Moravskoslezský. Sborník

Podobné dokumenty
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

8. Stereometrie 1 bod

Euklidovský prostor Stručnější verze

Aplikační úlohy z geometrie

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Návody k domácí části I. kola kategorie A

Otázky z kapitoly Stereometrie

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Stereometrie pro učební obory

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

Digitální učební materiál

Modelové úlohy přijímacího testu z matematiky

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

I. kolo kategorie Z9

Matematika s radostí aneb hodiny plné her, testů a soutěží

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Modelové úlohy přijímacího testu z matematiky

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

Úvod do teorie her. David Bartl, Lenka Ploháková

Polibky kružnic: Intermezzo

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Přijímací zkouška na MFF UK v Praze

57 LINEÁRNÍ rovnice slovní úlohy I notebook. April 21, Rozcvička

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

. Určete hodnotu neznámé x tak, aby

Matematika I: Aplikované úlohy

BA03 Deskriptivní geometrie

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

Jak oživit výuku matematiky na SŠ pomocí kvízů a her a jak pomoci učitelům s písemkami

Úloha 2. Obdélník ABCDprotínákružnicivbodech E, F, G, H jakonaobrázku.jestližeplatí AE =3, DH =4a GH =5,určete EF. G C

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Výjezdní soustředění matematických talentů Karlov pod Pradědem

Teoretické úlohy celostátního kola 53. ročníku FO

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104

I. kolo kategorie Z5

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. jarní série. Barevné úlohy

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematika a geometrie

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

PŘIJÍMACÍ ZKOUŠKY I.termín 22.dubna 2014

Přehled učiva matematiky 7. ročník ZŠ

Úlohy klauzurní části školního kola kategorie A

Edita Kolářová ÚSTAV MATEMATIKY

Metodický materiál. Kvadratické funkce

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks

3. Mocnina a odmocnina. Pythagorova věta

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.

Odhad ve fyzice a v životě

KOS. (Matematického ústavu Slezské univerzity v Opavě) 2001/2002

1BMATEMATIKA. 0B9. třída

Projekty do předmětu MF

Digitální učební materiál

Slovní úlohy v učivu matematiky 1. stupně základní školy

MATEMATIKA základní úroveň obtížnosti

Matematika s radostí aneb hodiny plné her, testů a soutěží

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6)

13 Analytická geometrie v prostoru

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Geodetické polohové a výškové vytyčovací práce

Přijímací zkouška na MFF UK v Praze

MATEMATIKA rozšířená úroveň

Úlohy krajského kola kategorie A

Úlohy soutěže MaSo, 13. května 2009

Entrance test from mathematics for PhD (with answers)

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník V. kružnice vepsaná a opsaná. konstrukce kružnice vepsaní a opsané trojúhelníku

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

Zajímavé matematické úlohy

Výuka astronomie na základních školách v České republice můžeme být spokojeni?

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

6. Střídavý proud Sinusových průběh

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8

Matematika pro kombinované studium BOZO. Konzultace pátá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda

8. ročník - školní kolo

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

Zajímavé matematické úlohy

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

Mendelova zemědělská a lesnická univerzita v Brně

53. ročník matematické olympiády. q = 65

II. kolo kategorie Z6

Transkript:

Wichterlovo gymnázium, Ostrava-Poruba příspěvková organizace Moravskoslezský matematický šampionát 2014 Sborník Ostrava-Poruba 23. 10. 2014

c RNDr. Eva Davidová a kol. ISBN 978-80-87058-21-3

Organizační výbor Mgr. Bc. Libor Klubal RNDr. Eva Davidová Mgr. Lada Stachovcová hlavní organizátor odborný matematický dohled, editor sborníku technická podpora Autoři a recenzenti RNDr. Eva Davidová, Mgr. Jana Gajdušková, Mgr. Petra Kňurová, Mgr. Tomáš Krchňák, Mgr. Lenka Plášková, Mgr. Marie Štípalová, Mgr. Lada Stachovcová, RNDr. Michal Vavroš, Ph.D. Překlad do anglického jazyka Mgr. Lada Stachovcová, Mgr. Jan Netolička

