Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
|
|
- Milada Marešová
- před 8 lety
- Počet zobrazení:
Transkript
1 Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4
2 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality do -3 diskrétních funkcí f kartézských diskrétních proměnných (m,n (digitální fotoaparáty, skenery, Další obvyklé případy: - Sledování diskrétních procesů (počítačová tomografie - Použití jiných než pravoúhlých souřadnic (trojúhelníková, hexagonální síť, cylindrické souřadnice, Digitalizace obrazu se skládá ze součástí:. Vzorkování (prostorové rozlišení. Kvantifikace hodnot barev (radiometrické rozlišení Animované sekvence, film: 3. Časové rozlišení (obvykle 5snímků/s
3 Kvantifikace barev počet k možných hodnot jasové funkce záleží na bitové hloubce b: k= b lidské oko je schopno rozlišit okolo 5 úrovní jasu 3 4 } } } } 3 Úrovně jasu 56 jasových úrovní 4 jasových úrovní 3
4 Vzorkování vd: x(n=x(nt s n I T s perioda vzorkování Shannonův teorém: Vzorkovací frekvence f s musí být alespoň dvakrát vyšší než nejvyšší zajímavá frekvence f max obsažená v originálním (spojitém signálu f s > f max f s =/T s -> perioda vzorkování T s musí být alespoň dvakrát menší než nejmenší detail v obraze Metody vzorkování: Bodové vzorkování Plošné vzorkování -> supersampling 4
5 Alias efekt Co se děje, nerespektujeme-li Shannonův teorém? Příklad časového aliasingu: Vhodná volba periody vzorkování Limitní případ volby periody vzorkování Hodiny s jednou ručičkou: Nevhodná volba periody vzorkování -ALIAS 5
6 Alias efekt ve frekvenční oblasti (a Signal Sampling vlft.m x(t t (b Spectrum with sampling frequency fs (c Spectrum with sampling frequency fs X(f.5 X(f f..4.6 f Sampling period Ts=s Sampling period Ts=6s 6
7 Interpretace D frekv. spektra Spojitá Vzorec vzorkování Diskrétní Ts=s Diskrétní Ts=6s Vzorkovací fr. f s =/T s /= /6 čas t x n =n.t s =>n,, 47 Délka signálu T=48s N=T/T s N=48/=48,6, 47 =48/6=8 Normalizovaná frekvence f f=/t..t/t..t/t <, f k =k/t= k/(nt s =>k,/48,..,47/48 =>,,..,47 =,/(8*6,.,7/(8*6 =>,,..,7 Nyquist. Frekv. f max f max <f s / </=.5 </6/=/=.83 Frekvenční rozlišení v f Df= /(NT s =/48 =/(8*6=/48 Kruhová frekvence w=pf w k =pik/(nt s,p/48,..,p47/48 w <,pi =>k =>,,..,47 Frekv. rozl. v w Dw=pi/(NT s =p/48,p/(8*6,..,p7/(8*6 =>,,..,7 =p/(8*6 7
8 Alias efekt ve D = Moire efekt: Metody pro potlačení moiré efektu: - supersampling: posun alias efektu k vyšším frekv.. vzorkování s vyšší frekvencí než je požadavek. filtrace 3. podvzorkování - stochastické vzorkování: Mění alias efekt na šum - jittering použití neuniformní vzorkovací mřížky 8
9 D Fourierovy transformace (Plural! Čas aperiod. period. spoj. Fourier Transform Fourier Series aperiod. diskr. Discrete Time Fourier Transform Discrete Fourier Transform period. spoj. diskr. Frekvence Vzorkování v jedné oblasti Periodizace v druhé oblasti 9
10 Poznámky k diskrétní Fourierově transformaci (reálného signálu x(n F(x(n X(k (D DFTje lineární: F(a.x(n+b.y(n=a.F(x(n+b.F(y(n (D Operace konvoluce (kruhová v jedné oblasti vede na násobení v druhé oblasti: x(n.y(n x(k*y(k; x(n*y(n X(k.Y(k (D Jak x(n tak X(k jsou periodické funkce s periodou N (D Jak x(n tak X(k jsou sudé funkce (D Amplitudové frekv. spektrum je čárové pouze při speciální volbě N, n p a T s : kde n p...počet vzorků jedné periody, N... délka signálu: N=n p.t s a r.n=s.t s kde n,s I (přirozená čísla D DFT je separabilní: F(k,l=F(k,F(l
11 Spektrum x(n X(k, X ( k = Re( k + i.im( k Amplitudové frekvenční spektrum: X k = Re( k + Im( k Fázové frekvenční spektrum: ϕ(k = Re( k atan( Im( k
12 DFT vybraných signálů Co se děje v druhé oblasti, když v jedné je signál omezený? Omezený signál v jedné oblasti Nekonečný signál v druhé oblasti Co se stane v druhé oblasti, když v jedné oblasti doplním signál nulami na jinou délku? Doplnění nulami v jedné oblasti Hustší (Více hodnot v druhé oblasti!! Nezvyšuje se však frekvenční rozlišení!!
