F - Jednoduché stroje
|
|
- Kristýna Vítková
- před 9 lety
- Počet zobrazení:
Transkript
1 F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na
2 ± Jednoduché stroje Jednoduché stroje Jednoduchými stroji nazýváme ve fyzice taková zařízení, která nám práci usnadní, ale ne ušetří. Znamená to tedy, že při použití jednoduchého stroje bude velikost vykonané práce jako kdybychom ji vykonali bez něj. Pouze si zpravidla vykonání této práce rozložíme do většího časového úseku a tím si tedy práci usnadníme. Mezi jednoduché stroje patří: Nakloněná rovina Páka Kladka pevná Kladka volná Kladkostroj Kolo na hřídeli Klín Šroub 1. Nakloněná rovina h... výška nakloněné roviny l... délka nakloněné roviny a... úhel nakloněné roviny F... gravitační síla působící na těleso (= tíha tělesa) F t... tlaková síla na podložku F p... pohybová síla ve směru nakloněné roviny Celková gravitační síla působící na těleso se rozkládá na složku tlakovou a na složku pohybovou. Úhel nakloněné roviny je a. Tento úhel se promítá i do rovnoběžníku sil - na základě pravidla, že dva úhly, které mají na sebe kolmá obě ramena, jsou shodné. Platí: sina = h/l sina = F p/f proto h/l = F p/f h F p = F. l Podle tohoto vzorce můžeme vypočítat, jakou silou je těleso "taženo" po nakloněné rovině směrem dolů. Je zcela zřejmě menší než síla, kterou by těleso bylo "taženo" svisle dolů, tedy síla volného pádu. Pokud nebudeme uvažovat tření na nakloněné rovině, pak stejně velkou silou jako je těleso "taženo" směrem dolů ho budeme muset táhnout směrem nahoru (viz zákon setrvačnosti). A to jsme potřebovali pro výpočty vědět. Ukázkový příklad: Příklad 1: 1 z 10
3 Potřebujeme zvednout bednu o hmotnosti 60 kg na plošinu nákladního automobilu (do výšky 1 metr). O kolik se zmenší síla, kterou potřebujeme na zvednutí bedny, jestliže místo toho, abychom ji zvedali svisle vzhůru, použijeme k vytažení prkno délky 3 metry? Tření vzniklé při posunu bedny zanedbejme. Řešení: m = 60 kg g = 9,81 m/s 2 h = 1 m l = 3 m DF =? (rozdíl sil) F = m. g F = 60. 9,81 = 588,6 F = 588,6 N h F p = F. l 1 F p = 588,6. 3 F p = 196,2 N DF = F - F p = 588,6-196,2 DF = 392,4 N = 400 N (po zaokrouhlení) Potřebná síla se použitím nakloněné roviny zmenší o 400 N. 2. Páka Páka je vlastně tyč podepřená v jednom bodě. a, b... ramena sil (vzdálenosti působiště síly od osy otáčení) l... délka tyče F 1, F 2... síly působící na koncích ramen páky Na páce obecně nastává rovnováha, jestliže platí: F 1. a = F 2. b Pozn.: Součin síly a jejího ramene je tzv. Moment síly. Udává se v jednotkách newtonmetr [N.m] Druhy pák: 1. Páka dvojzvratná (viz horní obrázek) 2. Páka jednozvratná 2 z 10
4 Pozn.: Páka dvojzvratná může být navíc ještě rovnoramenná. Užití páky v praxi: Stavební kolečko, zvedání těžkých předmětů, nůžky, louskáček na ořechy, sochor, atd. Ukázkový příklad: Příklad 2: Na jednom rameni páky působí ve vzdálenosti 24 cm od osy síla 300 N. Na druhém rameni páky působí síla 96 N. V jaké vzdálenosti od osy tato síla působí, nastane-li rovnováha na této páce? a = 24 cm F 1 = 300 N F 2 = 96 N b =? [cm] F 1. a = F 2. b F. 1 a b = F b = 96 b = 75 cm Síla působí ve vzdálenosti 75 cm od osy otáčení. 3. Kladka pevná Kladka pevná je jednoduchý stroj, který nám práci usnadňuje pouze v tom, že mění orientaci působící síly v opačnou. Tedy např. místo působení síly svisle vzhůru, síla působí svisle dolů. Rovnováha nastává, jestliže F = G Pozn.: Jedná se vlastně o zvláštní případ páky, kde ramena obou sil jsou shodná, proto se ve výpočtu vykrátí. 3 z 10
5 Užití: Např. zvedání materiálu na stavbě. 4. Kladka volná U kladky volné nastává rovnováha, jestliže síla, kterou zvedáme těleso, je poloviční velikosti než síla, kterou na totéž těleso působí gravitační síla Země. Platí tedy: F = G/2 Pozn.: V tomto případě ale dost často nezanedbáváme tíhu kladky, kterou pak připočítáváme k tíze tělesa. Užití: Např. vytahování závaží v hodinách, apod. 5. Kladkostroj Kladkostroj je jednoduchý stroj, který je složen nejméně z jedné kladky pevné a z jedné kladky volné. Pro rovnováhu platí vztah: G F = 2 n n je počet volných kladek Užití: Napínání trolejového vedení u tramvají nebo na železnici, apod. Ukázkový příklad: Příklad 3: Člověk má hmotnost 75 kg. Určete, jakou silou tlačí na zem, zvedá-li těleso o hmotnosti 135 kg pomocí kladkostroje složeného z jedné kladky volné a jedné kladky pevné. Hmotnost kladky a tření zanedbáváme. Hodnota tíhového zrychlení je 10 m/s 2. Řešení: 4 z 10
6 m 1 = 75 kg m 2 = 135 kg n = 1... počet kladek volných g = 10 m/s 2 F =? [N] Tažením za lano kladkostroje směrem svisle dolů na člověka působí síla, které je orientována svisle vzhůru. Zmenšuje tedy velikost skutečné působící síly člověka na podložku. G m2. g F1 = = 2n 2n F 1 = 2.1 F 1 = 675 N F = m 1. g - F 1 F = = 75 F = 75 N Člověk působí na podložku silou 75 N. 6. Kolo na hřídeli Kolo na hřídeli lze opět považovat za zvláštní případ páky. Jedná se o dvě soustředná kola s různým poloměrem. Podmínka pro rovnováhu je zde F 1. r 1 = F 2. r 2 Užití: Volant u auta, vodovodní kohoutek, rumpál, apod. Ukázkový příklad: Příklad 4: Kolo o poloměru 1,2 m je nasazeno na hřídel o poloměru 40 cm. Na hřídel působí těleso o hmotnosti 300 kg. Určete sílu působící na obvodu kola, která udrží břemeno v rovnováze. Ke tření nepřihlížíme. Řešení: r 1 = 1,2 m r 2 = 40 cm = 0,4 m m 2 = 300 kg g = 10 m/s 2 F 1 =? [N] F 1. r 1 = F 2. r 2 5 z 10
7 F 1. r 1 = m 2. g.r 2 m2. g. r2 F 1 = r ,4 F 1 = 1,2 F = N = 1 kn Na obvodu kola působí síla o velikosti 1 kn. 7. Klín Klín s jednostranným nebo dvoustranným úkosem je vlastně nakloněná rovina, na které působí síla rovnoběžně se základnou. Při dané síle, která působí na čelo klínu, jsou síly působící na bocích tím větší, čím menší je úhel klínu. Princip využití je založen i na značném tření mezi součástkami. Užití: Rozebíratelné spojování součástí (různé druhy kolíků, klínků), apod. 8. Šroub Šroubovici dostáváme navinutím nakloněné roviny tvaru pravoúhlého trojúhelníku na válec. Šroub je tedy vlastně nakloněná rovina, kde síla působí rovnoběžně se základnou (na obvodu válce) a břemeno rovnoběžně s výškou nakloněné roviny. Čím větší břemeno je třeba překonat, tím větší musí být průměr a tím menší musí být stoupání šroubu. 6 z 10
8 Užití: Lisy, svěrák, spojování různých předmětů. ± Nakloněná rovina - procvičovací příklady 1. Jak dlouhé prkno nejméně bys potřeboval(a), abys dopravil(a) vozík s pískem na rampu vysokou 1,5 m? Vozík s pískem má hmotnost 150 kg. Předpokládáme, že můžeme táhnout silou nejvýše 750 N. Tření zanedbáváme. Tíhové zrychlení je 9,81 m/s 2. 2,9 m 2. Na silnici se sklonem 6 % stojí osobní automobil o hmotnosti 900 kg. Udrželi byste ho při selhání brzd, aby se nerozjel, je-li člověk schopen vyvinout sílu o velikosti 800 N? Hodnota tíhového zrychlení je 9,81 m/s 2. Udrželi Na nakloněné rovině o výšce 30 cm a délce 1,2 m je těleso o tíze 20 N. Určete velikost síly, která na těleso působí. 5 N Auto jede po silnici, která má sklon 6 % (tzn., že silnice má na 100 m délky převýšení 6 m). Tíha auta je N. Jak velká výsledná síla F na auto působí? 720 N z 10
9 5. Sklon silnice se často udává v procentech. Silnice má sklon 8 %, což znamená, že na 100 m délky je její převýšení 8 m. Hmotnost automobilu je 720 kg. Jak velkou sílu je nutno překonat, aby se automobil samovolně nerozjel z kopce dolů? Tíhové zrachlení je 9,81 m/s N 730 ± Páka - procvičovací příklady 1. Na prkně 4 m dlouhém, podepřeném uprostřed, sedí na jednom konci chlapec, jehož hmotnost je 36 kg. Jak daleko od osy si musí sednout druhý chlapec o hmotnosti 48 kg, aby nastala na houpačce rovnovážná poloha? 736 1,5 m 2. Kámen je zvedán sochorem. Hmotnost kamene je 60 kg, vzdálenost od opěrného bodu ke kameni je 20 cm. Délka sochoru je 1 m. Určete sílu, kterou působí ruka na sochor. Hodnota tíhového zrychlení je 10 m/s 2. Pozn.: Při řešení příkladu je nutno si uvědomit, že sochor používáme jako jednozvratnou páku. 120 N Jak velkou silou se udrží na páce v rovnováze břemeno o hmotnosti 30 kg, které působí na páku ve vzdálenosti 50 cm od osy, působí-li síla 250 cm na opačné straně od osy a hmotnost páky je 5 kg? N 4. Houpačku tvoří prkno o délce 3 m podepřené uprostřed. Na jednom konci sedí chlapec, jehož hmotnost je 20 kg. Jakou hmotnost v kilogramech má druhý chlapec, který se posadil 1,2 m od osy otáčení, a houpačka je ve vodorovné rovnovážné pololze? kg 5. Na tyč délky 2 m působí na koncích síly 8 N a 12 N. Kde musíme tyč podepřít, aby nastala rovnovážná poloha? 742 Ve vzdálenosti 1,2 m od toho konce, kde působí síla 8 N. 6. Určete, jak velkou silou musíme působit na jednom konci 1 m dlouhé páky při zvedání vrat, opírá-li se páka druhým koncem o zem a vrata na ní spočívají ve vzdálenosti 20 cm od osy? Pákou musíme překonávat sílu 800 N N 7. Jak daleko od kloubu nůžek musíme vložit ocelový plech, je-li k jeho přestřižení zapotřebí síla 400 N? Síla, kterou působí ruka na nůžky, ve vzdálenosti 50 cm od kloubu nůžek, je rovna 30 N ,75 cm 8 z 10
10 8. Člověk nese břemeno o hmotnosti 1,5 kg zavěšené na konci hole podepřené uprostřed o rameno. Druhý konec hole drží rukou. Určete, jak velkou silou působí hůl na rameno. Tíhu hole zanedbáváme. Hodnota tíhového zrychlení je 10 m/s N 9. V jaké vzdálenosti od osy musíme na páce působit silou 50 N, abychom udrželi v rovnováze těleso o hmotnosti 100 kg zavěšené ve vzdálenosti 4 cm od osy? Hodnota tíhového zrychlení je 10 m/s cm ± Kladka pevná, kladka volná, kladkostroj - procvičovací příklady 1. Lano pevné kladky se přetrhne působením síly N. Jakou největší hmotnost může mít těleso zvedané pomocí této kladky? 600 kg Jak velkou silou působí pevná kladka na hák, na kterém visí, zvedáme-li kladkou břemeno o hmotnosti 20 kg a je-li tato kladka v rovnováze? 400 N Na obrázku je zařízení, kterému se říká Archimedův kladkostroj. Určete, jaký vztah platí mezi hmotnostmi m 1 a m 2, je-li kladkostroj v rovnováze. 748 m 2 = m 1/6 9 z 10
