CZ.1.07/1.4.00/ VY_32_INOVACE_02_F8 ARCHIMÉDÉS. Základní škola a Mateřská škola Nikolčice, příspěvková organizace
|
|
- Martin Pešan
- před 9 lety
- Počet zobrazení:
Transkript
1 CZ.1.07/1.4.00/ VY_32_INOVACE_02_F8 ARCHIMÉDÉS Základní škola a Mateřská škola Nikolčice, příspěvková organizace Mgr. Jiří Slavík
2 Archimédés Archimédova busta ze 3. století př. n. l. Archimédés ze Syrakus Narozen 287 př. n. l., Syrakusy, Sicílie (Velké Řecko). Zemřel 212 př. n. l., Syrakusy, Sicílie. Obor Matematika, fyzika (zvláště mechanika). Známý díky Archimédovu zákonu a dalším pracím v hydrostatice, principu páky, šnekovému čerpadlu atd. Archimédés ze Syrakus byl řecký matematik, fyzik, filozof, vynálezce a astronom. Je považován za jednoho z nejvýznamnějších vědců klasického starověku, za největšího matematika své epochy a jednoho z největších matematiků vůbec. Použil vykrývací metodu k výpočtu plochy segmentu paraboly (využil součtu nekonečné geometrické řady pravidelných ploch, kterými segment vyplnil), a předjal tak myšlenky integrálního počtu. Zabýval se metodou výpočtu délky kružnice a na svou dobu přesně odhadl číslo pí. Také definice spirály nesoucí jeho jméno a vzorce pro výpočet objemů těles byly na tehdejší dobu převratné. Na poli fyziky patří mezi jeho nejslavnější objevy ve statice (mechanická rovnováha, vysvětlení principu páky) a hydrostatice (Archimédův zákon). Navrhl a sestrojil mnoho vynálezů, sloužících pro potřeby jeho rodného města Syrakus, včetně šnekového čerpadla, kterým byla vybavena největší loď starověku Syrakusia. Některé legendární obranné stroje, které Archimédés vynalezl, byly v moderní době zrekonstruovány a ukázalo se, že mohly být funkční. Zrcadla, kterými měl podle legend zapalovat římské lodě, mezi ně ale nejspíše nepatří; pravděpodobnější teorie, kterou
3 podporoval i Leonardo da Vinci a Galén, je, že Archimédés použil k zapálení lodí parní kanón. o Život Bronzová socha Archiméda od Gerharda Thiema (1972) Archimédés se narodil roku 287 př. n. l. v sicilském přístavním městě Syrakusy. Datum jeho narození je založeno na byzantském letopisci Janu Tzetzovi, podle něhož Archimédés žil 75 let. [7] Archimédovým otcem byl údajně astronom jménem Feidias (Phedia). Plútarchos ve svých Životopisech slavných Řeků a Římanů tvrdí, že Archimédés byl příbuzný syrakuského krále Hieróna II. Nedochovaný Archimédův životopis byl sepsán jeho přítelem Herakleidem. Z této biografie cituje Eutokiovo Měření kruhu, avšak žádné další podrobnosti se o Archimédově životopisu ani o životopisci nedochovaly. V mládí Archimédés studoval v alexandrijském múseionu, kde poznal Eukleida, Eratosthena z Kyrény či Konóna ze Samu. - cite_note-13 Ačkoliv Archimédés po studiích odešel zpět do Syrakus, není vyloučeno, že se do Alexandrie někdy vrátil. V rodném městě působil Archimédés jako stavitel válečných strojů ve službách krále Hieróna. Nezajímal se však o praktické využití svých strojů ani o válku, jeho zájmem bylo technické řešení. Když Syrakusy během druhé punské války oblehli Římané, jeho válečné stroje, které naháněly Římanům hrůzu, se účastnily obrany města. Marcus Claudius Marcellus nakonec město dobyl po dvouletém obléhání, a poté byl Archimédés Římany zabit. Plútarchos nabízí dvě podání: podle jednoho římský legionář poručil Archimédovi jít s ním za generálem Marcellem, ale Archimédés odmítl jít dříve, než vyřeší svůj matematický problém. To vojáka rozzuřilo a Archiméda svým mečem probodl. Druhá Plútarchem nabízená možnost