13 Kruhová konvoluce a její použití 3 = = = = = ( ( ( ( ( * ( ( N j N j n h j n x j n h j x n h n x n y y(n=idft(x(k.h(k Použitím algoritmu FFT je možno urychlit výpočet: - Možno využít i při výpočtu korelačních koeficientů ftext.m
14 Návrh D číslicových filtrů frf.m nejčastěji rozšířením D číslicového filtru do D Typy číslicových filtrů: FIR (finite impulse response filters IIR (infinite impulse response filters M N i j H ( z, z = cij zz i= j= Lineární filtrace Nelineární filtrace H ( z, z = M a i = j = M b N a N b i = j = c c ij ij z z i i z z j j Použití D Z-transformace - nevhodné Vhodné rozšíření D filtrů do D 4
15 Potlačení rušivých složek Co považujeme za šum? Rušivou informaci, která ztěžuje porozumění požadované informaci (vše kromě požadované informace pro popis se užívají statistické veličiny obvyklé typy šumu: Metody pro potlačení šumu: -Lineární (pro aditivní šum -Nelineární (např. mediánová filtrace - Gaussovský -Bílý - Výstřelový (salt&pepper - - Additive -Multiple obrazok.m fs.m -V prostorové oblasti (např. průměrování -Ve frekv. oblasti (n. dolnopropustné filtry Ideální dolnopropustný filtr: H ( u, v = { for for ( u ( u + v + v > D D kde D mezní frekvence 5
16 Detekce hran Co je to hrana? Takové místo v obraze, kde se náhle mění hodnota obrazové funkce Odpovídá vysokým frekvencím Matematickým nástrojem pro popis změny je derivace Proč chceme v obrázcích detekovan hrany? -> diference v diskrétním př. První krok při segmentaci obrazu, detekci objektů, klasifikaci, Zvýraznění kontur Metody detekce hran: -V prostorové oblasti (Roberts, Sobel, Laplacian, -Ve frekvenční oblasti (hornopropustné filtry - Obvykle následuje prahování Fs.m Ideální hornopropustný filtr: H ( u, v = { for for ( u ( u + v + v > D D kde D mezní frekvence 6
17 Příkazy Matlabu pro práci s filtry fft D rychlá Fourier. transformace fftshift posunutí počátku frekv. Souřad. systému remez návrh D filtru freqz frekvenční charakteristika D filtru ftrans návrh D fitlru z D freqz frekvenční charakteristika D filtru filter D filtrace conv D konvoluce fspecial návrh speciálních D filtrů edge detekce hran obrazok.m 7
18 Příklad Filtrace obrazu Podrobte daný obrázek D filtraci zvoleným filtrem. Zobrazte amplitudovou frekv. charakteristiku filtru % Filtrace obrazu Original delete(get(,'children' clear [x,map]=imread('busek.bmp'; I=indgray(x,map;imshow(I,8 h=fspecial('unsharp'; J=filter(h,I; figure( imshow(matgray(j,8 figure(3 freqz(h,[3 3]; Upraveny obraz Magnitude 5 F y - - F x 8
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
VíceDigitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
VíceLineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceČíslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceLineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceDETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
VíceLineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
VíceLineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
VíceČíslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
VíceAnalýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
VíceModelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
VíceMultimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Vícezákladní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
VíceKTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
VícePořízení rastrového obrazu
Pořízení rastrového obrazu Poznámky k předmětu POČÍTAČOVÁ GRAFIKA Martina Mudrová duben 2006 Úvod Nejčastější metody pořízení rastrového obrazu: digitální fotografie skenování rasterizace vektorových obrázků
Více1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
VíceFiltrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
VíceČíslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
VíceDIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od
DIGITÁLNÍ OBRAZ JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah fáze zpracování obrazu reprezentace obrazu digitalizace obrazu
VíceZákladní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
VíceFILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
VíceFourierova transformace ve zpracování obrazů
Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický
VíceTransformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Více31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
VíceA7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
VíceGrafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
VíceFourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
VíceOperace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
Více31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
VíceJasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Vícedoc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
VíceVlastnosti Fourierovy transformace
Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy
VíceZákladní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VíceP7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
VíceNPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
Vícepolyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2
A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace
Více1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
VíceZpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
VíceFlexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
VíceA2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,
VíceZáklady a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
VíceIng. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické
VíceReprezentace bodu, zobrazení
Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje
VíceVOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
