ TRANSFORMACE DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKACNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace
y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Analýza textury. Radim Šára Centrum strojového vnímání FEL ČVUT. DZO, R. Šára
Analýza textury Radim Šára Centrum strojového vnímání FEL ČVUT 1999 DZO, R. Šára DZO, R. Šára 1 Osnova prednášky 1. Co je to textura? 2. Motivační příklady. 3. Jak lze měřit vlastnosti textury? 4. Analytický
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5
Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt
To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
ZPRACOVÁNÍ OBRAZU přednáška 4
ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,