Obsah Úvodní slovo 7 prof. Ing. Ivo Vondrák, CSc. Kategorie ZŠ 9 Jahodové knedlíky 9 Tácy a talířek 10 Čaj o páté 11 V pizzerii 12 Renovace kuchyně 13 Kategorie SŠ 3 Jídelní tyčinky 14 Koule z marcipánu 16 Meat Roulade 18 Pokus cukrářského učně 20 Svačina s atrakcí 22 Matematika s radostí 24 RNDr. Petra Vondráková, Ph.D. Ing. Petr Beremlijski, Ph.D. Moravskoslezský matematický šampionát 5

Vesmír nebo nanosvět? Úvodní slovo Na Wichterlovo gymnázium se vždy rád vracím. Nejen proto, že to je moje škola, kde jsem čtyři roky studoval, ale taky se tím vracím do doby, ve které jsem měl největší celkový přehled o dění kolem sebe. Když jsem poté nastoupil na vysokou školu, už bylo mé vzdělávání pochopitelně zaměřeno jedním směrem. Na gymnáziu jsme museli umět vše. Biologii, dějepis, matematiku i jazyky. V té době bohužel hlavně ruský... Rozuměli jsme Dostojevskému, integrálům, uměli jsme popsat pestík i Napoleonovo tažení Evropou. A dovolím si tvrdit, že z mnohého těžím dodnes. Letos proběhne již dvanáctý ročník Moravskoslezského matematického šampionátu. Škoda, že jeho tradice není ještě delší. Určitě bych se ho, stejně jako vy, rád zúčastnil. Podíval jsem se do sborníků minulých ročníků a některé příklady mě mile překvapily a zaujaly. Je vidět, že tým autorů umí nejen vymyslet zajímavý příklad, ale také ho umí zasadit do zajímavých kulis. Vždyť v minulých letech mohli soutěžící řešit úlohy vztahující se k průmyslu nebo k hudbě! Sám jsem zvědav, jakou cestu zvolili letos. Naše univerzita má v názvu slovo technická a patrně i vy půjdete ve svém životě tímto směrem. Možná vás zaujme celý vesmír a stanete se následovníky Stephena Hawkinga. Nebo budete svět studovat od druhého konce a nanosvět vám přiblíží dílo Richarda Feynmana. Mimochodem knihy obou jsou poutavé a doporučuji je všem. Ať už si zvolíte jakoukoliv cestu, může vést přes Vysokou školu báňskou Technickou univerzitu Ostrava. A když budete mít kvalitní vzdělání, tak se vám třeba podaří předejít takovým úsměvným historkám, jako když 23. září 1999 ztroskotala po deseti měsících letu k Marsu družice Mars Climate Orbitel. Příčinou havárie nebylo nic banálnějšího, než že jedna část řídícího týmu používala anglické jednotky (stopy, palce, libry) a druhá se řídila mezinárodní dohodou (metry, kilogramy). No úsměvným... Ten úsměv stál NASA asi 125 miliónů dolarů. A to je možná na celé akci nejdůležitější: nejtalentovanější studenti, kteří navíc sami chtějí rozvíjet své dovednosti, řeší příklady, které mají zcela praktický základ. Přeji vám mnoho úspěchů nejen v soutěži, ale i v dalším studiu na střední a vysoké škole. Ať vyhrávají vždy ti nejlepší! prof. Ing. Ivo Vondrák, CSc. rektor Vysoké školy báňské Technické univerzity Ostrava Moravskoslezský matematický šampionát 7