říká, že voják k Archimédovi přistoupil s úmyslem ho zabít, ale ten ho žádal, aby ještě počkal, než vyřeší svou matematickou úlohu. Voják ale neposlechl a zabil ho. Podle Valeria Maxima Archimédés vojáka požádal: Žádám tě, neruš mi mé kruhy, voják ale Archiméda probodl, aniž by věděl, o koho se jedná. Dalším možnou verzí je, že se Archimédés chtěl vzdát a odejít k Marcellovi, ale vojáci ho zabili, když si mysleli, že ve svých zavazadlech má cennosti. Marcellus byl zprávou o Archimédově smrti rozezlen, považoval ho za cenného a předem nařídil, aby se mu neubližovalo. Podle Cassia Diona, citovaného Janem Tzetzem, byl Archimédés Marcellem pohřben v rodinné hrobce a na pohřbu se účastnili významní Syrakusané a Římané. římský řečník Cicero popisuje Archimédův pomník jako sloup, na jehož vrcholu je zobrazen válec s vepsanou koulí; podle Plútarcha si to sám Archimédés přál mít na náhrobku. Když v roce
4 75 př. n. l. sloužil Cicero jako kvestor na Sicílii, ze zvědavosti začal pátrat po Archimédově hrobce, kterou po několika pokusech objevil poblíž Agrigentské brány v Syrakusách zanedbanou a zarostlou křovím. Cicero nechal hrobku a její okolí vyčistit a zrestaurovat. Ciceronův popis hledání hrobky i hrobky samotné je nejstarší její popis a také jediný, jehož autor ji viděl na vlastní oči. O obléhání Syrakus Římany a smrti Archiméda se zmiňuje 70 let po Archimédově smrti Polybios, z něhož čerpali Plútarchos a Livius. Prvním antickým autorem popisujícím Archimédovu smrt je Cicero, mezi dalšími pak jsou např. Vitruvius a Valerius Maximus, z východořímských pak Jan Tzetzes či Jan Zoranas. Archimédés byl zabit během druhé punské války římským vojskem pod vedením Marca Claudia Marcella při obraně svého rodného města. O jeho smrti se nám dochovala legenda, podle které odmítl po dobytí Syrakus následovat římského vojáka dříve, než dořeší matematický problém. To vojáka rozzuřilo a Archiméda zabil. Římský řečník Cicero o tři století poté údajně nalezl a popsal Archimédův hrob. Dílo Archimédés uskutečnil mnoho objevů v matematice a fyzice. Zatímco jeho ryze teoretické objevy byly známy jen úzkému kruhu odborníků, všeobecnou pozornost budil svými užitečnými technickými vynálezy. Archimédovi se připisuje kolem 40 vynálezů. Je po něm např. nazýván kladkostroj nebo vodní šnekové čerpadlo uvádí se však, že znalost těchto mechanismů spíše obnovil. Proslul i svou konstrukcí planetária. Jeho objevy přežily až dodnes, i když řada jeho knih se během času ztratila. Archimédés zřejmě mnoho neexperimentoval, spíše se oddával myšlení. Fyzika Archimédés zkoumal zákonitosti mechanické rovnováhy, a položil tak základy statiky pevných těles. Pod Eukleidovým vlivem se snažil o její axiomatizaci. Definoval řadu důležitých pojmů, jako těžiště nebo statický moment. Zabýval se principy činnosti jednoduchých strojů páky, kladky, nakloněné roviny, klínu a ozubeného kola a objevil a formuloval zákonitosti jejich rovnováhy. [30][28] Archimédés je považován i za zakladatele hydrostatiky. Zkoumal zákonitosti plování a hydrostatického vztlaku. Uvědomoval si nestlačitelnost vody a dokázal ji pravděpodobně využít pro zjišťování objemu nepravidelných těles. Pochopil význam pojmu hustota, přesně jej formuloval a pravděpodobně nalezl metodu jejího měření dvojím vážením. Formuloval Archimédův zákon. Ve svém díle O plovoucích tělesech též zkoumal stabilitu plování. Zejména se věnoval stabilitě plování ponořeného paraboloidu, který považoval za idealizaci lodního trupu.
5 Archimédés běhal zcela nahý syrakuskými ulicemi a volal Heuréká! Jeho objevy týkající se hustoty a vztlaku jsou tradovány i v anekdotické historce o zlaté koruně syrakuského krále. Archimédés možná použil princip vztlaku k ověření pravosti koruny Podle Vitruvia si nechal král Hierón II. zhotovit novou zlatou korunu ve tvaru vavřínového věnce a požádal Archiméda, aby zjistil, je-li vyrobena z ryzího zlata, a zda do ní nepoctivý zlatník nepřidal méně ušlechtilé kovy. Archimédés musel vyřešit problém bez poškození koruny, takže ji nemohl přetavit do pravidelného geometrického tvaru, u kterého by mohl spočítat objem, z hmotnosti pak určit i jeho hustotu a porovnat s hustotou zlata. Řešení ho prý napadlo při koupeli, když si všiml, že hladina stoupla, když se ponořil do vody. Uvědomil si, že může využít nestlačitelnost vody, a ponoří-li korunu do nádoby naplněné vodou až po okraj, bude objem přeteklé vody rovný objemu koruny. Podle legendy vyskočil z koupele, zcela nahý probíhal syrakuskými ulicemi a volal Heuréká, což znamená Nalezl jsem! ). Poté zjistil, že koruna byla vyrobena převážně z obyčejného kovu. To stálo zlatníka život. Příběh o zlaté koruně se nenachází v žádném z dochovaných Archimédových děl. Navíc proveditelnost popsané metody bývá zpochybňována, vzhledem k extrémní přesnosti, se kterou by musel být změřen objem přeteklé vody. Spekuluje se, že Archimédés mohl namísto toho použít jiné řešení, založené na Archimédově zákonu. Podle něj je těleso ponořené do kapaliny nadlehčováno silou rovnou tíze kapaliny tělesem vytlačené. Mohl tedy např. na vzduchu vyvážit na pákových vahách korunu ryzím zlatem a ponořit korunu i zlaté závaží do vody (viz obrázek vpravo). Kdyby koruna měla menší hustotu, měla by větší objem a byla více nadlehčována. Taková metoda by přitom byla dostatečně citlivá. Již Galileo Galilei
6 považoval za pravděpodobnější, že právě tuto metodu Archimédés použil, neboť kromě její velké přesnosti je navíc založena na zákoně objeveném a popsaném Archimédem. Zapalování lodí na dálku Ve 2. století syrský spisovatel Lúkianos napsal, že při obléhání Syrakus (asi př. n. l.) Archimédés zapaloval nepřátelské lodě na dálku. Z pozdější doby se dochovalo Anthémiovo tvrzení, že k tomu použil zrcadel. Archimédés mohl použít k zapalování nepřátelských lodí zrcadla O funkčnosti této zbraně se diskutovalo již v dobách renesance. Matematik René Descartes tehdy označil tvrzení za lživé. Moderní vědci zrekonstruovali pokus pouze za pomoci prostředků, které Archimédés mohl mít k dispozici a došli k názoru, že využití principu odrazu slunečních paprsků zrcadly a jejich zaměření do jediného bodu na lodi mohlo za určitých podmínek způsobit vzplanutí lodi. Praktickou zkoušku provedl roku 1973 řecký vědec Ioannis Sakkas. Pokus uskutečnil u námořní základy Skaramagas poblíž Athén. Použil 70 měděných zrcadel o rozměrech 1,5 1 metru. Zaměřil je na model římské válečné lodi z překližky ve vzdálenosti 50 metrů. Poté, co byla všechna zrcadla přesně zaměřena, začala loď hořet během několika sekund. Další praktickou zkoušku uspořádala v roce 2005 skupinka studentů z MIT. K pokusu použili 39 čtverečních metrů zrcadel, která zaměřili na dřevěný model lodi. Ten vzplanul jen tehdy, když bylo nebe bez mráčku a loď se asi deset minut nepohybovala. Nakonec učinili závěr, že za těchto podmínek mohla být zbraň funkční, ale vzhledem k tomu, že je moře od Syrakus směrem na východ, nemohlo být dosaženo energie potřebné k zapálení lodi. Na takto krátkou vzdálenost by bylo výhodnější použít jednodušších prostředků (např. zápalných šípů nebo katapultu). Proto bylo Lúkianovo tvrzení zpochybněno. Za pravděpodobnější dnes vědci považují možnost, že Archimédés použil k zapalování římských lodí parní kanón, vystřelující projektily na bázi látky známé jako řecký oheň. Tato teorie by více odpovídala Plútarchovu tvrzení, že Archimédova zbraň byla protáhlá, a zprávě Galéna, mluvící o pálícím zařízení, nikoliv o zrcadle; zastával ji pak též Leonardo da Vinci, který načrtl, jakou by zbraň měla mít podobu. Podle Cesare Rossiho z Neapolské univerzity mohl Archimédés vytvořit kanón, který by dokázal vystřelit asi šestikilové projektily rychlostí okolo 60 metrů za sekundu na vzdálenost až 150 metrů.
7 Další zbraní, o které se dochovaly legendy, je Archimédův dráp, jenž byl rovněž navržen k obraně města Syrakusy před nepřátelskými loděmi. Byl tvořen jeřábem, na kterém byl přivázaný kovový hák. Poté, co se za loď plovoucí poblíž hradeb zahákl, hák ji zvedl nahoru a tím ji převrátil. Současné pokusy potvrdily, že Archimédův dráp mohl být funkčním zařízením. Archimédův šroub Archimédův šroub umožňuje efektivnější čerpání vody Většina Archimédových prací z oboru strojírenství vznikla k uspokojení potřeb domovského města Syrakus. Řecký spisovatel Athenaeus z Naucratis popsal, jak král Hiéron II. pověřil Archiméda návrhem obří lodi Syracusie, která by mohla být použita pro luxusní cestování a převážení zásob. Syracusia byla údajně největší loď postavená v klasickém starověku. Podle Athenaeuse byla schopna pojmout 600 lidí a byla vybavena okrasnými záhony, tělocvičnou a chrámem zasvěceným bohyni Afroditě. Velmi důležitým prvkem na lodi byl Archimédův šroub, jehož úkolem bylo odstranění odpadní vody. Tvořila ho šikmo postavená trubka se zabudovanou spirálou těsně uloženou na hřídeli. Voda byla v kapsách tvořených závity držena gravitací a čerpání bylo prováděno otáčením hřídele. Čerpadla na principu Archimédova šroubu se užívá dodnes. Jeho velkou výhodou je jednoduchost a spolehlivost i při čerpání silně znečištěných kapalin. Příkladem mohou být šneková čerpadla v pražské čistírně odpadních vod. Matematika Z matematiky znal Archimédés vzorec pro součet nekonečné geometrické řady. Zjistil, že koule určitého průměru, válec a kužel, jejichž průměry základen a výšky jsou stejné jako průměr stejné koule, mají objemy v poměru 2:3:1. V geometrii zavedl původně negeometrické pojmy: těžiště a těžnice.
8 Archimédovská tělesa Jedno z archimédovských těles, kubooktaedr Archimédovské těleso je druh polopravidelného konvexního tělesa (z každého vrcholu vychází stejný počet hran) složeného ze dvou nebo více pravidelných mnohoúhelníků setkávajících se ve stejném vrcholu. Od platónského tělesa se odlišuje tím, že je složeno z více druhů mnohoúhelníků, od Johnsova tělesa tím, že se mnohoúhelníky setkávají ve stejném bodě. Těmito tělesy se Archimédés zabýval v jedné z nyní ztracených prací, které zmiňuje řecký matematik Pappos z Alexandrie ve svém díle Synagogé. Později se jimi zabýval i německý matematik a astronom Johannes Kepler, který ve svém díle Harmonices Mundi sepsal přehled třinácti archimédovských těles. Jeho definice hovoří o polopravidelných, trojrozměrných tělesech euklidovského prostoru, jejichž stěny tvoří pravidelné mnohoúhelníky dvou či více typů. Archimédés použil vyčerpávací metodu k přibližnému určení čísla pí Výpočet čísla pí Archimédés se zabýval určením přibližné hodnoty čísla π (pí) konstanty udávající poměr obvodu kruhu k jeho průměru, také nazývané Ludolfovo číslo Odkaz Po Archimédovi byla pojmenována řada objektů, na Měsíci například kráter (29,7 s.š., 4.0 W) a pohoří Montes Archimédés (25,3 s.š., 4.6 W). Také je po něm pojmenován asteroid 3600 Archimedes. Archimédův výkřik: Heuréka! je mottem Kalifornie, zde ovšem připomíná objev zlata v tomto regionu roku 1848.