VíceA7B31ZZS 4. PŘEDNÁŠKA 13. října 2014
A7B31ZZS 4. PŘEDNÁŠKA 13. října 214 A-D převod Vzorkování aliasing vzorkovací teorém Kvantování Analýza reálných signálů v časové oblasti řečové signály biologické signály ---> x[n] Analogově-číslicový
VíceFouriérova transformace, konvoluce, dekonvoluce, Fouriérovské integrály
co byste měli umět po dnešní lekci: používat funkce pro výpočet FFT (Fast Fourier Transformation) spočítat konvoluci/dekonvoluci pomocí FFT použít FFT při výpočtu určitých integrálů vědět co je nízko\vysoko
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
VíceObraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
VíceAkustika. 3.1 Teorie - spektrum
Akustika 3.1 Teorie - spektrum Rozklad kmitů do nejjednodušších harmonických Spektrum Spektrum Jedna harmonická vlna = 1 frekvence Dvě vlny = 2 frekvence Spektrum 3 vlny = 3 frekvence Spektrum Další vlny
Více2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
VícePředmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VíceOperace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
VíceROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI
Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a
VíceBiofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
VíceÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
VíceUŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
VíceA/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
VíceFOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
VíceSpektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
VíceOmezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
VíceMĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
VíceROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI
Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná
Více" Furierova transformace"
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník
VíceÚvod do medicínské informatiky pro Bc. studium. 6. přednáška
Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),
Více1. Přednáška: Obecné Inf. + Signály a jejich reprezentace
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování
VíceB2M31SYN SYNTÉZA AUDIO SIGNÁLŮ
B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ zima 2016-2017 Roman Čmejla cmejla@fel.cvut.cz B2, místn.525 tel. 224 3522 36 http://sami.fel.cvut.cz/sms/ A2B31SMS - SYNTÉZA MULTIMEDIÁLNÍCH SIGNÁLŮ zima 2015-2016 http://sami.fel.cvut.cz/sms/
VíceDSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
VíceSpektrální analyzátory
Radioelektronická měření (MREM, LREM) Spektrální analyzátory 6. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Spektrální analyzátory se používají pro zobrazení nejrůznějších signálů
VíceAnti Aliasing. Ondřej Burkert. atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka
Anti Aliasing Ondřej Burkert atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka Úvod Co je to anti - aliasing? Aliasing = vznik artefaktů v důsledku podvzorkování při vzorkování (sampling) obrazu podvzorkování
VíceOpakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
VíceNáhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
VíceKepstrální analýza řečového signálu
Semestrální práce Václav Brunnhofer Kepstrální analýza řečového signálu 1. Charakter řečového signálu Lidská řeč je souvislý, časově proměnný proces. Je nositelem určité informace od řečníka k posluchači
VíceVYUŽITÍ MATLABU K POTLAČOVÁNÍ ADITIVNÍHO ŠUMU POMOCÍ FILTRACE A POMOCÍ VLNKOVÉ TRANSFORMACE. Gabriela Eisensteinová, Miloš Sedláček
VYUŽITÍ MATLABU K POTLAČOVÁNÍ ADITIVNÍHO ŠUMU POMOCÍ FILTRACE A POMOCÍ VLNKOVÉ TRANSFORMACE Gabriela Eisensteinová, Miloš Sedláček České vysoké učení technické v Praze Fakulta elektrotechnická, katedra
VíceKomprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.
Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje
VíceFiltrace snímků ve frekvenční oblasti. Rychlá fourierova transformace
Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace
Více- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr.
- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr. Řada zdrojů informace vytváří signál v analogové formě,
VícePočítačové sítě. Lekce 5: Základy datových komunikací
Počítačové sítě Lekce 5: Základy datových komunikací Přenos dat V základním pásmu Nemodulovaný Baseband V přeloženém pásmu Modulovaný Broadband Lekce 5: Základy datových komunikací 2 Přenos v základním
Více8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
VíceLaboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
VíceWaveletová transformace a její použití při zpracování signálů
Waveletová transformace a její použití při zpracování signálů BÍLOVSKÝ, Petr 1 1 Katedra elektrických měření, VŠB-TU Ostrava, 17. listopadu, Ostrava - Poruba, 708 33, petr.bilovsky@vsb.cz Abstrakt: Wavelet
VíceZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Více1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
VícePočítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28 2 FEKT Vysokého učení technického v
VíceDiskrétní 2D konvoluce
ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí
VíceOsnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
Více[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
VíceSYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
VícePrimární zpracování radarového signálu dopplerovská filtrace
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace
VíceVyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
Více4. MĚŘENÍ HARMONICKÝCH Úvod
4. MĚŘENÍ HARMONICKÝCH 4.1. Úvod ČSN EN 61000-4-7 ed. 2: Elektromagnetická kompatibilita (EMC) - Část 4-7: Zkušební a měřicí tecnika - Všeobecné směrnice o měření a měřicíc přístrojíc armonickýc a meziarmonickýc
Více