Kategorie ZŠ 9 Jahodové knedlíky Zadání Martin na letním táboře pomáhal kuchaři s přípravou jahodových knedlíků. Zjistil, že jejich počet představuje čtyřciferné číslo končící číslicí 9 a zároveň je toto číslo dělitelné každou svou číslicí. Kolik jahodových knedlíků se tedy mohlo uvařit v táborové kuchyni? Najděte všechna možná řešení. Řešení Číslo končící cifrou 9 není dělitelné dvěma ani pěti, takže zbývající tři číslice spolu s koncovou devítkou musí být lichými čísly různými od pěti. Tedy to mohou být některá z čísel 1, 3, 7, 9. Jejich ciferný součet musí být dělitelný devíti, tedy pro obsazení míst tisíců, stovek a desítek hledaného čtyřciferného čísla přicházejí v úvahu pouze trojice (1, 1, 7), (3, 3, 3), (9, 9, 9). Sestavíme všechny možnosti pro hledané čtyřciferné číslo: 1179, 1719, 7119, 3339, 9999. Čísla 1179 a 1719 ovšem nejsou dělitelná sedmi, takže nevyhovují podmínce ze zadání. Čtyřciferná čísla s požadovanými vlastnostmi tedy jsou 7119, 3339 a 9999 a představují počty jahodových knedlíků, které mohly být připraveny v táborové kuchyni. Moravskoslezský matematický šampionát 9

Kategorie ZŠ 9 Zadání Tácy a talířek Číšník Michal si srovnal dva stejné kruhové tácy a jeden talířek vedle sebe přesně na kraji stolu tak, že se všechny navzájem dotýkaly (viz obr.). Jaký poloměr musí mít tácy, jestliže poloměr talířku je 7 cm? Řešení Označme poloměr talířku r a poloměr táců x, středy táců S 1, S 2, střed talířku O a bod dotyku táců T (viz obr.). Pak T S 2 = x, OS 2 = x + r, T O = x r. Protože trojúhelník OS 2 T je pravoúhlý, platí podle Pythagorovy věty Po úpravě dostáváme x 2 + (x r) 2 = (x + r) 2. x 2 + x 2 2xr + r 2 = x 2 + 2xr + r 2, a tedy x 2 = 4xr, neboli x = 4r = 4 7 = 28 cm, což je hledaný poloměr táců. 10 Moravskoslezský matematický šampionát

Kategorie ZŠ 9 Čaj o páté Zadání O prázdninách dva kamarádi Lada a Libor vycestovali do zahraničí. Lada do Minneapolis a Libor do Sydney. Města leží v různých časových pásmech a let z Minneapolis do Sydney trvá stejně jako let zpět. Z letového řádu jisté letecké společnosti víme, že jestliže máme odlet z Minneapolis v pondělí v 6 h ráno místního času, přílet do Sydney bude v úterý ve 14 h (času v Sydney). Odlétáme-li ze Sydney ve čtvrtek ve 13 h místního času, máme přílet do Minneapolis tentýž den v 15 h (času v Minneapolis). Jaký je čas u Libora, jestliže si Lada dává v Minneapolis sobotní odpolední čaj o páté? Řešení Časový posun mezi Minneapolis a Sydney si označme p, dobu letu mezi oběma městy pak t. Z porovnání údajů z letového řádu i geografické polohy měst (Amerika, Austrálie) plyne, že při letu z Minneapolis do Sydney letíme proti času a celková doba letu od pondělí 6 h do úterý 14 h je 32 hodin. Oproti letu zpět, kdy letíme s časem, je celkový uběhnutý čas jen 2 hodiny. Obě skutečnosti je možné zapsat pomocí rovnic následovně: t + p = 32 t p = 2 Jedná se o soustavu dvou rovnic o dvou neznámých t a p, kterou vyřešíme např. sčítací metodou. Sečtením rovnic získáme lineární rovnici 2t = 34, odkud vypočítáme dobu letu t = 17 hodin. Dopočítáme časový posun p, například z druhé rovnice: 17 p = 2, p = 15 hodin. Časový posun mezi Minneapolis a Sydney je 15 hodin a to tak, že v Sydney je o 15 hodin více. Pokud si Lada dává sobotní odpolední čaj o páté, její místní čas je sobota 17 h. U Libora je o 15 hodin více, tj. je neděle 8 h ráno. A pokud Libor ještě nesnídal, může si připravit své oblíbené nedělní vajíčko na hniličku. Čas u Libora je neděle 8 hodin ráno. Moravskoslezský matematický šampionát 11

Kategorie ZŠ 9 V pizzerii Zadání Eva si v pizzerii prohlížela jídelní lístek a všimla si, že když seřadí (dvojciferné) ceny některých položek vedle sebe, dostane 16-ti místné číslo, kde součet každých tří vedle sebe stojících číslic je 13. Jaké byly poslední 3 číslice, když víme, že druhá číslice byla 2 a desátá 4? Řešení Označme a, b, c první tři číslice. Víme, že je a + b + c = 13. Ale součet druhé, třetí a čtvrté číslice musí být také 13, takže čtvrtá číslice musí být zase rovna a. Podobně pátá musí být b, šestá c,..., takže celé číslo je tvaru abcabcabcabcabca. Jestliže tedy b = 2 (druhá číslice) a a = 4 (desátá číslice), pak c = 7 a poslední tři cifry jsou 2, 7, 4. 12 Moravskoslezský matematický šampionát

Kategorie ZŠ 9 Zadání Renovace kuchyně Při renovaci kuchyně je potřeba vydláždit určitou část obdélníkové místnosti speciálními dlaždicemi (viz obrázek bod S leží ve středu místnosti a šedá část, kterou je třeba vydláždit, má tvar pravoúhlého lichoběžníku). Délka místnosti je čtyřikrát větší než její šířka a obvod má 48 m. Kolik m 2 dlaždic bude potřeba? Řešení Označme šířku místnosti x, délka je čtyřikrát větší, tedy 4x. Pro obvod obdélníku dostaneme (4x + x) 2 = 48. Úpravami získáme 5x 2 = 48, neboli 10x = 48, odkud již plyne rozměr x = 4,8. Rozměry kuchyně jsou tedy 4,8 m a 19,2 m. Obdélník můžeme rozdělit na 8 shodných trojúhelníku (viz obrázek). Vydlážděná plocha zabírá 3 8 z celkové plochy obdélníku, tedy 3 4,8 19,2 = 34,56. 8 K vydláždění bude potřeba 34,56 m 2 dlaždic. Moravskoslezský matematický šampionát 13

Kategorie SŠ 3 Jídelní tyčinky Zadání Nadějní budoucí matematikové, Tonda a Libor, si v čínské restauraci při čekání na jídlo hráli s jídelními tyčinkami. Ze tří tyčinek vytvořili přímky, na nichž leží strany trojúhelníku (jeho vrcholy označme např. A, B, C, viz obrázek), z dalších dvou tyčinek pak přímky, na nichž leží osy vnitřních úhlů vytvořeného trojúhelníku. Napadla je otázka: Budou-li tyto dvě osy svírat úhel 100, jaká je pak velikost zbývajícího vnitřního úhlu? Chlapci to vypočítali a vám se to určitě podaří také... Dále uvažovali: Délka strany proti hledanému úhlu je ve sledovaném trojúhelníku 20 cm. Z této doplňující informace vypočítali poloměr kružnice trojúhelníku opsané. Vaším úkolem je vypočítat velikost úhlu α a velikost poloměru kružnice opsané danému trojúhelníku. 14 Moravskoslezský matematický šampionát

Kategorie SŠ 3 Řešení Označme úhly v trojúhelníku podle obrázku: Úhel OKA je vnějším úhlem trojúhelníka OKC, tedy platí δ = γ 2 + 80. Obdobně je <) OM A vnějším úhlem trojúhelníka OM B, tedy platí ε = β 2 + 80. Ve čtyřúhelníku AM OK platí pro součet vnitřních úhlů α + ε + δ + 100 = 360. Odtud po dosazení za ε a δ dostáváme α + β 2 + 80 + γ 2 + 80 + 100 = 360, a tedy α + 1 2 (β + γ) = 100. Vzhledem k tomu, že β + γ = 180 α, je α + 90 α 2 = 100. Odtud α = 20. Pro poloměr kružnice opsané platí r = a 2 sin α = 20 2 sin 20 = 10 sin 20. Zbývající vnitřní úhel má tedy velikost 20 a poloměr kružnice tomuto trojúhelníku opsané je r = 10 sin 20. Moravskoslezský matematický šampionát 15

Kategorie SŠ 3 Koule z marcipánu Zadání Honzu, trenéra fotbalového týmu, překvapila na oslavě postupu jeho svěřenců do 1. ligy obří marcipánová koule ve tvaru fotbalového míče. Slunce se sklánělo k západu a osvětlovalo předměty na stole tak, že vrhaly stín, jehož délka se rovnala dvojnásobku jejich výšky. Ve stejnou dobu byla délka stínu marcipánové koule posazené v misce 60 cm (viz obrázek). Jaká byla její hmotnost, byla-li hustota hotového výrobku (piškotového dortu s marcipánovou polevou) 0,6 g/cm 3? Řešení Délka stínu koule je 60 cm. Při řešení vyjdeme z pravoúhlého trojúhelníku ABC, viz obrázek. 16 Moravskoslezský matematický šampionát

Kategorie SŠ 3 Je zřejmé, že AC = 30 cm. Označme poloměr koule r. Bod dotyku paprsku vymezujícího délku stínu s koulí označme T. Platí, že BT = BC = 60 cm. Dále je zřejmé, že AS = AC r = 30 r. Velikost přepony v trojúhelníku ABC je AB = 60 2 + 30 2 = 30 5. Podle Pythagorovy věty v pravoúhlém trojúhelníku AST platí Po úpravě dostáváme ( r 2 + 30 2 5 60) = (30 r) 2. r = 60 5 120. = 14,16 cm. Hmotnost hotového výrobku spočítáme podle vztahu m = V ρ = 4 3 πr3 ρ. = 7 141,7 g. = 7,14 kg. Hmotnost marcipánové koule je tedy přibližně 7,14 kg. Moravskoslezský matematický šampionát 17

Kategorie SŠ 3 Problem Meat Roulade Jitka wants to prepare a meat roulade filled with three sousages and one asparagus (see the picture). The sousages (represented by the circles with the centres P, Q, S) have the same radius of 1 cm and are tangent to one another and to the asparagus (represented by the circle with the centre R). Two sausages and the asparagus are also tangent to the bottom of the roulade represented by the line AB. Determine the diameter of the asparagus. Solution Let r denotes the radius of the smallest circle. Join QS, P R, these lines meet at T (see the picture). 18 Moravskoslezský matematický šampionát

Kategorie SŠ 3 Since QR = 1 + r, T R = 1 r and the triangle QT R is right-angled at T, then, by the Pythagorean Theorem, QT 2 = (1 + r) 2 (1 r) 2 = 1 + 2r + r 2 1 + 2r r 2 = 4r. (1) Further, since P R = 1 + r and T R = 1 r, then P T = P R T R = 1 + r (1 r) = 2r. (2) By the Pythagorean Theorem in the righ-angled triangle P T Q we get and using (1) and (2) P Q 2 = P T 2 + QT 2 2 2 = (2r) 2 + 4r. Thus we obtain quadratic equation 4r 2 + 4r 4 = 0 (or r 2 + r 1 = 0) with roots r 1,2 = 1 ± 5. 2 Since r should be positive, then r = 1 + 5 2 (which is the reciprocal of the famous golden ratio ). The diameter of the smallest circle (asparagus) equals to 5 1. = 1,24 cm. Moravskoslezský matematický šampionát 19

Kategorie SŠ 3 Pokus cukrářského učně Zadání V cukrářství vyrábějí kromě laskonek, kremrolí a větrníků také kokosové kmeny ve tvaru kvádru. Každý takovýto kvádr má objem 72 cm 3. Učeň František se nudil a začal kokosový kvádr ořezávat. Vybral si protilehlé stěny a na nich nerovnoběžné stěnové úhlopříčky. Krajní body těchto úhlopříček určují čtyřstěn. Určete objem takto vzniklého čtyřstěnu. Řešení Označme délky hran kvádru AB = a, BC = b, AE = c. Nerovnoběžné úhlopříčky EB a DG určují čtyřstěn BEGD. Pokud osekáme kvádr ABCDEF GH tak, aby vznikl čtyřstěn BEGD, oddělí se z původního kvádru čtyři trojboké jehlany ABDE, HEDG, CBDG a F BEG. Pro objem prvního z nich platí V 1 = 1 3 ab 2 c = abc 6. 20 Moravskoslezský matematický šampionát