9 Odpověz na otázky: 1. Z které země pocházel? 2. Žil před Kristem či po Kristu? 3. Proč vykřikl Heuréká a co tento výkřik znamená? 4. Kterým objevem přispěl k námořnímu válečnictví? 5. Jaký další Archimédův objev Tě zaujal? ZDROJE TEXTU A OBRÁZKU: Gerhard_Thieme_Archimedes.jpg Archimedovo_tepelne_zaruzeni_2.png
10
Teorie: Hustota tělesa
PRACOVNÍ LIST č. 1 Téma úlohy: Určení hustoty tělesa Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Teorie: Hustota tělesa Hustota je fyzikální veličina, která vyjadřuje
Pracovní list: Opakování učiva sedmého ročníku. Fyzikální veličiny. Fyzikální jednotky. Fyzikální zákony. Vzorce pro výpočty 100 200.
Pracovní list: Opakování učiva sedmého ročníku 1. Odpovězte na otázky: Fyzikální veličiny Fyzikální jednotky Fyzikální zákony Měřidla Vysvětli pojmy Převody jednotek Vzorce pro výpočty Slavné osobnosti
04 - jednoduché stroje
04 - jednoduché stroje Úkolem jednoduchých strojů (bez motoru, baterie či jiného pohonu) je usnadnit člověku práci, ovšem vždy za určitou cenu. Typicky převádějí působení síly do výhodnějšího směru, nebo
Malý Archimédes. Cíle lekce tematické / obsahové. Cíle lekce badatelské. Pomůcky. Motivace 1 MINUTA. Kladení otázek 2 MINUTY. Formulace hypotézy
Malý Archimédes Autor, škola Milena Bendová, ZŠ Třebíč, ul. Kpt. Jaroše Vyučovací předmět fyzika Vhodné pro 1. stupeň, vyzkoušeno s 5. třídou Potřebný čas 45 minut Potřebný prostor třída Cíle lekce tematické
Archimedův život v experimentech
Archimedův život v experimentech Mgr. Kateřina Balcarová Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 Obr. 1: Archimedes O životě tohoto vynikajícího matematika, fyzika a technika starověku nevíme
Historie matematiky a informatiky Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze
Historie matematiky a informatiky 1 2017 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Program našeho předmětu 2+1 1. 23. února 2017 - Úvod + C1 2. 2. března 3. 9. března
Název: Archimedův zákon. Úvod. Cíle. Teoretická příprava (teoretický úvod)
Název: Archimedův zákon Úvod Jeden z nejvýznamnějších učenců starověku byl řecký fyzik a matematik Archimédes ze Syrakus. (žil 287 212 př. n. l.) Zkoumal podmínky rovnováhy sil, definoval těžiště, zavedl
Matematika - Historie - 1
Matematika - Historie - 1 Vybrali jsme zajímavé jevy z historie matematiky a sestavili z nich jeden test. Doufáme, že se podaří splnit hned několik cílů. Test vás potěší, překvapí a poučí. Odpovědi hledejte
3.2 OBJEMY A POVRCHY TĚLES
. OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od
Mechanické vlastnosti kapalin hydromechanika
Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné
Laboratorní práce č. 4: Určení hustoty látek
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník
VY_52_INOVACE_2NOV47. Autor: Mgr. Jakub Novák. Datum: Ročník: 7.
VY_52_INOVACE_2NOV47 Autor: Mgr. Jakub Novák Datum: 10. 9. 2012 Ročník: 7. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Mechanické vlastnosti kapalin Téma: Vztlaková síla
Rozumíme dobře Archimedovu zákonu?
Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické
Deskriptivní geometrie 1
S třední škola stavební Jihlava Deskriptivní geometrie 1 01. Úvod do DG 1 Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
Archimédés a jeho Počítání písku
Katedra didaktiky matematiky, Matematicko-fyzikální fakulta UK, Praha Třešť, 26. května 2015 becvar@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/ becvar www.karlin.mff.cuni.cz/katedry/kdm Osnova 1 Archimédés
Archimédův zákon, vztlaková síla
Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.7.B.32 EU OP VK. Vztlaková síla
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.7.B.32 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Květen 2012 Ročník 7. Předmět Fyzika Vztlaková Název,
Simona Fišnarová (MENDELU) Den pí / 10
14. březen: Den π Simona Fišnarová (MENDELU) Den pí 14.3. 2017 1 / 10 Proč 14. březen? Den π se slaví po celém světě 14. března. Datum vzniklo použitím prvních tří cifer v zápisu konstanty π: 3, 141592653...
Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL
Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN
Fyzika. Námět pro mezipředmětovou projektovou výuku ... Autor: Mgr. Roman Holoubek
Námět pro mezipředmětovou projektovou výuku Autor: Mgr. Roman Holoubek Fyzika Při střelbě z katapultu můžeme pozorovat, že dochází k silovému působení. Pokus se toto silové působení definovat (vzájemné
Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20
Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/ Téma sady: Dějepis pro ročník
Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Dějepis pro 6. 7. ročník Název: DUM: VY_32_INOVACE_4B_2_Kultura_ve_starověkém_Řecku_věda Vyučovací
Příklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
Variace. Mechanika kapalin
Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
ARCHIMÉDŮV ZÁKON. Archimédův zákon
ARCHIMÉDŮV ZÁKON. Už víme, že v kapalině zvedneme těleso s menší námahou než na vzduchu. Na ponořené těleso totiž působí svisle vzhůru vztlaková síla, která těleso nadlehčuje (působí proti gravitační síle).
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
Charakteristika předmětu:
Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací
Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Archimédes a jeho odkaz pro současnou výuku
Archimédes a jeho odkaz pro současnou výuku KAMILA VÁŇOVÁ Univerzita Hradec Králové, Přírodovědecká fakulta, Rokitanského 62, 500 03 Hradec Králové; kamila.vanova@uhk.cz Archimédes je považován za jednoho
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
Stereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_95 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Fyzika 7. ročník Zpracovala: Ing. Irena Košťálková Rozhodne, jaký druh pohybu těleso koná vzhledem k jinému tělesu Uvede konkrétní příklady, na kterých doloží jednotlivé
VIDEO K TÉMATU:
Jednoduche stroje VIDEO K TÉMATU: http://www.ceskatelevize.cz/porady/10319921345-rande-s-fyzikou/video/ Jednoduché stroje jsou využívány především kvůli tomu, aby lidem usnadnily práci. Základním principem
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených
Stanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní
Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
VY_52_INOVACE_2NOV45. Autor: Mgr. Jakub Novák. Datum: 10. 9. 2012 Ročník: 7.
VY_52_INOVACE_2NOV45 Autor: Mgr. Jakub Novák Datum: 10. 9. 2012 Ročník: 7. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Mechanické vlastnosti kapalin Téma: Vztlaková síla
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa
Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.15 Autor Mgr. Jiří Neuman Vytvořeno 8.2.2013
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.15 Autor Mgr. Jiří Neuman Vytvořeno 8.2.2013 Předmět, ročník Fyzika, 1. ročník Tematický celek Fyzika 1. Téma Archimédův zákon Druh učebního materiálu
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
1.8.6 Archimédův zákon II
186 Archimédův zákon II Předpoklady: 1805 Pomůcky: pingpongový míček, uříznutá PET láhev, plechovka (skleněná miska), akvárko, voda, hustoměr Co rozhoduje o tom, zda předmět bude plavat? Výslednice dvou
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Mechanika úvodní přednáška
Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických
Alfred NOBEL. Základní škola a Mateřská škola Nikolčice, příspěvková organizace
CZ.1.07/1.4.00/21.2490 VY_32_INOVACE_13_F8 Alfred NOBEL Základní škola a Mateřská škola Nikolčice, příspěvková organizace Mgr. Jiří Slavík Alfred Nobel Narozen - 21. října 1833, Stockholm Zemřel - 10.
Fyzikální korespondenční škola 2. dopis: experimentální úloha
Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela
Fyzika pro 6.ročník. mezipředmětové vztahy. výstupy okruh učivo dílčí kompetence. poznámky. Ch8 - atom
Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 7. 1. 2013 Pořadové číslo 10 1 Astronomie Předmět: Ročník: Jméno autora: Fyzika
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
Přírodní zdroje. K přírodním zdrojům patří například:
1. SVĚTELNÉ ZDROJE. ŠÍŘENÍ SVĚTLA Přes den vidíme předměty ve svém okolí, v noci je nevidíme, je tma. V za temněné učebně předměty nevidíme. Když rozsvítíme svíčku nebo žárovku, vidíme nejen svítící těleso,
INFINITESIMÁLNÍHO POČTU
POČÁTKY INFINITESIMÁLNÍHO POČTU společný název pro diferenciální a integrální počet pracuje s nekonečně malými veličinami OBSAHY ROVINNÝCH ÚTVARŮ Egypt, 2. pol. 2. tisíciletí př. Kr. Obdélník základní
Fyzika pro 6.ročník. výstupy okruh učivo mezipředmětové vztahy poznámky. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly
Látky a tělesa, elektrický obvod Fyzika pro 6.ročník výstupy okruh učivo mezipředmětové vztahy poznámky Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole,
1.5.3 Archimédův zákon I
1.5.3 Archimédův zákon I Předpoklady: 010502 Pomůcky: voda, akvárium, míček (nebo kus polystyrenu), souprava na demonstraci Archimédova zákona, Vernier siloměr, čerstvé vejce, sklenička, sůl Př. 1: Sepiš
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.
Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické
Kružnice. Délka kružnice (obvod kruhu)
Kružnice Délka kružnice (obvod kruhu) Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing Šárka Macháňová Dostupné z Metodického portálu wwwrvpcz, ISSN: 1802-4785, financovaného z ESF a
Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
Klíčová slova: zvedák, kladkostroj, visutá kočka, naviják
Předmět: Stavba a provoz strojů Ročník: 4. Anotace: Digitální učební materiál zpracovaný na téma zdvihadla, představuje základní přehled o stavbě a rozdělení zvedáků, kladkostrojů a navijáků. Rovněž je
15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny
125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
MECHANICKÉ VLASTNOSTI KAPALIN.
MECHANICKÉ VLASTNOSTI KAPALIN. VLASTNOSTI KAPALIN A PLYNŮ (opakování) Co už víme? Kapaliny: jsou tekuté hladina je vždy vodorovná tvar zaujímají podle nádoby jsou téměř nestlačitelné jsou snadno dělitelné
S = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Experimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet povrchu, objemu a hmotnosti kovových rour
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet povrchu, objemu a hmotnosti kovových rour Věk žáků: 13 15 let Časová dotace:
Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.
Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Povánoční lekce. Žák si uvědomí význam slov gravitace, atmosféra, vakuum.
Mgr. Markéta Vokurková Povánoční lekce Cíle: Žák si uvědomí význam slov gravitace, atmosféra, vakuum. Žák kriticky přemýšlí o vánočních zvycích a prohlubuje si tak zkušenosti z aktuálního učiva Věk: 5.
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Vzdělávací obor fyzika
Kompetence sociální a personální Člověk a měření síly 5. technika 1. LÁTKY A TĚLESA Žák umí měřit některé fyz. veličiny, Měření veličin Neživá měření hmotnosti,objemu, 4. zná některé jevy o pohybu částic,
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51
E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO
Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum
Pohyb. Klid a pohyb tělesa vzhledem ke vztažné soustavě. Druhy pohybu - posuvný a otáčivý - přímočarý a křivočarý - rovnoměrný a nerovnoměrný
A B C D E F 1 Vzdělávací oblast: Člověk a příroda 2 Vzdělávací obor: Fyzika 3 Ročník: 7. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení vyhledává a třídí informace a na základě jejich pochopení,
Středoškolská technika 2016. Konstrukce modelu rakety
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Konstrukce modelu rakety Vojta Kratochvíl, Jan Suchánek, Petr Krýda, Petr Jaroš Gymnasium Jana Nerudy Hellichova
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Fyzika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Zdeněk Halas. Aplikace matem. pro učitele
Obyčejné diferenciální rovnice Nejzákladnější aplikace křivky Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Obyčejné diferenciální rovnice Aplikace matem. pro
Historické pokusy z elektřiny a magnetismu. Pavel Kabrhel
Historické pokusy z elektřiny a magnetismu Pavel Kabrhel Alessandro Volta Koncem 18. století pozoroval Luigi Galvani jev související s elektrochemickými zdroji. Při preparaci žabích stehýnek je napíchl
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme