15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny
|
|
- Gabriela Machová
- před 9 lety
- Počet zobrazení:
Transkript
1 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které naopak velmi lehce svůj tvar mění. Vyznačují se tedy vlastností, kterou nazýváme tekutost. Patří k nim plyny a kapaliny, které na základě uvedené vlastnosti nazýváme společně tekutinami. Podobně jako v případě pevné látky i zde si zavedeme představu ideální tekutiny, a to jako tekutiny s dokonalou tekutostí. Jinými slovy: ke změně svého tvaru nepotřebuje ideální tekutina dodat žádnou energii. Reálné tekutiny mají tuto vlastnost jen v omezené míře a těmito tekutinami se budeme zabývat v článku V této kapitole si zformulujme základní zákony mechaniky ideálních tekutin, s ohledem na to, že při zkoumání tepelného pohybu jsme se v podstatě zabývali plyny, budeme mít nyní na mysli především kapaliny. U nich přistoupí jako další charakteristika ideálnosti tak zvaná nestlačitelnost. Problémy kapalin v klidu zahrneme do hydrostatiky, problémy jejich pohybu do hydrodynamiky. Jestliže však připustíme i stlačitelnost, budou odvozené výsledky platit i pro mechaniku plynů Hydrostatika ideální kapaliny Do hydrostatiky zahrnujeme nejen problémy týkající se kapalin v klidu, ale i takové jejich pohyby, při kterých těžiště zůstává v klidu. Kapalina rotující s nádobou, nepohybuje-li se těžiště celého systému, řešíme rovněž v rámci hydrostatiky. Jelikož je kapalina tekutá, zaujímá při tomto pohybu tvar, který závisí na příslušném silovém poli - v daném případě na poli odstředivých a gravitačních sil (z hlediska neinerciálního souřadného systému, spojeného s kapalinou). Obě pole jsou příkladem potenciálového pole, proto základním problémem hydrostatiky je formulování rovnováhy kapaliny za přítomnosti potenciálových polí. Základní pojmy a zákony jsou obsažené ve větách Základní zákon hydrostatiky zní: součet hydrostatického tlaku a potenciální energie jednotkového objemu kapaliny äv je konstantní, to je (15.1) Uvažujme o určitém množství ideální kapaliny (obr. 15.1), která se nachází v potenciálovém poli (např. v gravitačním poli, v poli odstředivých sil apod.), které je charakterizováno potenciálem V. Na každý element povrchu této kapaliny ds působí okolní kapalina silou kde ä je měrná hmotnost kapaliny a V je potenciál silového pole (definovaný větou 11.22) takže na celou uvažovanou plochu ohraničující kapalinu působí síla
2 126 Pascalův zákon: tlak v kapalině se šíří všemi směry stejně (p = konst) Rozdíl tlaků ve dvou bodech kapaliny je určen vztahem (15.2) kde V 1 a V 2 jsou potenciály silového pole v místech 1 a 2. (15.3) Jelikož každý element kapaliny se nachází v silovém poli, působí na něj podle vztahu (11.28) síla kde jsme potenciální energii W p elementu s hmotností dm vyjádřili W p = ä V dð, kde dð je element objemu a měrnou hmotnost ä považujeme za konstantní v celém objemu. Celková síla silového pole je proto (15.4) Obr Myšlený uzavřený objem kapaliny v silovém poli ARCHIMEDES, před n.l., řecký matematik a fyzik. Zabýval se zejména mechanikou, zavedl pojem těžiště a momentu síly. Vybudoval základy hydrostatiky. Objevil známý a po něm pojmenovaný zákon o nadlehčování těles ponořených do kapaliny. Podle věty o pohybu těžiště 12.5 se celková síla působící na zkoumanou kapalinu hmotnosti m = hä dð rovná součinu této hmotnosti a zrychlení (15.5) těžiště a to je Jestliže přetransformujeme prvý integrál na objemový využitím Gaussovy-Ostrogradského věty (7.7) dostaneme rovnici
3 127 z které vyplývá vztah (15.6) Obr Principy hydraulického lisu Jelikož jsme rovnováhu kapaliny definovali jako stav, v kterém se těžiště uvažovaného systému nepohybuje, je a = 0. Z rovnice (15.6) potom přímo vyplývá základní rovnice hydrostatiky ve tvaru (15.1). Z ní vyplývá několik všeobecně známých důsledků. Je-li např. tlak v kapalině dostatečně velký (v důsledku např. stlačení), může být p>>äv. V takovém případě je podle rovnice (15.1) všude splněný vztah p = konst, což je Pascalův zákon. Na tomto principu je založena činnost tzv. hydraulického lisu, kapalinových brzd, atd. Abychom dosáhli v kapalině tlaku p, musíme na píst průřezu S 1 působit silou F 1 = ps 1 (obr. 15.2). V důsledku nestlačitelnosti kapaliny a Pascalova zákona vyvíjí kapalina na jiný píst 2 průřezu S 2 sílu F 2 = ps 2, takže platí rovnice (15.7) Síla vyvíjená pístem o průřezu S 2 je tedy tolikrát větší než síla, kterou tlačíme na píst průřezu S 1, kolikrát má píst 2 větší průřez než píst 1. Práce sil obou pístů je stejná. Vztah (15.2) je rovněž jednoduchým důsledkem základního zákona (15.1). Dostaneme ho odečtením rovnic (15.1) napsaných pro dvě různá místa v kapalině. Zajímavější a známější jsou aplikace tohoto vztahu na konkrétní případy. Jestliže vyjádříme potenciál tíhového pole vztahem V = -gh, dostaneme pro tlak v hloubce h pod hladinou kapaliny vztah
4 128 Obr K odvození Archimedova zákona (15.8) a aplikací tohoto vztahu pro těleso ponořené do kapaliny (např. kvádr o základně plochy S a výšce h) získáme vztah pro sílu, kterou působí kapalina na těleso (obr. 15.3) (15.9) kde y je objem ponořeného tělesa. Tento vztah vyjadřuje známý Archimedův zákon: těleso ponořené do kapaliny je nadlehčováno silou, která je rovna tíze vytlačené kapaliny. Chování kapaliny v rotující nádobě nejlépe popíšeme v neinercilní souřadné soustavě pomocí potenciálů působících sil. V případě potenciálového pole odstředivých sil je potenciální energie definována vztahem (11.26) na základě (11.4) takže potenciál tohoto pole je V = -r 2 Ÿ 2 /2. Pro rozdíl tlaků ve dvou rozličných místech rotující kapaliny vychází potom podle vztahu (15.2) (15.10) Jestliže z rovnice (15.1) vyjádříme diferenciál tlaku vztahem dp = -ädv a diferenciál potenciální energie dw p vztahem (11.38), tj. dv = dr. grad V, dostaneme pro změnu tlaku na rozhraní dvou tekutin s měrnými
5 129 hmotnostmi ä 1 a ä 2 rovnici v které vektor dr značí přírůstek polohového vektoru v rovině rozhraní. Je proto správná i rovnice která je splněna jen tehdy, je-li grad V = 0, tj. V = konst. Jinými slovy: rozhraní dvou tekutin s rozličnými měrnými hmotnostmi je ekvipotenciální hladinou. Rotuje-li tedy kapalina v gravitačním poli, je celkový potenciál V = hg-r 2 Ÿ 2 /2 kde h je výška kapaliny a podle právě odvozené věty musí být její povrch ekvipotenciální hladinou. Platí proto rovnice kde h o značí výšku hladiny v ose rotace. Hladina rotující kapaliny proto zaujme tvar rotačního paraboloidu vyjádřeného rovnicí (15.11) Tento důsledek se prakticky využívá při výrobě parabolických zrcadel Hydrodynamika ideální tekutiny V této části odvodíme základní rovnice, které popisují takový pohyb ideální kapaliny, při kterém i těžiště systému mění svou polohu (věty 15.4 až 15.7). Východiskem nám bude základní pohybová rovnice (15.6), která byla odvozena v předcházejícím článku Eulerova rovnice pro pohyb kapaliny má tvar 15.5 Bernoulliova rovnice má tvar (15.12) Eulerovu rovnici (15.12) odvodíme z obecné rovnice (15.6) tak, že z ní vyjádříme vektor zrychlení pomocí vektoru rychlosti. Pohyb kapaliny je popsán polem vektorů rychlosti (závislostí vektoru rychlosti na polohovém vektoru). Obecně je rychlost jednotlivých částí kapaliny (kapek) funkcí prostorových souřadnic a času, to je v = v(x, y, z, t). Diferenciál vektoru rychlosti je proto určen výrazem
6 130 (15.13) 15.6 Hydrodynamický tlak p d v daném místě proudící kapaliny je hydrostatický tlak p s zmenšený o kinetickou energii objemové jednotky kapaliny Poslední tři členy můžeme vyjádřit ve tvaru součinu dr.grad v, takže vektor zrychlení a = dv/dt je (15.14) 15.7 Výtoková rychlost kapaliny v je určena vztahem (15.15) kde p a V 1 jsou tlak a potenciál na povrchu kapaliny, V 2 potenciál v místě výtoku. (15.16) Dosazením tohoto vyjádření zrychlení do rovnice (15.6) dostaneme rovnici (15.12), která se nazývá Eulerova rovnice. Tato rovnice popisuje pohyb kapaliny, při kterém mohou vznikat obecně i tzv. víry. Vidíme však, že v tomto případě je problém velmi složitý, protože veličina grad v je tenzor. Za určitých podmínek můžeme tuto obtíž obejít. Připomeňme, že podle výsledků uvedených ve vektorové algebře můžeme psát grad (a.b) = a.grad b + b.grad a + axrot b + bxrot a, takže při a = b = v platí rovnice (15.17) Obr Hydrostatický p s a hydrodynamický p d tlak Vidíme, že rovnice (15.12) by se značně zjednodušila, kdyby se poslední člen předcházející rovnice rovnal nule, to je, kdyby platilo rot v = 0. Můžeme se přesvědčit o tom, že přítomnost tohoto členu značí přítomnost vírové složky v pohybu kapaliny. Položíme-li tedy rot v = 0, budeme mít na mysli jen nevírové proudění kapaliny. Pro toto proudění odvodíme z Eulerovy rovnice jednodušší Bernoulliovu rovnici (15.13) platnou pro ustálený stav kapaliny. Jestliže z rovnice (15.17) vypočítáme výraz v.grad v a dosadíme do rovnice (15.12), (15.18) získáme rovnici V ustáleném stavu je Yv/Yt = 0, takže pro
7 131 nestlačitelnou kapalinu se tato rovnice redukuje na tvar Obr Změna rychlosti toku kapaliny při změně plochy průřezu toku Skutečně tedy platí rovnice (15.13). Říká, že při ustáleném a nevírovém proudění kapaliny je součet kinetické a potenciální energie objemové jednotky kapaliny a tlaku všude stejný. Uvažujme o dvou situacích znázorněných na obr V prvém (a) je kapalina v oblasti, kde měříme tlak, v klidu, v druhém případě se tam pohybuje rychlostí v. Jelikož v obou místech má kapalina stejný potenciál, můžeme Bernoulliovu rovnici pro případ a), resp. pro případ b) psát ve tvaru z kterých vyplývá, že tlak měřený za pohybu kapaliny (tzv. hydrodynamický tlak p d ) je určen pomocí hydrostatického tlaku p s vztahem Obr Výtok kapaliny z nádoby s otvorem EULER Leonard (oiler), , švýcarský matematik a fyzik, dlouhý čas působil v Petrohradě. Jeho mimořádně rozsáhlé dílo (vydal asi 800 spisů) zahrnuje téměř všechny oblasti matematoky a mnohé problémy tehdejší fyziky, přičemž ve fyzice v maximální míře využíval matematický aparát. Kromě vědecké práce ve fyzice a matematice studoval ještě orientální jazyky a zabýval se medicínou. BERNOULLI Daniel (bernuji), , švýcarský matematik a fyzik, významný průkopník v teorii a aplikacích parciálních diferenciálních rovnic. Nejméně důležité jsou jeho práce což je rovnice (15.14). Z ní vyplývá, že hydrodynamický tlak je vždy menší než hydrostatický tlak a při velkých rychlostech proudění může nabýt i záporné hodnoty. V tom případě kapalina vůbec nevystoupí z otvoru, naopak, objeví se sání, čehož se využívá v tzv. vodních vývěvách, rozprašovačích apod. Velkou rychlost proudění můžeme dosáhnout zúžením otvoru na základě tzv. rovnice spojitosti pro ustálené proudění, která má tvar S.v = konst, kde S je průřez. Pro dva různé průřezy (obr. 15.5) tedy platí (15.19) takže rychlost v 2 = v 1 (S 1 /S 2 ) je tolikrát větší jako rychlost v 1, kolikrát je průřez S 2 menší než průřez S 1.
8 132 z hydrodynamiky, zejména jeho rovnice, která vyjadřuje zákon zachování mechanické energie pro proudící kapalinu. Podobně jako L.Euler pracoval několik let v petrohradské akademii věd. Prozkoumejme ještě výtok kapaliny z nádoby s otvorem v hloubce h pod hladinou (obr. 15.6). Bernoulliova rovnice napsaná pro hladinu a místo, ve kterém je otvor, mají tvar Je-li otvor tak malý, že pohyb hladiny můžeme zanedbat, je v 1 = 0. Tlak v místě výtoku klesne na hodnotu barometrického tlaku a stejný tlak na hladině označíme jednoduše p. Za těchto podmínek lehce dostaneme z uvedených rovnic vztah (15.15) pro rychlost výtoku. Je-li barometrický tlak vůči ostatním tlakům zanedbatelný a kapalina je umístěna v tíhovém poli zemském, je V 1 -V 2 = hg, takže pro výtokovou rychlost dostaneme známý vzorec (15.20) který se nazývá Torricelliho vztah
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Mechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
Mechanické vlastnosti kapalin hydromechanika
Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů
Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela
Dynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =
MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Clemův motor vs. zákon zachování energie
Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
FYZIKA Mechanika tekutin
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika
Výsledný tvar obecné B rce je ve žlutém rámečku
Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné
Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Rozumíme dobře Archimedovu zákonu?
Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Dynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO
Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
Proudění ideální kapaliny
DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
čas t s 60s=1min rychlost v m/s 1m/s=60m/min
TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický
8. Mechanika kapalin a plynů
8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
MECHANIKA TEKUTIN TEKUTINY
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin
PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl
Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají
Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve
Odstředivý tryskový motor
Odstředivý tryskový motor - 1 - Odstředivý tryskový motor (c) Ing. Ladislav Kopecký Inspirací pro tuto konstrukci hydromotoru byl legendami opředený Clemův motor a práce Viktora Schaubergera. Od konstrukcí
p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země
Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,
MECHANIKA KAPALIN A PLYNŮ
MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu
Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat
FYZIKA. Hydrodynamika
Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Proč funguje Clemův motor
- 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
F - Mechanika kapalin - I
- Mechanika kapalin - I Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Příklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
MODELOVÁNÍ SHALLOW WATER
Západočeská univerzita Fakulta aplikovaných věd Matematické metody v aplikovaných vědách a ve vzdělávání MODELOÁNÍ SHLLOW WTER KRISTÝN HDŠOÁ ziraf@students.zcu.cz 1 ÚOD Dostala jsem za úkol namodelovat
MECHANICKÉ VLASTNOSTI KAPALIN.
MECHANICKÉ VLASTNOSTI KAPALIN. VLASTNOSTI KAPALIN A PLYNŮ (opakování) Co už víme? Kapaliny: jsou tekuté hladina je vždy vodorovná tvar zaujímají podle nádoby jsou téměř nestlačitelné jsou snadno dělitelné
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
2 Odvození pomocí rovnováhy sil
Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
1 Vlastnosti kapalin a plynů
1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky
FYZIKA. Hydrostatika. KAPALINY Vlastnosti kapalin P1 Pascalův zákon Hydrostatický tlak P2 P3 P4 P5 Archimédův z. P6 P7 P8 P9 P10 Karteziánek
Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu
7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,
Teplo, práce a 1. věta termodynamiky
eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VYPRAZDŇOVÁNÍ ROTUJÍCÍ NÁDOBY EMPTYING OF THE ROTATING VESSEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VYPRAZDŇOVÁNÍ ROTUJÍCÍ NÁDOBY EMPTYING OF
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Stanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní
Otázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Kde 1... vzduch (plyn) 2... kapalina 3... stěna
Příčinou povrchového napětí jsou kohezní mezimolekulární síly, které mají velice malý dosah. Uvnitř kapaliny se tyto síly vyrovnají, ale na povrchu se molekulová rovnováha naruší. Síly působí ve směru