Enzymy = biokatalyzátory



Podobné dokumenty
1. OXIDOREDUKTASY (14.) 11 až 18 (různé typy oxygenačních

Enzymy = biokatalyzátory

Historie poznání enzymů

Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

Enzymy. Prof. MUDr. Jiří Kraml, DrSc.

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

ENZYMY. Enzymy - jednoduché nebo složené proteiny, které katalyzují chemické přeměny v organismech

Název: Systematický (5Z,8Z,11Z,14Z)-ikosa-5,8,11,14-tetraenoát,donor vodíku:kyslík-oxidoreduktasa

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

7. Enzymy. klasifikace, názvosloví a funkce

ENZYMY. RNDr. Lucie Koláčná, Ph.D.

Aminokyseliny, proteiny, enzymologie

ENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ

Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace

Redoxní děj v neživých a živých soustavách

Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:

HISTORIE ENZYMOLOGIE

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)

Eva Benešová. Dýchací řetězec

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

BIOKATALYZÁTORY I. ENZYMY

POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky

Stanovení vybraných enzymů. Roman Kanďár

Bp1252 Biochemie. #8 Metabolismus živin

Historie. Pozor! né vždy jen bílkovinná část

ENZYMY A NUKLEOVÉ KYSELINY

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec

ENZYMY. Klasifikace enzymů

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

Využití enzymů pro analytické a výzkumné účely

Enzymy. Názvosloví enzymů

Obecný metabolismus.

Enzymy (katalýza biochemických reakcí)

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV

1. ročník Počet hodin

Metabolismus bílkovin. Václav Pelouch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Opakování

Enzymy charakteristika a katalytický účinek

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK

AMINOKYSELINY REAKCE

nepolární polární kyselý bazický

Didaktické testy z biochemie 1

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:

Katabolismus - jak budeme postupovat

Co jsou to enzymy? pozoruhodné chemické katalyzátory


4. Enzymy. Obtížnost A

Metabolismus proteinů a aminokyselin

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu

OPVK CZ.1.07/2.2.00/

13. Enzymy aktivační energie katalýza makroergické sloučeniny

Historie poznávání enzymů

Karbonylové sloučeniny

Obecný metabolismus.

Enzymy. Názvosloví enzymů

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus

ENZYMY enzymová katalýza

Testové úlohy aminokyseliny, proteiny. post test

Chemická reaktivita NK.

Enzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc:

11. Metabolismus lipidů

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

MATURITNÍ OTÁZKY Z CHEMIE

Metabolizmus aminokyselin I

9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010

Klinicko-biochemická diagnostika

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí Adiční reakce Elektrofilní adice (A E

OXIDATIVNÍ FOSFORYLACE

Enzymy. aneb. Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht

Gymnázium Jiřího Ortena, Kutná Hora

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal ::

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek

Gymnázium Jana Nerudy. Závěrečná práce studentského projektu. Enzymatická aktivita

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie

10. Metabolismus sacharidů

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Sacharidy a polysacharidy (struktura a metabolismus)

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Pentosový cyklus. osudy glykogenu. Eva Benešová

Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce??

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/

12-Fotosyntéza FRVŠ 1647/2012

Transkript:

Enzymy = biokatalyzátory

Enzymy biologické katalyzátory Analogie s chemickými katalyzátory Katalyzátor je jiná látka než reaktant a produkt reakce Zvyšuje rychlost reakce v obou směrech, snižuje aktivační energii obou reakcí; reakce vedena jinudy (ilustrace tok řeky) Z toho plyne, že zkracuje dobu potřebnou k dosažení rovnováhy ale neovlivňuje tuto rovnováhu!!!!!! Vystupuje z reakce nezměněn

bílkoviny ( vyjímka ribozymy, např. 2S-rRNA) aktivní místo - vazebné skupiny - katalytické skupiny vazba substrátu - zámek a klíč - indukované přizpůsobení úloha "zbytku molekuly"

Aktivační energie rozkladu peroxidu vodíku H 2 2 2H 2 + 2 Katalyzátor Reakční rychlost (mol.l - 1.s -1 ) E a (kj.mol -1 ) Žádný 10-8 71,1 HBr 10-4 50,2 Fe(H) 2 -triethylen tetraamin 10 3 29,3 Katalasa 10 7 8,4

Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity)