Kategorie SŠ 3 Objem tohoto trojbokého jehlanu je tedy šestinou objemu celého kvádru, tedy V 1 = 72 6 = 12 cm3. Při výpočtu dalších odříznutých trojbokých jehlanů zjistíme, že jejich objem je stejný, tzn. 12 cm 3. Pro objem čtyřstěnu BEGD tedy platí V = 72 4 12 = 24 cm 3. Závěr: Objem kokosového čtyřstěnu vytvořeného učněm Františkem je 24 cm 3. Moravskoslezský matematický šampionát 21

Kategorie SŠ 3 Svačina s atrakcí Zadání Na slevovém serveru objevil Tomáš lákavou nabídku zábavního parku v jeho městě poukaz na kuřecí sendvič s hranolky a zeleninou za běžnou cenu a k tomu jízdu na ruském kole zdarma. Neváhal a jako milovník atrakcí nabídky využil. Do kabinky ruského kola Tomáš nastoupil v nejnižším místě kola (bod U, viz obrázek) ve výšce 1 m nad zemí. Poté, co se kabinka s Tomášem dostala do bodu P (ve výšce p metrů nad úrovní středu kola O), pohybovala se již konstantní rychlostí. Trvalo 4 s, než Tomášova kabinka dosáhla z bodu P nejvyšší polohy T ve výšce 35 m nad zemí. Za dalších 8 s kabinka dospěla do polohy Q (pod úrovní středu kola O). Vyjádřete výšku q, v jaké se kabinka s Tomášem nacházela v bodě Q, v závislosti na parametru p. Řešení Průměr ruského kola je zřejmě roven T U = 35 1 = 34 m, tedy jeho poloměr je 17 m. Označme <) P OT = α. Protože se kolo otáčí rovnoměrně, otočí se kolo za 8 s o dvojnásobný úhel než za 4 s, proto platí <) T OQ = 2 <) P OT = 2α. Dále označme M, N kolmé průměty bodů P, Q na úsečku T U (viz obrázek). 22 Moravskoslezský matematický šampionát

Kategorie SŠ 3 Z trojúhelníku P MO pak můžeme vyjádřit cos α = OM OP = p 17. Podobně z trojúhelníku OQN vyjádříme Pro vzdálenost ON tedy platí cos (180 2α) = ON 17. ON = 17 cos (180 2α) = 17 cos 2α = 17 ( 2 cos 2 α 1 ). Vzhledem k tomu, že cos α = p 17, dostáváme Hledaná vzdálenost q je tedy rovna ) ON = 17 (2 p2 17 2 1 = 17 2p2 17. q = OU + 1 ON = 18 ) (17 2p2 = 1 + 2p2 17 17. Moravskoslezský matematický šampionát 23

Matematika s radostí Jste studentem základní či střední školy a rádi byste si procvičili matematiku? Chcete se při tom také pobavit a zasoutěžit si? Pak se podívejte na webové stránky projektu Matematika s radostí http://msr.vsb.cz. Na webu Matematiky s radostí najdete řadu interaktivních testů, her a soutěží. Všechny materiály mají formu interaktivních PDF s okamžitým vyhodnocováním, příjemnou grafikou a jednotným systémem ovládání. Výsledných 800 testů a her, které pokryjí všechna témata středoškolské matematiky, vám mohou posloužit při domácí přípravě nebo při opakování k maturitě. Vašim učitelům zase pomohou díky snadnému použití na interaktivní tabuli oživit výuku novými neotřelými testy a soutěžemi. 24 Moravskoslezský matematický šampionát

Nyní probíhá testování vytvořených her a proto budeme rádi, když nás budete informovat o případných chybách nebo nejasnostech, které objevíte. Nejaktivnější hledače chyb oceníme! Na webu najdete následující typy her a soutěží: Párovací hry Cílem hry je dobře spárovat nabízené otázky a odpovědi. Hráč postupně zaklikává políčko u jedné otázky a následně u jedné odpovědi až do zodpovězení všech otázek. Jako bonus se při správné odpovědi odkryje jedno písmeno nebo slovo tajenky. Po odkrytí tajenky, kterou bývá citát nějakého slavného matematika, filozofa nebo politika, je v některých případech možno rozkrýt stránku s fotografií autora citátu, jeho stručným životopisem nebo zajímavostmi z jeho života. Testy Nabízíme několik typů testů: Testy s jednou správnou odpovědí. Testy s více správnými odpověďmi. Testy typu ANO NE (úkolem je rozhodnout o pravdivosti uváděných tvrzení). Testy s tabulkovým výběrem (otázky spolu s odpověďmi jsou umístěny do řádků tabulky). Moravskoslezský matematický šampionát 25

Neriskuj Hra Neriskuj je obdobou vědomostní televizní soutěže Riskuj!, kterou vysílala TV Nova v letech 1994 2004. Hrací plocha je rozdělena do sloupců, které představují různá témata otázek. Každé otázce je přiřazeno bodové ohodnocení dle obtížnosti: 100, 200 a 300 bodů. Hráč si vybírá otázky z různých témat a obtížnosti a podle toho, zda odpoví správně nebo ne, mu jsou body buď přičteny nebo odečteny. Neriskuj nabízíme ve dvou variantách. Varianta pro jednoho hráče se hodí zejména k samostatné domácí přípravě. Varianta pro dva hráče nebo dva týmy hráčů je naopak vhodná pro použití při výuce. Účastní se jí dva hráči, kteří se v odpovědích pravidelně střídají a soupeří navzájem. Vítězem se pochopitelně stává ten, který získá více bodů. 26 Moravskoslezský matematický šampionát

AZ kvíz Tato hra pro dva hráče je obdobou televizní soutěže AZ-kvíz. Cílem hry je propojit políčky své barvy všechny strany herního plánu (trojúhelníka). Můžete si vybrat mezi AZ kvízy s 21 nebo 28 políčky. Záleží jen na tom, kolik času chcete hře věnovat. Chcete si daný AZ kvíz zahrát několikrát za sebou? Klidně můžete, neboť AZ kvízy se při každém novém otevření chovají jako nové hry. PDF dokument ve skutečnosti obsahuje mnohem více otázek než 21 nebo 28. Z těchto otázek je při otevření PDF náhodně vybrán daný počet otázek a ty jsou náhodně přiřazeny jednotlivým políčkům. Podobně se chová i hra Odkryj obrázek. Odkryj obrázek Hrací plocha obsahuje 12 políček, za nimiž je schován obrázek. Při kliknutí na dané políčko se zobrazí otázka s nabídkou odpovědí, z nichž je právě jedna správná. Pokud označíte správnou odpověď, zobrazí se obrázek skrytý za políčkem. Pokud ne, máte ještě jeden pokus. Pokud se vám však ani napodruhé nepodaří vybrat správnou odpověď, zůstává políčko skryté. Kdo se podílí na tvorbě her a testů? Materiály pro vás připravují učitelé z těchto škol: Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Wichterlovo gymnázium, Ostrava-Poruba Gymnázium, Ostrava-Hrabůvka Slovanské gymnázium, Olomouc Střední průmyslová škola, Přerov Střední škola elektrotechnická, Lipník nad Bečvou RNDr. Petra Vondráková, Ph.D. Ing. Petr Beremlijski, Ph.D. katedra aplikované matematiky FEI, VŠB-TU Ostrava Moravskoslezský matematický šampionát 27

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Sborník příkladů ze soutěže Moravskoslezský matematický šampionát 2014 Ostrava 23. 10. 2014 Název Moravskoslezský matematický šampionát 2014 Editor RNDr. Eva Davidová Vydavatel Wichterlovo gymnázium, Ostrava-Poruba, p. o. Čs. exilu 669, 708 00 Ostrava-Poruba Náklad 400 ks Rozsah 24 stran Vydání první, 2014, revize 1 Tisk Repronis Ostrava Doporučená cena zdarma Texty neprošly jazykovou úpravou. ISBN 978-80-87058-21-3