NMR spektroskopie biologicky aktivních molekul

Rozměr: px
Začít zobrazení ze stránky:

Download "NMR spektroskopie biologicky aktivních molekul"

Transkript

1 NMR spektroskopie biologicky aktivních molekul

2 Jak vidí současné a budoucí uplatnění NMR spektroskopie profesor Richard Ernst. Medicine Biochemistry Nobel prize in chemistry 1991 Chemistry Physics J.W. Emsley: NMR started as the plaything of the physicists, it became the favourite toy of the chemists and finally went on to seduce biochemists.

3 Kurt Wüthrich Nobel Price Winner in Chemistry 2002 G. Wagner, K. Wüthrich Sequential resonance assignments in protein 1 H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor. J. Mol. Biol. 155,

4 1. Jaké typy biologický aktivních molekul? peptidy a proteiny nukleové kyseliny oligosacharidy 2. Jaký typ informace může být pomocí NMR získán? identifikace substrátu prostorová struktura molekuly studium dynamického chování systému prostorová struktura komplexu zkoumání vazby ligandu a substrátu

5 První historicky dochované NMR spektrum proteinu. Saunders M., Wishnia A. and Kirkwood J.G: J.Am.Chem.Soc. 79, 3289 (1957).

6 900 MHz magnet firmy Varian 900 MHz magnet firmy Bruker 900 MHz 1 H NMR spektrum lysozymu

7 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

8 Příprava vzorku proteinu pro NMR měření 1. Získání DNA proteinu 2. Příprava plasmidové DNA 3. Exprese rekombinantního proteinu v E.Coli 4. Izolace a čištění 5. Zakoncentrování vzorku 6. Testování vzorku na dlouhodobou stabilitu 7. Zopakování procesu s médiem obohaceným o izotopy 13 C, 15 N, případně i 2 H

9 Vzorek pro NMR experimenty Úspěšné řešení bezpodmínečně vyžaduje kvalitní spolupráci mezi NMR spektroskopiky a biochemiky! Vzorek musí zůstat aktivní a nedenaturovaný během NMR experimentů! rozpouštědlo ph pufr teplota aditiva koncentrace stabilita H 2 O, resp % H 2 O a 5-10% D 2 O kompromis mezi minimalizací chemické výměny mezi signály labilních protonů a signálem vody a optimem pro studovaný protein ( ) fosfátový pufr neobsahuje žádné protony acetátový pufr (nutno připravit deuterovaný) podle požadavků studovaného materiálu (15 40 C) nutná aditiva je možné zaměnit za deuterovaná analoga pro NMR experimenty musí být v rozsahu alespoň mm, vzorek nesmí podléhat agregaci, koagulaci, sebezničení v tomto konc. rozmezí nutná dlouhodobá stabilita v rozsahu minimálně několika týdnů

10 Srovnání sbalené a nesbalené struktury WVQPI 107 AA (12 kda) IMMCS správně sbalená forma proteinu 83 AA (9 kda) WVQPI 107 AA (12 kda) IMMCS nesbalená forma téhož proteinu δ( 1 H) ppm 1 H- 15 N korelace v oblasti amidických vodíků (vzorek nespecificky obohacen 15 N) δ( 15 N) δ( 1 H) ppm ppm

11 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

12 Biomolekulární NMR spektroskopie: měřená jádra 1 H 13 C 15 N 2 H vysoké přirozené zastoupení (99.98%) vysoká citlivost (1.00) malá disperze chemických posunů NMR signálů (~15.0 ppm) velká disperze chemických posunů NMR signálů (~200.0 ppm) nízké přirozené zastoupení (1.108%), možné uměle navýšit až na 100% nízká citlivost (1.76x10-4 ), po 100%ním izotopovém obohacení (1.59x10-2 ) menší počet atomů než 13 C střední disperze chemických posunů NMR signálů (~30.0 ppm) (oproti 13 C nezávislost na typu aminokyseliny) nízké přirozené zastoupení (0.37%), možné uměle navýšit až na 100% velmi nízká citlivost (3.85x10-6 ), po 100%ním izotopovém obohacení (1.04x10-3 ) používá se pro speciální účely

13 Potlačení signálu vody Proč H 2 O? 1. Voda je fyziologické prostředí 2. Nelze použít D 2 O z důvodů chemické výměny s amidickými protony. Signál H 2 O je násobně intenzivnější než odezva měřené molekuly. Metoda presaurace CW -ozařování 90 deg Během relaxační doby ozařujeme signál vody slabým RF polem.

14 1 H spektrum proteinu po presaturaci H 2 O zbytkový signál H 2 O

15 WATERGATE: Metoda založena na selektivní manipulaci signálů vody a rozpuštěné látky spolu s gradientním echem. 90 deg 1 H τ 180 deg τ G G 1 G deg puls

16 Potlačení signálu vody: metoda WATERGATE

17 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

18 1D 1 H spektrum proteinu kuřecí lysozym 129 AA, M w = 14.6 kda methyl H NH-backbone aromatic H NH-SC aliphatic H CαH

19 Multidimensionální NMR spektroskopie jako nástroj pro zjednodušení spekter 1D 3D 2D F 1 ( 1 H) F 2 (X) F 2 ( 1 H) 4D F 1 ( 1 H/X) F 3 (X) F 3 ( 1 H) F 1 ( 1 H/X) Lepší rozlišení je ve vícedimenzionálních spektrech zajištěno využitím izotopového obohacení 15 N a 13 C. F 2 (X) F 4 ( 1 H) F 1 ( 1 H)

20 Přiřazování rezonancí NMR experimenty pro přiřazení signálů pracují se dvěma nebo třemi různými jádry najednou (experimenty s trojnásobnou rezonancí), tato jádra jsou navzájem zkorelována. Názvy takovýchto experimentů se tvoří podle typu jader, která korelují: HNCA koreluje amidický vodík s příslušným dusíkem a uhlíkem v pozici α. HN(CO)CA koreluje stejné typy atomů (jader) jako HNCA, ale přes CO. To naznačuje směr korelace, tj. H a N i-té aminokyseliny a C α aminokyseliny v pozici i-1. Směr přenosu magnetizace je v případě těchto experimentů H N C α a zpět. Experimenty se nazývají out and back Naproti tomu přenos magnetizace u experimentů např. CBCA(CO)NH začíná na atomu C Β (i-1) aminokyseliny a končí na amidickém H aminokyseliny následující, tj. experimenty out and stay.

21 Přiřazování rezonancí 13 C γ HNCA experiment 35Hz 13 C 13 H C 130Hz H β β β β 35Hz aminokyselinový zbytek I-1 35Hz aminokyselinový zbytek I 13 C 55Hz 13 C 15Hz α 15 N 11Hz 13 C 55Hz α 13 C H α 7Hz 90Hz H N 140Hz H α <1Hz

22 HNCA experiment Korelace ve spektru: H N i -N i -Cα i H N i -N i Cα i H x x φ 2 x x x x x x acq t 3 15 N φ 1 x φ 4 x x t τ τ 1 /2 t 1 /2 δ δ τ τ φ 4 dec x φ 3 x 13 C α t 2 /2 t 2 /2 13 CO x x přenos magnetizace vývojová perioda

23 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

24 Konstrukce multidimensionálních NMR spekter 3D HNCA F 2 ( 15 N ) I F 1 ( 13 C α ) F 2 ( 15 N ) I-1 F 3 ( 1 H N ) F 1 ( 13 C α ) F 3 ( 1 H N )

25 Sekvenční přiřazení hlavního řetězce HN(CO)CA HNCA missing crosspík

26 Přiřazování rezonancí 13 C γ HN(CO)CA experiment 35Hz 13 C 13 H C 130Hz H β β β β 35Hz 35Hz 13 C 55Hz 13 C 15Hz α 15 N 11Hz 13 C 55Hz α 13 C H α 7Hz 90Hz H N 140Hz H α <1Hz

27 Konstrukce multidimensionálních NMR spekter 3D HNCA/HN(CO)CA F 2 ( 15 N ) F 2 ( 15 N ) I F 1 ( 13 C) F 2 ( 15 N ) I-1 I-1 F 3 ( 1 H N ) F 1 ( 13 C) F 3 ( 1 H N )

28 Sekvenční přiřazení hlavního řetězce HN(CO)CA HNCA missing crosspík

29 Přiřazování rezonancí postranních řetězců H γ C γ H γ H γ C γ H γ H β C β H β H β C β H β C α C N C α C H α H N H α

30 Přiřazování rezonancí postranních řetězců ppm Kompletní přiřazení Prolinu 4 proteázy M-PMV pomocí hcch-cosy spektra H : ppm α H : ppm β2 Pro4CG-CB-HB2 H : ppm β3 Pro4CG-CB-HB3 H : ppm γ Pro4CG-CG-HG H : ppm δ2 Pro4CG-CD-HD2 H : ppm δ3 Pro4CG-CD-HD3 H H H H γ δ N H β α H H O 30 Pro4CB-CA-HA Pro4CB-CB-HB2 Pro4CB-CB-HB3 Pro4CB-CG-HG 30 H 3 C O D δ( 13 C) 50 Pro4CD-CG-HG Pro4CD-CD-HD2 Pro4CD-CD-HD3 50 F 2 ( 1 H) 60 Pro4CA-CA-HA Pro4CA-CB-HB2 Pro4CA-CB-HB3 60 F 1 ( 13 C) δ( 13 C) ppm F 3 ( 13 C)

31 Práce s extra velkými molekulami M w > 25 kda Práce s velkými molekulami způsobuje dvojí komplikaci velmi komplikovaná spektra rychlá spin-spinová relaxace R 2 = γ γ 2 2 H ( D) C 8r 6 CH h [ J ' s... f τ ( )] c γ H / γ D ~ 6.6 Řešení: výměna atomů vodíku za deuterium

32 Práce s extra velkými molekulami M w > 25 kda Exprese proteinu v růstovém médiu obohaceném o 13 C/ 15 N/ 2 H 13 C γ 35Hz CD 3 CD Hz C β HD β C β HD β C D 35Hz 13 55Hz 13 15Hz C α C H α D 7Hz 15 11Hz N 90Hz H N 35Hz 13 55Hz C α 140Hz H α D 13 C <1Hz N H C α D CO Teoreticky může být R 2 snížen až 44 násobně, prakticky většinou maximálně 15x.

33 Fully protonated versus perdeuterated EIN protein

34 Fully protonated versus perdeuterated EIN protein Missing crosspeaks are marked

35 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

36 Nukleární Overhauserův efekt r IS < 5Ǻ H H dipól - dipólová interakce mezi atomy σ IS µ 6 ο h γ τ c 6 = τ c ris π ω τ c 6 σ IS ris fi{} S = σcal r cal f cal r = r IS cal 6 σ IS - rychlost křížové relaxace, nárůstu NOE τ c - korelační čas r IS - meziatomová vzdálenost ω - pracovní frekvence NMR spektrometru Poměr intenzit NOE efektů f I {S}/f cal je úměrný poměru vzdáleností příslušných atomů vodíku pouze pro velmi krátké časy!!!

37 Převod intenzity NOE krospíků na vzdálenost mezi atomy. 1.8 Ǻ r 2.5 Ǻ 1.8 Ǻ r 3.5 Ǻ 1.8 Ǻ r 5.0 Ǻ Dolní mez :1.8 Ǻ Jedná se o součet vzdáleností van der Waalsovských poloměrů dvou interagujících atomů vodíku Horní mez : Nastavuje se podle intenzity příslušného krospíku. Pro větší molekuly se používá max. vzdálenost až 6 Å.

38 Editovaná NOESY spektra 4D 13 C/ 15 N-editované NOESY 15 N NOE 1 H 1 H 13 C J HN 15 N 13 C J HC 1 H 1 H 3D 15 N-editované NOESY 4D 13 C/ 15 N-editované NOESY 15 N= ppm 15 N= ppm 13 C= 45.8 ppm 15 N= ppm 13 C= 56.1 ppm G78 HN -G78 Hα G78 HN -S77 Hα

39 Nepřímá spin-spinová interakční konstanta Experimentální omezení dihedrálních úhlů Karplusova rovnice 3 J = A cos 2 Θ + Β cosθ + C Vztah mezi interakční konstantou a dihedrálními úhly peptidu H O N φ C Cα ψ H H Cβ χ 1 H χ 2 Cγ 3 J CO-NC α -H H-NC α -H H-NC α -CO H-NC α -C β ω C O 2 0 [Hz] Θ deg

40 Typické hodnoty interakčních konstant 3 J HH pro dihedrální úhel φ α-helix φ 60 deg 3 J 6 Hz typické nastavení pro úhel φ: 110 φ 10deg β-struktura skládaného listu φ 120 ο 6 J 9Hz typické nastavení pro úhel φ: 170 φ 70deg

41 Stereospecifické přiřazení diastereotopních atomů v C β H 2 skupinách -J αβ coupling -H N -H β NOE H β3 R H β2 H α CO H α CO H α CO R H β2 H β2 H β3 H β3 R N N tg (g - ) gt (t) gg (g + ) N J αβ = 9.5 cos 2 θ 1.6 cos θ (gt) 10 0 J αβ (gg) -60 (tg) J αβ2

42 Vodíkové vazby C O H N Měření: - výměnné experimenty s D 2 O - teplotní závislost výměnitelných protonů (NH, OH ) NMR experimenty:- malé molekuly -COSY - velké molekuly - 1 H- 15 N HSQC Z NMR experimentů je možné získat pouze informaci o donoru!! Akceptory jsou většinou určeny až z molekulárního modelování a výpočtů!!

43 Vodíkové vazby v pravidelných strukturách α-helix β-sheet

44 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty Obecné informace o molekule (primární struktura, kovalentní vazby ) NMR spektra Odhad přibližné struktury Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

45 Jak vše poskládat dohromady???? Omezení vzdáleností (NOEs) Omezení dihedrálních úhlů (interakční konst.) Info o kovalentní struktuře Cray T3E E = E + tot kin E pot Výpočetní algoritmus: Molekulární mechanika simulované žíhání s experimentálními omezeními (vzdálenosti, dihedrální úhly ) - molekula se ohřeje na vysokou teplotu ( K) - pomalu se ochladí na teplotu blízkou nule simulované žíhání v Kartézském prostoru (Newtonovy pohybové rovnice) simulované žíhání v prostoru torsních úhlů (Lagrangeovy rovnice)

46 Růstový modulátor Granulin 1e Cyprinus carpio

47 Růstový modulátor Granulin 1e Cyprinus carpio

48 Studium dynamických jevů proteinů pomocí NMR. Proč? Molekuly nejsou statické, vykonávají pohyby v různých časových škálách. Vypočtená statická struktura je často průměrem skutečných stavů molekuly. Funkce mnoha biologicky aktivních molekul závisína jejich flexibilitě. V roztoku (fyziologické prostředí) podléhají biologicky aktivní molekuly přirozeným pohybům, které nejsou v krystalové mřížce patrné. Výhoda NMR spektroskopie nad rentgenovou krystalografií.

49

50 Studium dynamických jevů proteinů pomocí NMR Vztah relaxační rychlostí k molekulárním pohybům v různé časové škále: NMR parametr časová škála podélná relaxace R s -1 podélná relaxace během spin-locku R 1ρ s -1 příčná relaxace R s -1 Měřená jádra: 1 H téměř se neměří (obtížně definovatelné) 15 N dynamika páteře proteinu (dobře měřitelné, dobře definovatelné) 13 C dynamika postranních řetězců i páteře (obtížněji měřitelné, dobře definovatelné) 2 H - měří se ve speciálních případech (CH 3, obtížněji připravitelný vzorek, není jednoduché měřit, dobře definovatelné

51 Zpracování výsledků Lipari-Szabóův přístup Pro analýzu je nutný model pohybu molekuly jako celku a jejích částí. Jeden z nejúspěšnějších je Lipari-Szabóův bezmodelový přístup ( modelfree approach) Předpoklady Lipari-Szabóova modelu: relaxace je modulována dvěma pohyby: globálním a lokálním oba pohyby jsou statisticky nezávislé globální reorientace je izotropní molekulární pohyb je charakterizován parametry: t M korelační čas globálního pohybu S 2 parametr uspořádanosti (hodnota 0-1) t e R ex korelační čas lokálního pohybu rychlost chemické (konformační) výměny

52 Experimentální uspořádání Relaxační parametry 15 N: Měřeny relaxační časy: spin-mřížka (podélná) T 1 spin-spin (příčná) T 2 krosrelaxační rychlost (NOE) 1 H - 15 N

53 Výsledky parametr uspořádanosti a konformační výměna R ex znamená příspěvek konformační výměny k relaxační rychlosti 1/T 2 1/T 2* = 1/T 2 + R ex

54 Interpretace výsledků měření dynamiky páteře HIV-1 PR Aminokyselinové zbytky podléhající rychlým pohybům v pikosekundové časové škále (1-100 ps) o velké amplitudě Aminokyselinové zbytky podléhající pomalým pohybům (konformační výměny v mikro- až milisekundové časové škále.

55 HIV-1 proteáza M-PMV proteáza (12 kda) Problém: Vyskytuje se M-PMV PR též jako homodimer nebo jen v monomerní formě? Metoda řešení pomocí NMR: Studium dynamiky proteinu.

56 Srovnání relaxačních vlastností 15 N proteáz HIV-1 a M-PMV M-PMV protease (C7/A, D26/N, C106/A) HIV-1 protease T T NOE Závěr: U proteázy viru M-PMV chybí čtyřvláknový ß-sheet ( ground floor ), který představuje hlavní stabilizační faktor homodimeru. M-PMV PR (12 kda) se vyskytuje jako monomer.

57 HIV-1 protease with indicated ground floor C C N N

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování

Více

Řešení struktury proteinů pomocí NMR spektroskopie

Řešení struktury proteinů pomocí NMR spektroskopie Řešení struktury proteinů pomocí NMR spektroskopie Využití NMR spektroskopie v jednotlivých oborech podle nositele Nobelovy ceny za chemii Prof. Richarda Ernsta: Medicine Biochemistry Chemistry Physics

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

Experimentální data pro určení struktury proteinu

Experimentální data pro určení struktury proteinu Experimentální data pro určení struktury proteinu přiřazení co největšího počtu rezonancí intenzita NOESY krospíků chemické posuvy J-vazby vodíkové můstky zbytková dipolární interakce... omezení vzdáleností

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Naše NMR spektrometry

Naše NMR spektrometry Naše NMR spektrometry Varian NMR System 300 MHz Varian INOVA 400 MHz Bruker Avance III 600 MHz NMR spektrometr magnet průřez supravodičem NMR spektrometr sonda Tvar spektra reálná část imaginární část

Více

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Řešení

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 3b Využití D experimentů k přiřazení složitější molekuly ppm ppm 10 1.0 1.5 15.0 130.5 3.0 135 3.5 140 4.0 4.5 145 5.0 150 5.5 155 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0.5.0 1.5 1.0 ppm 160.6.4..0

Více

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Richard Hrabal Laboratoř NMR spektroskopie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, tel. 220 443

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí Jméno a příjmení:_bohumil_dolenský_ Datum:_10.12.2010_ Fakulta:_FCHI_ Kruh:_ÚACh_ 1. Sepište seznam signálů 1 H dle klesajícího chemického posunu (včetně nečistot), uveďte chemický posun, multiplicitu

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Karplusova rovnice ve strukturní analýze J(H,H) = A + B cos f

Více

Základy NMR 2D spektroskopie

Základy NMR 2D spektroskopie Základy NMR 2D spektroskopie Jaroslav Kříž Ústav makromolekulární chemie AV ČR v.v.i. puls 1D : d 1 Fourierova transformace časového rozvoje odezvy dá 1D spektrum 2D: d 1 d 1 d 1 d 0 d 0 + in 0 d 0 + 2in

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Postup při interpretaci NMR spekter neznámého vzorku

Postup při interpretaci NMR spekter neznámého vzorku Postup při interpretaci NMR spekter neznámého vzorku VŠCT 2017, Bohumil Dolenský, dolenskb@vscht.cz Tento text byl vypracován pro projekt Inovace předmětu Semestrální práce oboru analytická chemie I. Slouží

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter LEKCE 2b NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Stanovení optické čistoty Enantiomery jsou nerozlišitelné v NMR spektroskopii není možné rozlišit enantiomer od racemátu!!! Enantiotopické

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Mgr. Zdeněk Moravec, Ph.D. Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem

Více

Význam interakční konstanty, Karplusova rovnice

Význam interakční konstanty, Karplusova rovnice LEKCE 9 Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TCSY T E E 1 E 1 T 0 6 T E 1 T 0 88 7 0 T E 0 0 E T 0 5 108

Více

Techniky přenosu polarizace cross -polarizace a spinová difuse

Techniky přenosu polarizace cross -polarizace a spinová difuse (3) jiri brus Techniky přenosu polarizace cross -polarizace a spinová difuse laboratory frame, spin rotating frame laboratory frame, spin Ω H B H ω, ω, ω 0, B H ω 0, Ω C B C ω B 0,, 0 ω B, B C B B,, Zvýšení

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Jména: Datum: Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Cílem laboratorního cvičení je prozkoumat interakce léčiva diclofenac s -cyklodextrinem v D 2 O při tvorbě komplexu

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

Spektrální metody NMR I

Spektrální metody NMR I Spektrální metody NMR I RNDr. Zdeněk Tošner, Ph.D. Hlavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní analýza organických

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1 Jan Sýkora LC/NMR Jan Sýkora (ÚCHP AV ČR) LC - NMR 1 H NMR (500 MHz) mez detekce ~ 1 mg/ml (5 µmol látky) NMR parametry doba

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

STANOVENÍ STRUKTURY LÁTEK

STANOVENÍ STRUKTURY LÁTEK STANOVENÍ STRUKTURY LÁTEK 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 (the wave) X-ray UV/VIS Infrared Microwave Radio Frequency (the transition) electronic Vibration Rotation Nuclear (spectrometer) X-ray UV/VIS

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje

Více

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Seminář NMR Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Osnova Úvod, základní princip Instrumentace magnety, měřící sondy, elektronika

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření Praktické příklady měření a interpretace chemické é výměny a relaxací A. Chemická výměna 1. Dynamická NMR - teplotně závislá 1D spektra. Výměnná spektroskopie - EXY (EXchange pectroscopy) Měření rychlostních

Více

Interakce fluoroforu se solventem

Interakce fluoroforu se solventem 18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

Laboratoř NMR Strukturní analýza a 2D NMR spektra

Laboratoř NMR Strukturní analýza a 2D NMR spektra Laboratoř NMR Strukturní analýza a 2D NMR spektra Místo: Laboratoř NMR, místnost A28, Kontakt: doc. Ing. Bohumil DOLENSKÝ, Ph.D., Ústav analytické chemie, Vysoká škola chemicko-technologická, Technická

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu Autor: martina urbanová, jiří brus Základní experimentální postupy NMR spektroskopie pevného stavu Obsah přednášky anizotropní interakce v pevných látkách techniky rušení anizotropie jaderných interakcí

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

Anizotropie fluorescence

Anizotropie fluorescence Anizotropie fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 6 1 Jev anizotropie Jestliže dochází k excitaci světlem kmitajícím v jedné rovině, emise fluorescence se často

Více

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Molekulární krystal vazebné poměry. Bohumil Kratochvíl Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,

Více

Magnetická rezonance (3)

Magnetická rezonance (3) Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2018 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion recovery

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz I v roztoku probíhá řada experimentů tak že,

Více

Magnetická rezonance (3)

Magnetická rezonance (3) Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman April 28, 2008 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci devadesátých let minulého století

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Chemická výměna. K ex K B

Chemická výměna. K ex K B Chemická výměna K ex K B Vliv chemické výměny na NMR spektrum Pomalá vs. rychlá chemická výměna Metody měření rychlosti chemické výměny a příklady: Dynamická NMR a příklad EXY a příklady Chemická výměna

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

Relaxace jaderného spinu

Relaxace jaderného spinu Relaace jaderného spinu ecitace relaace Relaační dob Metod měření relaačních dob Relaační mechanism Dipól-dipólová relaace Nukleární verhauserův efekt Příklad dnamika trisacharidu Relaační jev Relaace

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Vodík-vodíkový korelační dvou-dimenzionální experiment byl prvně navržen Jeanem Jeenerem na letní škole v Basko Polje už v roce 1971. Po pěti letech

Více

Stereochemie 7. Přednáška 7

Stereochemie 7. Přednáška 7 Stereochemie 7 Přednáška 7 1 ptická čistota p = [ ]poz [ ]max x 100 = ee = [R] - [S] [R] + [S] x 100 p optická čistota [R], [S] molární frakce R a S enantiomerů ee + 100 %R = ee + %S = ee + 100 - %R =

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 Obor 3 - chemie Autor: Martin Hejda MSŠCH, Křemencova 12 116 28 Praha 1, 3. ročník Zadavatel a vedoucí práce: Mgr. Miroslav Kašpar CSc. Fyzikální ústav AVČR Na Slovance

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter NMR a chiralita, posunová činidla Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR

Více

(9) X-X a X-Y korelace zvýšení spektrálního rozlišení

(9) X-X a X-Y korelace zvýšení spektrálního rozlišení (9) X-X a X-Y korelace zvýšení spektrálního rozlišení 90 ±y 1 H: CP Decoupling (TPPM) 13 C: 180 t t t 1 180 t t Acquisition t 2 ppm 6 1 11 15 17 9 5 3 4 13 2 19 7 140 6/ 7 7/ 6 160 180 200 220 240 260

Více

jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích

jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích Pt(0) komplexy jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích David Karhánek Školitelé: Ing. Petr Kačer, PhD.; Ing. Marek Kuzma Katalytické hydrogenace eterogenní

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu 1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty

Více

10A1_IR spektroskopie

10A1_IR spektroskopie C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více

P ro te i n o vé d a ta b á ze

P ro te i n o vé d a ta b á ze Proteinové databáze Osnova Základní stavební jednotky proteinů Hierarchie proteinové struktury Stanovení proteinové struktury Důležitost proteinové struktury Proteinové strukturní databáze Proteinové klasifikační

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci 80 a začátkem 90-tých let se v NMR

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D.

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každý čtvrtek od 10,00

Více

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment λ=21 cm 1) orbitální magnetický moment (... moment proudové smyčky) μ I S gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment 2 Zeemanův jev - rozštěpení spektrálních čar v

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

doc. Ing. Richard Hrabal, CSc.

doc. Ing. Richard Hrabal, CSc. doc. Ing. Richard rabal, CSc. NMR laboratoř, Vysoká škola chemicko-technologická v Praze, číslo dveří 42 telefon 220 443 805, e-mail hrabalr@vscht.cz) 15. říjen 2015 základy NMR spektroskopie přístrojové

Více

Relaxace II. a chemická výměna

Relaxace II. a chemická výměna Relaxace II. a chemická výměna excitace relaxace Relaxační mechanismy pokračování Dipól-dipólová relaxace Nukleární verhauserův efekt+ příklady hemická výměna + příklady Kvadrupolární interakce Multipólový

Více

Molekulární dynamika vody a alkoholů

Molekulární dynamika vody a alkoholů Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční

Více