Enzymy = biokatalyzátory Každá (metabolická) reakce má svůj enzym

Co umí enzymy účinné snížení aktivační energie specifita účinku specifita substrátová regulovatelnost účinnosti (aktivity)

Snížení aktivační energie

Enzym = buď jednoduchá bílkovina nebo apoenzym (peptidový řetězec) + kofaktor = holoenzym Kofaktor: nepeptidová součást enzymu, která se přímo účastní chemické reakce (bez něj by to nešlo), častá souvislost s vitaminy Prosthetická skupina - pevně vázána na peptidový řetězec Koenzym - volně vázaná molekula

prosthetická skupina (př. FAD, PLP, hem) E-Pr + S1 E-Pr* + P1 E-Pr* + S2 E-Pr + P2 E-Pr S1 + S2 P1 + P2 koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E1 S1 + K P1 + K* E2 K* + S2 K + P2 S1 + S2 P1 + P2

Prosthetická skupina x Koenzym

AKTIVNÍ MÍST ENZYMŮ relativně malá kapsa (štěrbina) uvnitř nebo při povrchu enzymu, často hydrofóbní, umožňující vazbu substrátu(ů), ev. nebílkovinné části enzymu slabšími přechodnými, většinou nekovalentními vazbami: - vodíkovými můstky (výrazně směrovaná) - elektrostatickým přitahováním - hydrofóbními interakcemi - van der Waalsovými silami bsahuje postranní řetězce sekvenčně vzdálených aminokyselin, které představují kontaktní, orientující a katalytické zbytky a vytvářejí biospecifickou trojrozměrnou strukturu (konformaci). -efekt zvýšení koncentrace Vzniká dočasně a reverzibilně komplex enzym-substrát (ES).

AKTIVNÍ MÍST ENZYMŮ

Teorie zámku a klíče

Změna konformace hexokinasy způsobená vazbou substrátu

Kofaktory - prosthetická skupina 1. prosthetická skupina (př. FAD, PLP, hem) E-Pr + S 1 E-Pr * + P 1 E-Pr * + S 2 E-Pr + P 2 E-Pr S 1 + S 2 P 1 + P 2

přenos elektronů, riboflavin B 2 Prosthetická skupina - FAD

Prosthetická skupina - PLP

Prosthetická skupina - hem

Kofaktory - koenzym 2. koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E 1 S 1 + K P 1 + K * E 2 K * + S 2 K + P 2 S 1 + S 2 P 1 + P 2

Koenzymy NAD +, NADP +

Koenzymy CoA

Koenzymy ATP

Kofaktory - ostatní 3. "nespecifické" organické sloučeniny - kyselina askorbová (komplex s Fe) - některé další vitaminy 4. kovy přímo se účastnící reakce (metaloenzymy, Zn, Fe, Se, Cu...) 5. specifické kovy, působící "nepřímo" (Mg a ATP)

Jednotky vyjadřování enzymové aktivity katal (zkratka kat): množství enzymové aktivity, které katalyzuje přeměnu l molu substrátu za sekundu; l0-6 kat = µkat ; l0-9 kat = nkat starší mezinárodní jednotka: U : množství enzymové aktivity, které katalyzuje přeměnu l µmolu substrátu za minutu; l0-3 U = mu PŘEVD: U=16,67 nkat 60 U=1 µkat Faktory ovlivňující enzymovou aktivitu koncentrace substrátu (K m, V, k cat ) teplota ph iontová síla aktivátory a inhibitory

Názvosloví enzymů triviální (pepsin, trypsin, elastasa, invertasa...) doporučené ("polosystematické") (alkoholdegydrogenasa...)

Slovník biochemických pojmů: http://vydavatelstvi.vscht.cz/knihy/uid_es-002/ebook.help.htm enzymy - názvosloví {1} enzyme nomenclature a) triviální (např. pepsin, trypsin, thrombin, elastasa {EC 3.4.21.36, EC 3.4.21.71} ), b) tzv. doporučené, tvořené názvem substrátu, typem reakce a příponou -asa (např. alkoholdehydrogenasa, glukosaoxidasa, alaninaminotransferasa {EC 2.6.1.2}, alaninracemasa {EC 5.1.1.1} ), c) systémové (též systematické), vytvářené podle daných pravidel. Systémové názvosloví je založeno (až na výjimky) pouze na účinkové a substrátové specifitě enzymů a vychází z rozdělení enzymů do šesti tříd (viz enzymy - rozdělení do tříd). Vedle tohoto jednoznačného, byť v běžné praxi poněkud nepohodlného názvosloví má každý enzym ještě své katalogové číslo (viz EC, enzymový katalog). Názvy enzymů mají, kromě nejstarších triviálních názvů, příponu -asa.

Příklady: ENTRY EC 3.2.1.26 NAME -Fructofuranosidase Invertase Saccharase CLASS Hydrolases Glycosidases Hydrolysing -glycosyl compounds SYSNAME -D-Fructofuranoside fructohydrolase REACTIN Hydrolysis of terminal non-reducing -D-fructofuranoside residues in -D-fructofuranosides SUBSTRATE -D-Fructofuranoside Sucrose H 2 PRDUCT -D-Fructose PZNÁMKA: Termín invertasa vznikl proto, že při hydrolyse sacharosy se obrací (invertuje) optická rotace z pravotočivého na levotočivý smysl. Enzym se využívá k výrobě invertního cukru (směs glukosy a fruktosy), který je mnohem sladší a stravitelnější než sacharosa; používá se jako umělý med, jako sladidlo do zmrzliny, čokolád apod.

1) xidoreduktasy Třídy enzymů katalyzují různé oxidoredukční reakce, často s využitím koenzymů jako např. NADH, NADPH, FADH2,nebo hemu. Triviální názvy v této třídě: dehydrogenasy, oxidasy, cytochromy, peroxidasa, katalasa. 2) Transferasy Katalyzují přenos skupin: amino-, methyl-, acyl-, glykosyl-, fosforyl-. Kinasy katalyzují přenos fosfátové skupiny z ATP nebo jiných nukleosidtrifosfátů. Triviální názvy v této třídě: aminotransferasy (transaminasy), acyltransferasy, fosfotransferasy. 3) Hydrolasy Katalyzují štěpení vazeb mezi atomem uhlíku a jinými atomy prostřednictvím spotřebované molekuly vody. bvyklé triviální názvy: esterasy, peptidasy, amylasy, fosfatasy, lipasy, proteasy (pepsin, trypsin, chymotrypsin).

Třídy enzymů 4) Lyasy Katalyzují adiční reakci na dvojné vazbě nebo eliminační reakci mezi dvěma C atomy za vzniku dvojné vazby. Příklady: fumaráthydratasa (fumarasa), karbonátdehydratasa (karboanhydrasa), aldolasa, citrátlyasa, dekarboxylasy..5) Isomerasy Katalyzují racemizaci optických isomerů nebo vytváření polohových isomerů: epimerasy, racemasy, mutasy. 6) Ligasy Katalyzují tvorbu vazeb mezi uhlíkem a jinými atomy spojenou se štěpením ATP (spřažení exergonické a endergonické reakce): karboxylasy, synthetasy (glutaminsynthetasa).

1. XIDREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreductase Triviální názvy: dehydrogenasa reduktasa (důležitější redukce substrátu) transhydrogenasa (vzácné, glutathion-cystin-transhyhrogenasa) oxidasa (přenos dvou elektronů na 2, obvykle vznik H 2 2 ) oxygenasa (1 nebo 2 atomy jsou inkorporovány do substrátu(ů), monooxygenasa: vzniká voda, dioxygenasa: nevzniká) peroxidasa (peroxid vodíku je akceptorem elektronů) katalasa (disproporcionace peroxidu vodíku)

donor akceptor 1.1. CH _ H (alkohol) 1.n.1 NAD + nebo NADP + 1.2. CH (aldehyd) 1.n.2 cytochrom 1.3. CH _ CH 1.n.3 molekulový kyslík 1.4. CH _ NH 2 1.n.4 disulfidová sloučenina 1.5. CH _ NH (sekundární amin) 1.n.5 chinon nebo příbuzné látky 1.6. NADH nebo NADPH 1.n.6 dusíkatá skupina 1.7. ostatní dusíkaté donory 1.n.7 FeS proteiny 1.8. sloučeniny síry 1.n.8 flavin 1.9. hemová skupina 1.10. difenoly a příbuzné slouč. 1.11. peroxid vodíku jako akceptor 1.12. vodík 1.13. působící na jeden donor, do něhož se vnáší kyslík (oxygenasy) 1.13. (14.) 11 až 18 (různé 1.14. působící na dva donory, typy oxygenačních reakcí) které inkorporují kyslík 1.15. superoxidový radikál jako akceptor 1.16. kovové ionty 1.17. _ CH _ 2 (vzniká alkohol) 1.18. redukovaný ferredoxin 1.19. redukovaný flavodoxin 1.97. ostatní oxidoreduktasy 1.n.99 různé další akceptory

xidoreduktasy - příklady EC 1.14.13.25 Methan,NAD(P)H:kyslík-oxidoreduktasa (hydroxylující) CH 4 + NAD(P)H + H + + 2 CH 3 H + NAD(P) + + H 2 EC 1.11.1.6 H 2 2 : H 2 2 -oxidoreduktasa, katalasa (též peroxid vodíku:peroxid vodíku - oxidoreduktasa) H 2 2 + H 2 2 2 H 2 + 2 EC 1.11.1.7 donor: H 2 2 -oxidoreduktasa, peroxidasa donor + H 2 2 oxidovaný donor + 2 H 2

xidoreduktasy - příklady EC 1.1.1.1 Alkohol:NAD + -oxidoreduktasa, alkoholdehydrogenasa CH 3 -CH 2- H + NAD + CH 3 -CH + NADH + H + EC 1.1.3.4 -D-Glukosa: 2-1-oxidoreduktasa, glukosaoxidasa -D-glukosa + 2 -D-glukono-1,5-lakton + H 2 2 EC1.13.11.18 Síra:kyslík-oxidoreduktasa, síradioxygenasa S + 2 S 2

2. TRANSFERASY donor _ SK + akceptor donor + akceptor _ SK Systematický název: donor : akceptor _ skupinatransferasa angl. donor : acceptor grouptransferase Triviální názvy: methyltransferasy, hydroxymethyltransferasy aminotransferasy (dříve transaminasy) kinasy = fosfotransferasy atd.

Kofaktory transferas (koenzym)

Kofaktory transferas (koenzym) přenos acylových zbytků

2. TRANSFERASY 2.1 Přenášející jednouhlíkatou skupinu 2.1.1 Methyltransferasy 2.1.2 Hydroxymethyltransferasy 2.1.3 Karboxyl _ a karbamoyltransferasy 2.1.4 Amidinotransferasy 2.2 Přenášející aldehydické nebo ketonické skupiny 2.1.1. Transaldolasy a transketolasy 2.3 Acyltransferasy 2.3.1. Acyltransferasy 2.3.2. Aminoacyltransferasy

2. TRANSFERASY 2.4 Glykosyltransferasy 2.4.1. Hexosyltransferasy 2.4.2. Pentosyltransferasy 2.4.3. Přenášející ostatní glykosylové skupiny 2.5 Přenášející akrylové nebo arylové skupiny jiné než methyl 2.5.1. (velmi heterogenní skupina) 2.6 Přenášející dusíkaté skupiny 2.6.1. Aminotransferasy 2.6.3. ximinotransferasy 2.6.99 Přenášející jiné dusíkaté skupiny

2. TRANSFERASY 2.7. Přenášející skupiny obsahující fosfor 2.7.1. Fosfotransferasy s alkoholem jako akceptorem 2.7.2. Fosfotransferasy s karboxylem jako akceptorem 2.7.3. Fosfotransferasy s dusíkatou skup. jako akcept. 2.7.4. Fosfotransferasy s fosfátovou skup. jako akcept. 2.7.6. Difosfotransferasy 2.7.7. Nukleotidyltransferasy 2.7.8. Transferasy ostatních substituovaných fosf. skup. 2.7.9. Fosfotransferasy se dvěma akceptory 2.8. Přenášející sirné skupiny 2.8.1. Sulfurtransferasy (sirné skupiny kromě 2.8.2. a 2.8.3.) 2.8.2. Sulfotransferasy (přenášející sulfát) 2.8.3. CoA _ transferasy

Transferasy - příklady EC 2.4.1.1 1,4- -D-Glukan:orthofosfát- -D-glukosyltransferasa, fosforylasa (1,4- -D-glukan) n + P i (1,4- -D-glukan) n-1 + -D-glukosa-1- fosfát EC 2.6.1.2 L-Alanin:2-oxoglutarát-aminotransferasa, alaninaminotransferasa (AAT) + H 3 N C CH CH 3 C C CH 2 CH 2 C + + L-Ala + 2-oxoglutarát pyruvát + L-Glu C C CH 3 + H 3 N C CH CH 2 CH 2 C

Transferasy - příklady EC 2.7.1.1 ATP:D-hexosa-6-fosfotransferasa, hexokinasa ATP + D-hexosa ADP + D-hexosa-6-fosfát NH 2 P P P N H 2 C H N H H N N H P H H CH 2 H H H H H H H H

3. HYDRLASY A _ B + H 2 AH + HB Systematický název: substrát (skupina) hydrolasa angl.: substrate (group) hydrolase Triviální název: substrátasa, často zcela nesystematické názvy

3. HYDRLASY 3.1 Esterasy 3.1.1. Estery karboxylových kyselin (lipasy) 3.1.3. Monoestery fosforečné kyseliny (fosfatasy) 3.1.4. Diestery fosforečné kyseliny (fosfodiesterasy, štěpení c-amp) 3.1.11 _ 30 Endo _ a exo _ (deoxy)nukleasy 3.2 Glykosidasy 3.2.1. Hydrolysující _ glykosidové vazby (amylasy, invertasa=sacharasa, celulasy) 3.2.2. Hydrolysující N-glykosidové vazby 3.3 Působící na etherové vazby

3. HYDRLASY 3.4 Peptidasy 3.4.11. _ Aminoacylpeptid hydrolasy (aminopeptidasy) 3.4.13. Dipeptid hydrolasy 3.4.14. Dipeptidylpeptid hydrolasy 3.4.15 Peptidyldipeptid hydrolasy 3.4.16 Serinové karboxypeptidasy 3.4.17 Metallo _ karboxypeptidasy 3.4.18 Cysteinové karboxypeptidasy 3.4.21 Serinové proteinasy 3.4.22 Cysteinové proteinasy 3.4.23 Aspartátové proteinasy 3.4.24 Metallo _ proteinasy 3.4.99 Proteinasy neznámého katalyt. mechanismu 3.5 Působící na C _ N vazbu jinou než peptidovou

3. HYDRLASY 3.6 Působící na anhydridy kyselin 3.6.1 Anhydridy fosforečné kyseliny (pyrrofosfatasa, nespec. ATPasy) 3.6.3 a zprostředkující membránový transport (transportní ATPasy) 3.6.4 umožňující pohyb (aktomyosinový komplex, složky cytoskeletu) 3.7 Působící na vazbu C _ C 3.8 Působící na vazby halogenů 3.9 Působící na P _ N vazby 3.10 Působící na S _ N vazbu 3.11 Působící na C _ P vazbu

4. LYASY substrát 1 (+ substrát 2) produkt 1 + produkt 2 (malý) Systematický název: substrát 1 (substrát 2)- produkt 2lyasa angl: substrate l (substrate 2)- product 2 lyase Triviální název: dekarboxylasa, hydrolyasy (=dehydratasa), ammonialyasa, aldolasa, synthasa (velmi riskantní)

4. LYASY 4.1 C _ C lyasy 4.1.1 Karboxylyasy (dekarboxylasy) 4.1.2 Aldehydlyasy (aldolasy) 4.1.3 xo _ acid lyasy (např. citrátsynthasa) 4.1.99 statní C _ C lyasy 4.2 C _ lyasy 4.2.1 Hydrolyasy (např. fumarasa) 4.2.2 Působící na polysacharidy (štěpí za vzniku deoxysacharidů) 4.2.3 statní C _ lyasy 4.3 C _ N lyasy 4.3.1 Ammonia _ lyasy (např. aspartátamonialyasa) 4.4 C _ S lyasy 4.5 C _ halogen lyasy 4.6 P _ lyasy 4.99 statní lyasy

4. LYASY Lyasy - příklady: EC 4.1.1.1 pyruvát-karboxylyasa, pyruvátdekarboxylasa CH 3 -C-CH CH 3 -CH + C 2 EC 4.2.1.1 karbonát-hydrolyasa, karbonátanhydrasa, karbonátdehydratasa H 2 C 3 C 2 + H 2

EC 4.6.1.1 ATP-pyrrofosfátlyasa (cyklisující), adenylátcyklasa ATP camp + PP i H P H H H H H 2 C H N N N N NH 2 P P H P H H H CH 2 H N N N N NH 2 P P 4. LYASY +

5. ISMERASY Triviální názvy: (různé typy isomerací _ v systematickém názvu) podobně i racemasy, cis _ trans _ isomerasy, ketolisomerasy, mutasy, atd. Systematický název: substráttyp angl.: substrate type

5. ISMERASY 5.2 Cis _ trans _ isomerasy 5.3 Intramolekulární oxidoreduktasy 5.3.1 Přeměňující aldehydy na ketony (ketolisomerasy) 5.3.2 Přeměňující ketoskupiny na enoly (keto _ enolisomerasy) 5.3.3 Posunující C=C vazbu ( n _ m isomerasy) 5.3.4 Posunující S _ S vazbu (proteindisulfid _ isomerasa) 5.3.99 statní intramolekulární oxidoreduktasy

5. ISMERASY 5.4 Intramolekulární transferasy (mutasy) 5.4.1 Přenášející acylovou skupinu (acylmutasy) 5.4.2 Fosfotransferasy (fosfomutasy) 5.4.3 Přesunující aminoskupinu (aminomutasy) 5.5 Intramolekulární lyasy (decyklisující, intramolekulární adice) 5.99 statní isomerasy (např. DNA-topoisomerasy)

Isomerasy - příklady: EC 5.1.1.13 Aspartátracemasa (s poloviční rychlostí působí též na Ala) EC 5.1.2.1 Laktátracemasa EC 5.3.1.1 D-Glyceraldehyd-3-fosfátketolisomerasa, triosafosfátisomerasa HC H H CH H 2 C C H 2 C P H 2 C P D-glyceraldehyd-3-fosfát dihydroxyacetonfosfát EC 5.4.2.1 D-Fosfoglycerát-2,3-fosfomutasa, fosfoglycerátmutasa C C H CH P CH H 2 C P H 2 C H 3-fosfo-D-glycerát 2-fosfo-D-glycerát

6. LIGASY substrát 1 + substrát 2 + A(G) TP substrát 1 + substrát 2 + ATP substrát 1 _ substrát 2 + ADP + P i nebo substrát 1 _ substrát 2 + AMP + PP i Systematický název: substrát1: substrát 2 _ ligasa (tvořící ADP, AMP nebo GDP) angl.: substrate l : substrate 2 ligase (ADP, AMP or GDP _ forming) Triviální názvy: pokud možno substrát 1 _ substrát 2 _ ligasa (synthetasy jsou možné, často se však vyskytují i synthasy)

6. LIGASY 6.1 Tvořící C _ vazby (aminoacyl _ trna _ ligasy a podobné estery) 6.2 Tvořící C _ S vazby (kyselina _ thiol _ ligasy) 6.3 Tvořící C _ N vazby 6.3.1 Acid _ ammonia (or amine) ligases (asparaginsynthetasa) 6.3.2 Acid _ amino _ acid ligases (např. peptidsynthetasy) 6.3.3 Cyklisující ligasy 6.3.4 statní C _ N ligasy 6.3.5 C _ N ligasy s glutaminem jako donorem dusíku (např. karbamoylfosfátsynthetasa) 6.4 Tvořící C _ C vazby (např. karboxylasy) 6.5 Tvořící estery kyseliny fosforečné (např. DNA-ligasa)

Ligasy - příklady EC 6.1.1.1 L-Tyrosin:tRNA Tyr -ligasa (AMP-tvořící), tyrosin-trna-ligasa L-Tyr + trna Tyr + ATP L-Tyr-tRNA Tyr + AMP + PP i EC 6.2.1.1 Acetát:CoA-ligasa (AMP-tvořící), acetát-coa ligasa CH 3 C - + HSCoA + ATP acetyl-scoa + AMP + PP i EC 6.3.1.4 L-Aspartát:amoniak-ligasa (ADP-tvořící), asparaginsynthetasa L-Asp + NH 3 + ATP L-Asn + ADP + P i (EC 6.3.1.1.. AMP-tvořící) EC 6.4.1.1 Pyruvát:oxid uhličitý-ligasa (ADP-tvořící), pyruvátkarboxylasa CH 3 -C-C - + HC 3- +ATP - C-CH 2 -C-C - + ADP + P i EC 6.5.1.1 Poly(deoxyribonukleotid): poly(deoxyribonukleotid)-ligasa (AMPtvořící), DNA-ligasa ATP + (deoxyribonukleotid) n + (deoxyribonukleotid) m (deoxyribonukleotid) n+m + AMP + PP i