11 4. Soustava na obrázku se skládá z páky a z pevné kladky. Hmotnost každého závaží na obrázku je 100 g. Páka je ve vodorovné rovnovážné poloze. Určete velikost síly F N 5. Určete, jak velkou silou zvedneme na volné kladce těeso o hmotnosti 75 kg? Hmotnost volné kladky zanedbáváme. Hodnota tíhového zrychlení je 10 m/s N 6. Volná kladka má hmotnost 2 kg, těleso na ní zavěšené má hmotnost 38 kg. Určete, jak velkou silou udržíte na kladce těleso v rovnováze. Ke tření nepřihlížíme. Hodnota tíhového zrychlení je 10 m/s N ± Kolo na hřídeli - procvičovací příklady 1. Jak dlouhá musí být klika rumpálu, jehož hřídel má průměr 20 cm, aby se břemeno o hmotnosti 350 kg udrželo v rovnováze silou 250 N? Hodnota tíhového zrychlení je 10 m/s cm 2. Rumpál má průměr hřídele 12 cm a délku kliky 72 cm. Zvedáme jím těleso o hmotnosti 240 kg. Určete, jak velkou silou musíme při zvedání působit na kliku, zanedbáváme-li tření? Hodnota tíhového zrychlení je 10 m/s N z 10
12 Obsah Jednoduché stroje 1 Nakloněná rovina - procvičovací příklady 7 Páka - procvičovací příklady 8 Kladka pevná, kladka volná, kladkostroj - procvičovací příklady 9 Kolo na hřídeli - procvičovací příklady :59:20 Vytištěno v programu dosystem - EduBase (
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Jednoduché stroje JEDNODUCHÉ STROJE. January 11, 2014. 18. jednoduché stroje.notebook. Páka
Jednoduché stroje Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Název materiálu:
Páka - výpočty rovnováhy na páce, výpočet momentu síly, rovnováha momentů sil
Páka - výpočty rovnováhy na páce, výpočet momentu síly, rovnováha momentů sil Teoretická část: Páka je jednoduchý stroj, ve fyzice velmi důležitý pojem pro působí síly či celé skupiny sil. Ve své podstatě
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických
Moment síly, páka Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/
Moment síly, páka Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Síla může mít otáčivé účinky. Působící síla může měnit otáčivý pohyb tělesa, můžeme těleso roztočit, zbrzdit nebo zastavit.
Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL
Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL:
Obsah 23_Otáčivý účinek síly... 2 24_Podmínky rovnováhy na páce... 2 25_Páka rovnováha - příklady... 3 PL: Otáčivý účinek síly - řešení... 4 27_Užití páky... 6 28_Zvedání těles - kladky... 6 29_Kladky
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Základní škola Karviná Nové Město tř. Družby 1383
Základní škola Karviná Nové Město tř. Družby 1383 Projekt OP VK oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.4.00/21.3526 Název projektu:
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
F - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_177_Jednoduché stroje AUTOR: Ing.
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_177_Jednoduché stroje AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 7., 15.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika,
Páka, rovnovážná poloha páky
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_3IS Pořadové číslo: 10 Ověření ve výuce Třída: 7.A Datum: 4.12.2012 1 Páka, rovnovážná poloha páky Předmět: Ročník:
Tematický celek: Jednoduché stroje. Úkol:
Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání
Zadání projektu Páka, kladka
Zadání projektu Páka, kladka Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 29. 11. Vlastní práce 2 vyučovací hodiny 1. a 6. 12. Prezentace 8.12. Test a odevzdání portfólií ke kontrole
Mechanická práce, výkon a energie pro učební obory
Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
M - Řešení pravoúhlého trojúhelníka
M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Dynamika pro učební obory
Variace 1 Dynamika pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Newtonovy pohybové zákony
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
VIDEO K TÉMATU:
Jednoduche stroje VIDEO K TÉMATU: http://www.ceskatelevize.cz/porady/10319921345-rande-s-fyzikou/video/ Jednoduché stroje jsou využívány především kvůli tomu, aby lidem usnadnily práci. Základním principem
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Moment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
04 - jednoduché stroje
04 - jednoduché stroje Úkolem jednoduchých strojů (bez motoru, baterie či jiného pohonu) je usnadnit člověku práci, ovšem vždy za určitou cenu. Typicky převádějí působení síly do výhodnějšího směru, nebo
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
F - Dynamika pro studijní obory
F - Dynamika pro studijní obory Určeno jako učební text pro studenty dálkového studia a jako shrnující a doplňkový text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven
58. ročník fyzikální olympiády kategorie G okresní kolo školní rok
58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
F - Elektrická práce, elektrický výkon, účinnost
F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
FYZIKA Mechanika tuhých těles
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
STATIKA Fakulta strojní, prezenční forma, středisko Šumperk
STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první
F - Sériové a paralelní zapojení spotřebičů
F - Sériové a paralelní zapojení spotřebičů Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Archimédův zákon, vztlaková síla
Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)
BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
Archimédův kladkostroj. Tematický celek: Jednoduché stroje. Úkol:
Název: Archimédův kladkostroj. Tematický celek: Jednoduché stroje. Úkol: 1. Archimédův kladkostroj charakteristika stroje. 2. Navrhněte konstrukci robota zvedáku s Archimédovým kladkostrojem. 3. Určete
VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8.
VY_52_INOVACE_2NOV51 Autor: Mgr. Jakub Novák Datum: 17. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Nakloněná rovina Metodický
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
Příklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
III. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Datum: Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.
Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_463 Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad
Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
Čepové tření Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice.
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika, fyzika Téma: Diferenciální kladkostroj výpočet délky l zdvihu břemene Věk žáků: 15-19
Fyzika. 6. ročník. měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 5 F časová dotace: 2 hod / týden Fyzika 6. ročník F 9 1 02 uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí LÁTKY A TĚLESA látka, těleso,
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.
Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)
BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ
DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla
Páka pohledem do starých učebnic a k dědovi na půdu
Páka pohledem do starých učebnic a k dědovi na půdu Kateřina Balcarová Jednoduché stroje jsou taková zařízení, která nám umožňují určitou práci vykonat s menší námahou, zmenšují sílu potřebnou k jejímu
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
03 - síla. Síla. Jak se budou chovat vozíky? Na obrázku jsou síly znázorněny tak, že 10 mm odpovídá 100 N. Určete velikosti těchto sil.
1 03 - síla Síla Tato veličina se značí F a její jednotkou je 1 newton = 1 N. Často se zakresluje jako šipkou (vektorem), kde její délka odpovídá velikosti síly, začátek jejímu působišti a šipka udává
1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
M - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Metodický list. Ověření materiálu ve výuce: Datum ověření: 25. 03. 2013 Třída: VII. B Ověřující učitel: Mgr. Martin Havlíček
Projekt: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Metodický list Zařazení materiálu:
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Příklady: 7., 8. Práce a energie
Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Newtonovy pohybové zákony
Newtonovy pohybové zákony Zákon setrvačnosti = 1. Newtonův pohybový zákon (1. Npz) Zákon setrvačnosti: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, jestliže na něj nepůsobí jiná tělesa (nebo
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Moment síly Statická rovnováha
Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt