Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu.

Podobné dokumenty
Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu.

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie B

Úlohy klauzurní části školního kola kategorie A

Úlohy krajského kola kategorie A

Návody k domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C

Úlohy krajského kola kategorie C

Rozpis výstupů zima 2008 Geometrie

55. ročník matematické olympiády

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

M - Pythagorova věta, Eukleidovy věty

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

Syntetická geometrie II

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

Přijímací zkouška na MFF UK v Praze

2. Přeneste úsečku KL na polopřímku s počátkem P a vyznačte tak úsečku PR shodnou s úsečkou KL. Vztah shodnosti mezi těmito úsečkami zapište.

Úlohy domácí části I. kola kategorie B

Extremální úlohy v geometrii

Návody k domácí části I. kola kategorie C

Úlohy klauzurní části školního kola kategorie B

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

Návody k domácí části I. kola kategorie B

Úlohy klauzurní části školního kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

Přijímací zkouška na MFF UK v Praze

Úlohy krajského kola kategorie C

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

66. ročníku MO (kategorie A, B, C)

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

I. kolo kategorie Z8

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

B A B A B A B A A B A B B

I. kolo kategorie Z7

49. roënìk matematickè olympi dy, III. kolo kategorie A. BÌlovec, 9.ñ12. dubna 2000

Úlohy krajského kola kategorie A

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Úlohy domácího kola kategorie A

Úlohy krajského kola kategorie B

Test Zkušební přijímací zkoušky

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

Návody k domácí části I. kola kategorie A

Úlohy domácí části I. kola kategorie B

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

Univerzita Karlova v Praze Pedagogická fakulta

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Úlohy domácího kola kategorie B

56. ročník Matematické olympiády

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

Návody k úlohám domácí části I. kola 59. ročníku MO kategorie B

I. kolo kategorie Z7

65. ročník matematické olympiády III. kolo kategorie A. Pardubice, dubna 2016

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

SHODNÁ ZOBRAZENÍ V ROVINĚ

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

Zajímavé matematické úlohy

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

53. ročník matematické olympiády. q = 65

Úlohy domácí části I. kola kategorie C

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].

Úlohy MO z let navržené dr. Jaroslavem Švrčkem

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

Úlohy domácí části I. kola kategorie C

Jak by mohl vypadat test z matematiky

Matematický KLOKAN 2007 kategorie Junior (A) 8 (B) 9 (C) 11 (D) 13 (E) 15 AEF? (A) 16 (B) 24 (C) 32 (D) 36 (E) 48

4.3.2 Koeficient podobnosti

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Úlohy klauzurní části školního kola kategorie A

Obrázek 101: Podobné útvary

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

Dirichletův princip. D1 Z libovolných 82 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte.

Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Úlohy domácího kola kategorie B

Počítání v planimetrii Michal Kenny Rolínek

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

2. Která z trojice úseček může a která nemůže být stranami trojúhelníku. a) b)

MATE MATIKA. učebnice pro 2. stupeň ZŠ a víceletá gymnázia

Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost

Úlohy domácí části I. kola kategorie C

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Úlohy krajského kola kategorie C

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,

Transkript:

1 1 Kategorie C V této kapitole se budeme věnovat problémovým úlohám a úlohám k procvičení, které jsou vhodným výchozím studijním materiálem pro úspěšné zvládnutí domácí části matematické olympiády kategorie C, tj. pro první ročníky čtyřletých studijních oborů a jim odpovídající ročníky víceletých gymnázií. 1.1 Slovnílogik C I 1 Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu. 1.Z29 dětí sbírá 12 dětí známky, 13 pohlednice. Těch, kteří sbírají známkyipohledniceješest.kolikdětísbírájenomznámkyakolik jich nesbírá nic? Jenom známky sbíralo 6 dětí, 10 dětí nesbíralo nic, viz. diagram níže. 2.Ze30žákůjednétřídybylo7žákůoprázdnináchnarekreacivŘeckua právětolikvchorvatsku;itáliinavštívilo5žáků.vžádnéztěchtotří zemínebylo16žáků,všechnytřinavštíviljedenžák.vřeckuiitáliibyli 2žáci,vItáliiivChorvatsku1žák.Kolikžákůnavštívilooprázdninách Chorvatsko nebo Řecko, Itálii nebo Chorvatsko, jen Řecko?

2 Načrtneme Vennův digram pro tři množiny a postupně vyznačíme počty prvků v jednotlivých jeho částech. Chorvatsko nebo Řecko navštívilo 11 studentů, Itálii nebo Chorvatsko 1student,jenvŘeckubyli3studenti. 3.ZpětirodinodebírajítřirodinydeníkDnesadvěLidovénoviny.Existuje mezi nimi rodina, která neodebírá žádný z těchto materiálů? Ano, může. Možnosti při odebírání novin vidíme na následujících diagramech.

3 Uveďmesipravidlahry slovnílogik.hráč Asimyslíslovosloženézpěti rúzných písmen. Hráč B vysloví libovolné slovo složené z pěti různých písmenahráč Amuprozradí,kolikpísmenuhodlnasprávnépoziciakolik na nesprávné. Písmena považujeme za různá, i když se liší jen háčkem nebo čárkou. Například: Myslíme si slovo SEŠIT, hráč B řekne slovo ŠIŠKA, hráč A zkráceněodpoví1+1,neboťjednopísmenojenasprávnépozici(š)ajedno písmeno je na nesprávné pozici(i). Nebo jiná dvojice: LOĎKA + KOLÁČ 1+2. 4.ErikaaKlárkahrályhru slovnílogik.erikasimyslelaslovozpěti různých písmen a Klárka vyslovila slova SIRUP a VODKA. Erika v danémpořadíodpověděla0+3a1+1.dokažte,ževšechnapísmena slova,kterésierikamyslela,patřídomnožiny M= {S,I,R,U,P } {V,O,D,K,A}. Slova SIRUP a VODKA nemají žádné společné písmeno. Erika si mohla myslet například slovo DOPIS, RUSKO, IRSKO nebo PRVKU. 5.ErikaaKlárkahrályhruslovnílogik.ErikasimyslelaslovoAGÁTYa Klárka vyslovila slova KABÁT a MĚSTA. Ověřte, že Erika musela odpovědět stejně jako v úloze 4. Proč nyní nepatří všechna písmena slova, která si Erika myslela, do množiny L = {K,A,B,Á,T} {M,Ě,S,T,A}?

4 Slova mají společné písmeno A. Proto se v množině sestavené z písmen obou slov nenachází všech pět písmen hledaného slova. 6. Erika a Klárka hrály hru slovní logik. Klárka vyslovila slova OPAVÚ a ÚLOZE, přičemž Erika odpověděla stejně jako v úloze 4. Jaké slovo sierikamyslela,kdyžvšechnajehopísmenaužpatřídomnožiny L= {O,P,A,V,Ú} {Ú,L,O,Z,E}? Vybíráme3písmenavjinépozicizprvníhoslova,jednopísmenov nesprávné pozici a jedno ve správné pozici z druhého slova. Erika si myslela slovo PAVLE. 7. Třicet maturantů jednoho gymnázia podalo přihlášku k dalšímu studiu na některou ze šesti fakult ČVUT. Využili možnost podat více přihlášek, a tak polovina žáků podala přihlášku aspoň na tři fakulty, třetina si podala přihlášku na více než tři fakulty. Na fakultu architektury se s ohledem na talentovou přijímací zkoušku nehlásil nikdo. a)dokažte,žeaspoňnajednufakultusipodalopřihláškuaspoň14 studentů. b) Dokažte, že na některou ze zbývajících pěti fakult se přihlásilo méně než dvacet studentů. a)vpřípadě,žebyneplatilotototvrzení,mohlobybýtnejvýše5 13= 65 přihlášek. Dle zadání polovina studentů podala aspoň tři přihlášky, tedy druhá polovina studentů podala jednu nebo dvě přihlášky. Z druhé poloviny 10 studentů(třetina z celkového počtu) podalo aspoň čtyři přihlášky a zbývajících 5 studentů podalo právě tři přihlášky. Minimální početpřihlášekdlepodmínekzadáníje15 1+10 4+5 3=70 >65. Tedy aspoň na jednu fakultu podalo přihlášku aspoň čtrnáct studentů. Rozpis pro případ, kdy na každou fakultu si podalo přihlášku právě 14 studentů viz. tabulka níže.

5 b)kdybytvrzeníúlohyneplatilo,bylobyzapotřebíaspoň5 20= 100 přihlášek. Z rozboru řešení v případě a) odhadneme, že maturanti podalinejvýše15 2+10 5+5 3=95 <100,protonemohlipodatna každou fakultu aspoň 20 přihlášek. Rozpis pro případ, kdy na každou fakultu studenti podali právě 19 přihlášek viz níže. 8. Honza, Jirka, Martin a Petr organizovali na náměstí sbírku na dobročinné účely. Za chvíli se u nich postupně zastavilo pět kolemjdoucích. PrvnídalHonzovidojehokasičky3Kč,Jirkovi2Kč,Martinovi1Kč

6 apetrovinic.druhýdaljednomuzchlapců8kčazbylýmtřemnedal nic.třetídaldvěmachlapcůmpo2kčadvěmanic.čtvrtýdaldvěma chlapcůmpo4kčadvěmanic.pátýdaldvěmachlapcůmpo8kča dvěma nic. Poté chlapci zjistili, že každý z nich vybral jinou částku, přičemž tyto tvoří čtyři po sobě jdoucí přirozená čísla. Který z chlapců vybral nejméně a který nejvíce peněz? Dohromady chlapci dostali od kolemjdoucích celkem 42 Kč. Číslo 42 vyjádřímejednoznačnějakosoučetčtyřposobějdoucíchčísel9+10+ 11+12=42.Úvahylzeuspořádatdotabulky,přičemžuvážíme,že nemohlanijedenzchlapcůdostatdvakrát8kč.ktomunejvýšejeden mohldostat4kč,jinakbybylidvasnejvyššívybranoučástkou12kč, viz tabulka níže. 1 2 3 4 5 Σ 8 0 0 0 0 8 0 0 0 4 8 12 P 3 0 2 4 0 9 H 1+2+3 1 8 2 2 2 4 2 8 Nejmnéně vybral Honza a nejvíce vybral Petr. 1.2 Přímky a pravoúhelník C I 2 1. Na list papíru tvaru obdélníku narýsujte podle obrázku pravoúhelník ABCD tak, aby jeho strany AB a AD splývaly s okrajem papíru. Pak sestrojte přímku, aby měla s pravoúhelníkem společný jen bod C a její průnik listem papíru tvořil úsečku M N, podél níž papír rozřízněte.

7 Vzniklý papírový model trojúhelníku AM N s narýsovaným obdélníkem ABCD přehněte podél úseček BC a DC. Tuto činnost několikrát opakujte, přitom pro tentýž pravoúhelník ABCD volte různé délky úsečky BM.Colzezvýsledkuusouditopoměruobsahůtrojúhelníku AMN a pravoúhelníku ABCD? Hypotézu dokažte. Tímto modelováním nebo užitím programů dynamické geometrie, např. Cabri,jemožnédojítkhypotéze,žeobrazempřímky MN vobou souměrnostech je jedna a táž přímka CX. Uvážíme-li souhlasné úhly při vrcholech M a C v trojúhelnících N DC a NAM,pakmůžemepsát <)NCD = <)CMB = <)DCX =α a <)MCB = <)BCX =90 α. Součetúhlůsvrcholemvbodě Cjepakroven <)NCD + <)DCX + <)MCB + <)BCX = = α+α+90 α+90 α=180, tedy obrazy přímky M N v osových souměrnostech podle přímek BC a CD splývají. Zpodobnostitrojúhelníkuů NDCa CBMplyne,že y b = a x y= ab x.

8 Pak obsah AM N můžeme vyjádřit takto: S AMN = 1 ( 2 (a+x)(b+y)=1 2 (a+x) b+ ab ) = x = ab+ 1 ( x 2 a x) + a 2ab. Rovnostnastane,právěkdyž x=a.vtomtopřípaděje S AMN =2ab. 2.Jedánostrýúhel KBLabod M jehovnitřku.sestrojtebodem M přímku p tak, aby vytínala z úhlu KBL trojúhelník ABC nejmenšího obsahu. Analyzujte obsah trojúhelníku ABC pro různé případy polohy bodu Mvzhledemkúsečce AC.Naobrázkujebod M,jímproloženápřímka a trojúhelník ABC. Uvažme jinou přímku procházející bodem M. Z obrázku je patrno, že nově vzniklý trojúhelník má menší obsah než původní trojúhelník.

Uvážíme-lipolohubodu Mtakovou,žejestředemúsečky AC,pakz obrázku níže je patrno, že libovolnou jinou přímkou vedenou bodem M nedosáhneme trojúhelníku s menším obsahem, než má trojúhelník ABC. 9

10 3.Jedánapřímka pavjednépoloroviněbody A,B.Najdětenapřímce pbod Xtak,abysoučetvzdálenostíodbodů A,Bbylconejmenší. Hledanýbod X získámejakoprůsečíkúsečky AB spřímkou p,kde bod B jeobrazembodu Bvosovésouměrnostidanéosou p.adále platí,že XB = XB,tedy AX + XB = AX + XB.Projinou polohubodu X,např. X,platív AX B trojúhelníkovánerovnost, tj. AX + X B > AB.Probod Xzkonstruovanýtímtozpůsobem je součet minimální. 4.Jedánostrýúhel XV Y ajehovnitřníbod C.Sestrojtenarameni V X bod Aanarameni V Y bod Btak,abyvzniklýtrojúhelníkměl ABC měl minimální obvod. Analogicky předchozímu příkladu, zobrazíme bod C v osových souměrnostech podle ramen daného úhlu, viz. obrázek. Hledané zbylé vrcholy jsoupakprůsečíkemramenúhlusúsečkou C C.

11 5. Dokažte, že pro libovolná nezáporná čísla a, b platí 1 2 (a+b) ab, přičemžrovnostnastane,právěkdyž a=b. Uvažme a=u 2,b=v 2, u,v 0.Pakposubstitucidostaneme 1 2 (u2 + v 2 ) u2 v 2 = uvpronezápornáčísla.poúpravě u 2 + v 2 2uv,odkud (u v) 2 0,cožjevýrokpravdivý.Druhámocninalibovolnéhoreálného čísla je vždy nezáporná. 1.3 Celáčást x C I 3 1.Určete 0, 2,1, 2,8, 99,9, 5, 10, 2,001, 2,8, 99,9, 9. 0;2;2;99;5; 10; 3; 3; 100; 9. 2.Nechť a Zat 0;1).Určete a, a+t, a+ 1 2 t, a t, a+2t, a 2t.

12 a;a;a;apro t=0aa 1pro t (0;1); apro t 0; 1 2) a a+1pro t 1 2 ;1) ; apro t=0, a 1pro t ( 0; 1 2 a a 2pro t ( 1 2 ;1). 3.Načrtnětegrafyfunkcí: y= x, y= x x. 4.ŘeštevR: a) x+ x =68,5 b) x+ x =97 c) x x =68,5 d) x x =97 a)34,5;b)nemářešení;c)8 < x <9, x=8,5625;d)nemářešení. 5.Řešterovnice x R: a) 3x 5 =5x 8 b) 5+6x 8 = 15x 7 5 c) 3+2x 4 = 5 3x 2 d)soustavu x,y R:7 x +2y=117,4a5x+2 y =91,9 a)výraz5x 8jenutněceléčíslo,tedy k=5x 8,odkud x= 1(k+8). 5 Podosazení do zadání dostaneme 3 k+8 3k 1 5 = = k. 5 5 To podle definice celé části vede k nerovnostem k 3k 1 5 < k+1 3 < k 1 2, odkudpro k= 2je x 1 =1,2,nebo k= 1je x 2 =1,4. b)výraz 15x 7 = k Zatedy 15x 7 5+6x < 15x 7 +1. 5 5 8 5 Zprvnínerovniceplyne x 9 = 81 41,zdruhénerovniceplyne x >. 10 90 90

13 Dálevíme,že 15x 7 = k x= 30k+42,tedy40 <30k+42 81a 5 90 konečně 1 < k 39, k=0;1.podosazenímáme x 30 30 1= 7, x 15 2= 4. 5 c) Platísoučasně k 3+2x < k+1ak 5 3x < k+1.pak I 4 2 k1 = 4k 3 ) ; 4k+1 2 2 a Ik2 = ( 3 2k; 5 2k 3 3 ahledáme,prokteráceláčísla kmají tytointervalyneprázdnýprůnik.tedy 4k+1 > 3 2k asoučasně 5 2k 2 3 3 4k 3,odkuddostanemepro kpodmínku,že 3 < k 19 k=1. 2 16 16 Pro k=1apodosazení 3+2x 4 = 5 3x 2 =1,jevýslednýinterval x ( 1 2 2) ;5 1 ;1 = 1;1. 2 2 d) Označme x x =x 0 a y y =y 0,kde x 0,y 0 0;1).Pakdaná soustava přejde na tvar 7 x +2 y = 117,4 2y 0 5 x +2 y = 91,9 5x 0. Nalevéstraněobourovnicsoustavyjesoučetcelýchčísel,tedyina pravéstraněrovnicsoustavymusíbýtceláčísla,odkudpro y 0 plynou dvěmožnosti: y 0 =0,2nebo0,7. Zprvnírovnicevyjádříme y = 117,4 2y 0 7 x,dálerovniceod 2 sebeodečteme,dostanemepro y 0 =0,2rovnici2 x =25,1+5x 0 a 117 7 x y =.Protože0 5x 0 <5,je x =13,14nebo15.Z 2 důvodu y Z,musíbýt x liché.pakdostaneme x x 0 y x y 13 0,18 13 13,18 13,2 15 0,98 6 15,98 6,2 116 7 x Analogickyprodruhýpřípad,kdy y 0 =0,7a y =,dostanemepoodečtení2 x =24,1+5x 0.Protože0 5x 0 <5,je x =13 2 nebo14.zdůvodu y Z,musíbýt x sudé.pakdostaneme x x 0 y x y 14 0,78 9 14,78 9,7. Mámetedycelkemtřiřešení[13,18;13,2],[15,98;6,2],[14,78;9,7].

14 1.4 Mocnostbodukekružnici C I 4 1. Určete poloměry tří kružnic, jejichž středy tvoří vrcholy trojúhelníku sestranamidélek a,b,c,akaždédvěmajívnějšídotyk. Zobrázkuvidíme,že a=s+t, b=r+ t, c=r+ s.odkudsečtením prvnímdvourovniczískámerovnici a+b=r+s+2t=c+2t,zčehož plyne t= a+b c. Postupným dosazením získáme i velikosti zbývajících 2 poloměrů s= a+c b a r= b+c a. 2 2 2.Kružnice k,l,msepodvouvnědotýkajíavšechnytřimajíspolečnou tečnu.poloměrykružnic k,ljsou3cma12cm.vypočtětepoloměr kružnice m. Najděte všechna řešení. Označmepoloměrykružnic k,lpostupně r,sabodydotykunaspolečné tečně A,B,C.Vizobrázek.

Uvažujme lichoběžník ART C a dále vezměme pravoúhlý trojúhelník RUT, UT = AC = (r+ t) 2 (r t) 2 = 2 rt = 2 3t.Analogicky z lichoběžníků CT SB a ARSB dostaneme vztahy BC = 2sqrtst=4 3ta AB =2sqrtrs=12.Nejdříceuvažme,žebod Cleží mezibody AaB.Jepak2sqrt3t+4 3t=12,odkud t= 4 3.Jestliže bod Aležímezibody Ca B,dostanemerovnici2 3t+12=4 3t, odkud t=12.jinýpřípad,bod Bjemezibody AaC,nemářešení, viz. další obrázek. 15

16 Poloměr mjeroven 4 3 cmnebo12cm. 3.Kružnice k,l,msedotýkajíspolečnétečnyvetřechrůznýchbodecha jejichstředyležívpřímce.kružnice kalstejnějakokružnice lam mají vnější dotyk. Určete poloměr kružnice l, jestliže poloměry kružnic kamjsou3cma12cm. Zpravoúhlýchlichoběžníků KLV U,LMWV,KMWUplynepodlePythagorovy věty KL 2 = (r+3) 2 (r 3) 2 =12r LM 2 = (12+r) 2 (12 r) 2 =48r KM 2 = (3+2r+12) 2 (12 3) 2 =4r 2 +60r+144 a KL + LM = KM.Poúpravěpro rrovnici 4r 2 48r+144=0=4(r 6) 2. Mátatorovnicejedinéřešení r=6. Kružnice l má poloměr 6 cm.

17 4.Kružnice k,lsvnějšímdotykemležíoběvobdélníku ABCD,jehož obsahje72cm 2.Kružnice ksepřitomdotýkástran CD,DAaAB, zatímco kružnice l se dotýká stran AB a BC. Určete poloměry kružnic k, l, jestliže poloměr kružnice k je v centimetrech vyjádřen celým číslem. KL = (r+ s) 2 (r s) 2 =2 rsas ABCD = AD AB =2r (r+2 rs+s)=( r+ s) 2.Odkud rs=(6 r) 2 a s= (6 r)2 r. Zúlohyplyne,že s r,tj. s ra AB >2r.Dále72= AB AD 4r 2 r <4.Pak {r;s} {4,1}. Úlohamáprávědvěřešení: r=s=3cmar=4cm, s=1cm. 1.5 Algebraické nerovnosti C I 5 1.Dokažte,že a,b R:ab a2 +b 2 2. Poúpravě2ab a 2 + b 2 0 (a 2 2ab+b 2 ) 0 (a b) 2,cožje výrok pravdivý, druhá mocnina reálného čísla je vždy nezáporna.

18 2.Dokažte,že a,b R + : a b + b a 2. Poúpravě a2 +b 2 ab 2 a 2 + b 2 2ab (a b) 2 0. 3.Dokažte,že a,b R + : ab=1 a+b 2. Povyjádření a= 1 b adosazenímámenerovnicivetvaru 1 b + b 2 b 2 2b+1 0 (b 1) 2 0. 4.Dokažte,že a,b,c R:3(x 2 + y 2 + z 2 )=(x+y+ z) 2 x=y= z. 5.Dokažte,že a R + : a+ 1 a 2.Kdynastanerovnost? Viz.úloha3vtétopodkapitole.Rovnostnastanepro a=1. 6.Dokažte,že a R + : a 2 + 1 a 2 2.Kdynastanerovnost? Analogickyupravímeadostanemevýraz a 4 2a 2 +1=(a 2 1) 2 0. Rovnostnastanepro a=1. 7.Najdětevšechnytrojickladnýchčísel a,b,c,prokteréplatí Poúpravě a+ 1 ( a +2 b+ 1 ) b a=b=c=1. a+2b+3c+ 1 a +2 b +3 c =12. ( +3 c+ 1 ) 12.Rovnostnatanepro c 8.Nechť a,b,c,djsoutakováreálnáčísla,že a+d=b+c.dokažtenerovnost (a b)(c d)+(a c)(b d)+(d a)(b c) 0. Zpodmínkynerovnicezískámevyjádřenípro d; d=b+c aatoto dosadímedolevéstranynerovnice.poúpravě2a 2 4ab+2b 2 =2(a b) 2. Výraz je nezáporný pro každé reálné číslo, tím je nerovnost dokázaná.

19 9. Dokažte, že pro libovolná různá kladná čísla a, b platí a+b 2 < 2(a2 + ab+b 2 ) 3(a+b) a2 + b < 2. 2 Nejprveupravímelevoučást,tedy3(a+b) 2 <4(a 2 + ab+b 2 ) 0< (a b) 2 pro a b.pravoučástumocníme(obéstranynerovnicejsou kladná čísla), roznásobíme a částečně upravíme na tvar 6a 2 b 2 < a 4 + b 4 +2a 3 b+2ab 3. Což můžeme chápat jako součet dvou nerovností 2a 2 b 2 < a 4 + b 4 0<(a b) 2 a 4a 2 b 2 <2a 3 b+2ab 3 0<2ab(a b) 2. 10.Určetevšechnakladnáčísla x,y,z,proněžsoučasněplatí: x+ 1 y 2, y+1 z 2, z+1 x 2 Sečtenímvšechtřínerovnicdostaneme x+y+ z+ 1 x +1 y +1 z 6. Provedemeodhadnazákladěúlohy5,resp.3.Tedy6 x+ 1 x + y+ 1 y + z+1 6.Tedy x=y= z=1. z 1.6 Dělitelnost C I 6 1. Trojciferné číslo je zakončeno číslicí 4. Přesuneme-li tuto číslici na první místo, dostaneme číslo, které je o 81 menší než číslo původní. Určete původní číslo.

20 Hledanéčíslojetvaru ab4,popřesunuposledníčíslice4ab,kde a,bjsou číslice0 < a 9,0 b 9.Rozepíšeme-lijejdorozvinutéhozápisuv desítkové sooustavě, obdržíme rovnici 100a+10b+4=100 4+10a+b+81 10a+b=53. Uvážíme-li,že a,bjsoučíslice0<a 9, 0 b 9,získámejediné řešení a=5,b=3.hledanéčísloje534. 2. Najděte všechna čtyřmístná čísla n, která mají následující tři vlastnosti: Vzápisečísla njsoudvěrůznéčíslice,každádvakrát.číslo njedělitelné sedmi. Číslo, které vznikne obrácením pořadí číslic čísla n, je rovněž čtyřmístné a dělitelné sedmi. Uvažmetřipřípady: aabb, ababaabba,kde0 < a,b 9. a) n=aabb=1100a+11ban = bbaa=1100b+11a.dáleplatí,že7 n a7 n,musídělitijejichsoučetarozdíl.tedy7 (n n )atéž7 (n+n ). Po úpravě máme n+n =1111(a+b), n n =1089(a b). Čísla1089,1111všaknejsoudělitelná7,tedy7musídělit a+ba a b.použijemestejnouúvahuještějednou,tedy7 (a+b)+(a b)a 7 (a+b) (a b),odkudvyplývá,že7 2aa7 b,neboli a,b {0;7}. Číslice a,bjsounavzájemrůzné,protojednaznichmusíbýt0.číslo n nebo n bypakalenebyločtyřmístné.číslo nnemůžebýttohototvaru. b) n=abab=1010a+101ban = baba=1010b+101a.podobnějako v předcházejícím případě odvodíme, že 7 n n =909(a b),7 n+n =1111(a+b) 7 a,b a,b {0;7}, tedyjednaznichopětmusíbýt0.číslo nnebo n bypakalenebylo čtyřmístné a nemůže být ani tohoto tvaru. c) n=abba=1001a+110b=n aprotože7 1001a7 110,musí 7 b b {0;7}.Vzhledemkpodmínce a {1,2,...,9}aa bje řešením17čísel1001,2002,3003,4004,5005,6006,7007,8008, 9009,1771,2772,3773,4774,5775,6776,8778,9779.

21 3. Klárka měla na papíru napsáno trojmístné číslo. Když ho správně vynásobila devíti, dostala čtyřmístné číslo, jež začínalo touž číslicí jako původní číslo, prostřední dvě číslice se rovnaly a poslední číslice byla součtem číslic původního čísla. Které čtyřmístné číslo mohla Klárka dostat? Hledámečíslotvaru x=abc=100a+10b+ca9x=9(100a+10b+c)= adde=1000a+100d+10d+(a+b+c),přičemž a,b,c,d,ejsoučíslice. Porovnáním posledních číslic zjistíme, že poslední číslice výrazu 9c je táž,jakovýraz a+b+c.dálevíme,že a+b+c >5a0<c<5,jinak byvýraz9ckončilčíslicínepřevyšující5;pro c=0bypakix=0. Ostatní možnosti jsou dány v tabulce. c 9c a+b+c a+b 1 9 9 8 2 18 8 6 3 27 7 4 4 36 6 2 Vztah 9(100a+10b+c) = 1000a+100d+10d+(a+b+c) ještě upravíme na tvar 100(b a d)=10d+a+11b 8c. (1) Číslice a,b,c,djsounejvýšerovnydevíti,tedyhodnotapravéstranyje menšínež200aaspoň-72.jetedybuď b a d=0nebo b a d=1. Zprvníhopřípaduplyne,že d=b a,poúpravě(1)natvar8c= 3(7b 3a)vidíme,že cjenásobkemtří.ztabulkypakplyne,že c= 3,a=4 b a=b=2.tedy x=223ahledanéčtyřmístnéčísloje 2007. Druhýpřípad b a d=1jepak d=b a 1,dosadímedo(1) azjistíme,že8c+110=3(7b 3a).Výraz8c+110jetdydělitelný třemiaprotomusí cdávatzbytek2přidělenítřemi.ztabulky c=2 a b=6 adorovnice8c+110=3(7b 3a)zjistíme,že a=0,což odporuje tomu, že Klára měla na papíře napsané trojmístné číslo.