1.5.2 Mechanická práce II
|
|
- Antonín Bartoš
- před 9 lety
- Počet zobrazení:
Transkript
1 .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a odlahou, odruhé očítej s koeficientem tření f = 0,5. m = 50k s = 5m f = 0,5 W =? W =? Použijeme klasický vzorec ro ráci W = s. V rvním říadě (ři zanedbání třecí síly) je síla nutná k řemístění bedny nulová (když není tření, stačí na řemístění libovolně malá síla). Ve druhém říadě, musíme ůsobit silou, která je stejně velká jako třecí síla, která brání v řesunu krabice. a) W = s = 0 5J = 0 J b) W = s dosadíme: = t = Nf = mf W = s = mfs W = s = mfs = ,5 5J = 50 J Pokud bychom zanedbali ůsobení třecí síly, k řesunutí krabice by nebylo nutné vykonat žádnou ráci. Pokud budeme třecí sílu uvažovat, k řesunutí krabice by bylo třeba vykonat ráci 50 J. Pedaoická oznámka: Značná část studentů se v bodě a) nedokáže smířit s tím, že by za sílu dosazovala nulu a tak za sílu dosadí většinou kolmou tlakovou sílu od odložky. Tato chyba je dobrým odrazovým můstkem k následující diskusi. Prvním čím se tuto chybu snažím vyvracet je orovnání výsledků obou bodů, kde ři šatném ostuu vychází v bodě a) větší ráce než v bodě b), což je zjevný nesmysl. Ještě se zastavíme u ředchozího říkladu. Na bednu neůsobí ouze naše síla, kterou ji řesunujeme, ůsobí na ni i další tři síly: ravitační, síla odložky a tření. Konají i tyto síly ři osunování bedny ráci? Platí ro ně vzorec W = s? Gravitační síla a síla odložky ráci zřejmě nekonají. Působí i na rovnoměrně se kutálející kuličku, ři jejímž ohybu se ráce nekoná. Třecí síla ráci zřejmě koná. Kdyby bedna už jela, tření by ji zastavilo, čímž by změnilo stav krabice a vykonalo by ráci. Tento druh ráce se trochu liší od ráce, kterou vykonává člověk ři osunutí bedny. Člověk se snažil změnu (řesun bedny) uskutečnit, zatímco tření změně brání. Ani ro jednu ze zmiňovaných sil vzorec W = s nelatí něco jsme zaomněli. Zatím jsme nijak nezohlednili fakt, že síla i osunutí jsou veličiny vektorové. Kromě velikosti mají i směr dolníme vzorec o úhel α (nebo jeho funkci), který oba vektory svírají (úhel oisuje vzájemnou olohu směrů dvou vektorů). Jakou z oniometrických funkcí oužijeme? cosα, rotože ro α = 90 (síla je kolmá na osunutí) se ráce nekoná (a latí cos90 = 0 ).
2 Mechanickou ráci koná těleso ři řesunu jiného tělesa o dráze s za ůsobení síly. Její velikost vyjadřuje vztah W = s cosα, kde α je úhel, který svírá síla se směrem osunutí. Pokud je ůsobící síla rovnoběžná se směrem osunutí, latí cosα = a člen cosα můžeme ve vzorci vynechat. Př. : Při řemístění bedny do vzdálenosti 30 m jsi vykonal ráci 00 J. Jakou silou jsi musel těleso tahat, jestliže síla, kterou jsi bednu táhl: a) měla směr osunutí tělesa, b) svírala s osunutím tělesa úhel o velikosti α = 30? s = 3m W = 00 J α = 0 α = 30 =? =? V obou říadech stačí vyjádřit ze vzorce sílu a dosadit do vzniklého vztahu. W = s cosα W = s cos α W 00 a) = N 70 N s cosα = 30 cos 0 = W 00 b) = N 80,8 N s cosα = 30 cos30 = Při řesouvání bedny jsme museli tahat silou 70 N (v říadě síly rovnoběžné se směrem osunutí) nebo 8 N (v říadě síly svírající s osunutím úhel α = 30 ). Př. 3: Letí na Tebe míč a Ty ho chytíš. Jaké je znaménko ráce, kterou konal během chytání míč? Jaké je znaménko ráce, kterou jsi konal Ty? Během chytání se míč ohybuje ještě směrem k nám. Míč ůsobí silou směrem k nám (ve směru svého ohybu) ráce konaná míčem je kladná. My ůsobíme na míč směrem od nás (roti ohybu míče) ráce konaná námi je záorná.
3 Př. 4: Stěhovák tlačí o vodorovné rovině bednu. Na bednu ůsobí tyto síly: stěhovák silou r ve směru ohybu, třecí síla t roti směru ohybu, ravitační síla svisle dolů a tlaková síla od odložky svisle nahoru. Jaké je znaménko ráce, kterou koná každá z těchto sil? r směr osunutí t 90 W = s cosα K vyřešení říkladu oužijeme obrázek. Práce se očítá omocí vzorce znaménko ráce tedy závisí na velikosti úhlu α. a) Síla rukou r síla ůsobí ve směru ohybu bedny α = 0 cosα = ráce konaná stěhovákem má kladné znaménko (je to rozumné, stěhovák zůsobuje ohyb, změnu a koná tedy kladnou ráci). b) Třecí síla t síla ůsobí roti směru ohybu bedny α = 80 cosα = ráce konaná třecí silou má záorné znaménko (je to rozumné, třecí síla se snaží zabránit změně, a tedy koná záornou ráci). c) Gravitační síla síla ůsobí kolmo na směr ohybu bedny α = 90 cosα = 0 ráce konaná ravitační silou je nulová. d) Síla odložky síla ůsobí kolmo na směr ohybu bedny α = 90 cosα = 0 ráce konaná silou odložky je nulová. W = s cosα není nejideálnějším vzorcem ro výočet ráce. Na Dodatek: Ani vzorec vysokoškolské úrovni se oužívá vzorec W = s, který omocí skalárního násobení (nám zatím neznámá oerace s vektory) umožňuje určit vykonanou ráci římo ze složek obou vektorů. Všechny vzorce, které jsme odvodili, jsou jenom důsledky vlastností této matematické oerace. Př. 5: Vozík s nákladem o celkové hmotnosti 50 k je třeba zvednout do výšky m. Urči ráci, kterou řitom vykonáme okud: a) vozík zvedneme kolmo vzhůru, b) vozík vyvezeme o nakloněné rovině o úhlu 0 a tření zanedbáme, c) vozík vyvezeme o nakloněné rovině o úhlu 0 a budeme uvažovat koeficient tření f = 0, 05. Ve všech bodech očekávej, že ůsobíme silou ve směru osunutí. a) vozík zvedneme kolmo vzhůru 3
4 Směr síly je rovnoběžný se směrem osunutí. W = s = h = mh = 50 0 J = 3000 J m b) vozík vyvezeme o nakloněné rovině o úhlu 0 a tření zanedbáme r d m = = = m = 50 0 sin 0 N = 53 N r Směr síly je rovnoběžný se směrem osunutí. W = s Síla, kterou musíme táhnout vozík nahoru, musí vyrovnat rovnoběžnou složku ravitační síly. h h Táhneme vozík o celé délce nakloněné roviny: = d = = m = 5,85 m d sin 0 W = s = 53 5,85J = 3000 J h Obecně: W = s = m = mh = 50 0 J = 3000 J c) vozík vyvezeme o nakloněné rovině o úhlu 0 a budeme uvažovat koeficient tření f = 0,05. r t d m = + = + f = m + m cosα f = r t k Směr síly je rovnoběžný se směrem osunutí. W = s Síla, kterou musíme táhnout vozík nahoru, musí vyrovnat rovnoběžnou složku ravitační síly a tření. = 50 0 sin cos 0 0,05 N = 584 N h h Táhneme vozík o celé délce nakloněné roviny: = d = = m = 5,85 m d sin 0 W = s = 584 5,85J = 343J h h h W = s = ( m + m cosα f ) = m + m cosα f = Obecně: cosα f = mh + mh = mh( + f cotα ) = 50 0 ( + 0,05cot 0 ) J = 34J 4
5 Pedaoická oznámka: Je takřka neuvěřitelné, jaké rocento žáků se v bodech b) a c) vůbec nezamyslí nad zadáním úlohy, choí se nabídnutého úhlu a tuě dosadí do vztahu W = s cosα. Kvůli tomu, je tento říklad velmi důležitý. Jeho druhou výhodou je nutnost ostuného výočtu, kdy si žáci naíšou vztah W = s, a ak zvlášť řeší velikosti síly a dráhy. Př. 6: Zoakuj ředchozí výočty obecně ro hmotnost m, výšku h, úhel α a koeficient tření f. Závisí ráce, kterou vykonáme ři zanedbání tření, na úhlu nakloněné roviny? Závisí ráce, kterou vykonáme, na úhlu nakloněné roviny, když tření uvažujeme? Obecný vztah jsme získali už ři řešení ředchozího říkladu. h cosα f W = s = ( m + m cosα f ) = mh + mh = mh( + f cotα ) Vztah oisuje všechny řešené říady: zvedáme kolmo vzhůru ( α = 90 ) cotα = 0 ( cot 90 ) ( 0) W = mh + f = mh + = mh, zvedáme o nakloněné rovině, tření zanedbáváme ( f = 0 ) ( cotα ) ( 0 cotα ) W = mh + f = mh + = mh nezáleží na úhlu nakloněné roviny, ráce, kterou vykonáme, je stejná, jako když vozík zvedneme svisle vzhůru, zvedáme o nakloněné rovině, tření uvažujeme W = mh + f cotα záleží na úhlu nakloněné roviny, ráce, kterou vykonáme, ( ) je tím větší, čím menší je úhel nakloněné roviny. Shrnutí: Pokud směr ůsobící síly není rovnoběžný se směrem osunutí, musíme ři výočtu ráce zohlednit úhel, který solu tyto směry svírají - W = s cosα. 5
1.5.1 Mechanická práce I
.5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda
Nakloněná rovina III
6 Nakloněná rovina III Předoklady: 4 Pedagogická oznáka: Následující říklady oět atří do kategorie vozíčků Je saozřejě otázkou, zda tyto říklady v takové nožství cvičit Osobně se i líbí, že se studenti
Nakloněná rovina I
1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
1.5.5 Potenciální energie
.5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
1.3.3 Přímky a polopřímky
1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první
3. Silové působení na hmotné objekty
SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
5.1.7 Vzájemná poloha přímky a roviny
5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
3.1.8 Přeměny energie v mechanickém oscilátoru
3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
1.4.3 Zrychlující vztažné soustavy II
143 Zrychlující vztažné outavy II Předoklady: 1402 Př 1: Vaón SVARME rovnoměrně zrychluje dorava Rozeber ilové ůobení a tav čidel na nátuišti z ohledu MOBILů Čidla na nátuišti (ohled MOBILŮ ze zrychlujícího
Hledání parabol
7.5.1 Hledání arabol Předoklad: 751, 7513 Pedagogická oznámka: Studenti jsou o řekonání očátečních roblémů s aměti vcelku úsěšní, všichni většinou zvládnou alesoň rvních ět říkladů. Hodinu organizuji tak,
Kruhový děj s plynem
.. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
MECHANIKA KAPALIN A PLYNŮ
MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI
Nakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
F - Jednoduché stroje
F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní
8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
Laplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
5.1.8 Vzájemná poloha rovin
5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat
Řešený příklad:: Kloubový přípoj nosníku na pásnici sloupu s čelní deskou
Dokument: SX01a-CZ-EU Strana 1 z 9 Řešený říklad: Kloový říoj nosníku na ásnici slouu Vyracoval Edurne Nunez Datum březen 005 Kontroloval Abdul Malik Datum sren 005 Řešený říklad:: Kloový říoj nosníku
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
Předpjatý beton Přednáška 6
Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu
CVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
3.3.2 Brčko, pumpička, vývěva
3.3.2 Brčko, umička, vývěva Předoklady: 030301 Pomůcky: vývěva, siloměr (nebo váha) do 250 N, umička, svrasklé jablko, zkumavky, kádinka s vodou Př. 1: Školní vývěva má zvon o růměru 0,4 m. Jak velký tlak
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
Protokol o provedeném měření
Fyzikální laboratoře FLM Protokol o rovedeném měření Název úlohy: Studium harmonického ohybu na ružině Číslo úlohy: A Datum měření: 8. 3. 2010 Jméno a říjmení: Viktor Dlouhý Fakulta mechatroniky TU, I.
F4 SÍLA, PRÁCE, ENERGIE A HYBNOST
F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie
1.2.4 Racionální čísla II
.2.4 Racionální číla II Předoklady: 20 Pedagogická oznámka: S říkladem 0 je třeba začít nejozději 0 minut řed koncem hodiny. Př. : Sečti. Znázorni vůj otu graficky. 2 2 = = 2 Sčítáme netejné čáti muíme
Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)
Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:
7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin
Nakloněná rovina II
1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se
Způsobilost. Data a parametry. Menu: QCExpert Způsobilost
Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální
3.1.1 Přímka a její části
3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Model tenisového utkání
Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,
5.2.8 Zobrazení spojkou II
5.2.8 Zobrazení spojkou II Předpoklady: 5207 Př. 1: Najdi pomocí význačných paprsků obraz svíčky, jejíž vzdálenost od spojky je menší než její ohnisková vzdálenost. Postupujeme stejně jako v předchozích
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Úvěr a úvěrové výpočty 1
Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
Zákon zachování hybnosti I
8 Zákon zachování hybnoti I Předoklady: 007 Dneka e budeme zabývat třelbou z alných zbraní Při výtřelu zíká třela obrovkou rychlot a zbraň odkočí na druhou tranu Proč? Př : Na obrázku je nakrelena třela
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :
Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
Tematický celek: Jednoduché stroje. Úkol:
Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
Řešený příklad: Přípoj příhradového vazníku na sloup čelní deskou
Dokument: SX033a-CZ-EU Strana 1 z 7 Řešený říklad: Příoj říhradového vazníku na slou čelní Příklad ředstavuje výočet smykové únosnosti říoje střešního říhradového vazníku k ásnici slouu omocí čelní desky.
7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
Exponenciální funkce, rovnice a nerovnice
Eonenciální unkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální unkce) a) AN; b) NE; c) NE; d) AN; e) NE; ) NE; g) AN; h) NE a),; b),; c) ; d) ; e) ; ) e + b) - - - D()= R; H ()=( ; ) ; P neeistuje
23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL:
Obsah 23_Otáčivý účinek síly... 2 24_Podmínky rovnováhy na páce... 2 25_Páka rovnováha - příklady... 3 PL: Otáčivý účinek síly - řešení... 4 27_Užití páky... 6 28_Zvedání těles - kladky... 6 29_Kladky
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
Lingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
7.5.1 Středová a obecná rovnice kružnice
7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,