57 LINEÁRNÍ rovnice slovní úlohy I notebook. April 21, Rozcvička
|
|
- Květoslava Němcová
- před 9 lety
- Počet zobrazení:
Transkript
1 Rozcvička A B 1
2 Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? celkem žáků chlapci... x chlapců dívky... x dívek 2
3 Celková výměra dvou parkovišť, a to pro kamiony a osobní automobily, je m 2. Parkoviště pro kamiony je o 200 m 2 menší než parkoviště pro osobní automobily. Určete výměry obou parkovišť. celkem m 2 os. aut.... x kamiony... x m m 2 3
4 Vypočítej vnitřní úhly trojúhelníku. Úhel α je o 16 větší než β a úhel γ je o 17 menší než α. celkem α... x β... x γ... (x + 16 ) 17 = x
5 Součet čtyř po sobě následujících lichých čísel je 456. Určete tato čísla. celkem x x x x lichá čísla např. 3, 5, 7 5
6 Obvod trojúhelníku je 87 cm. Strana a je o 15 cm kratší než strana b a strana c je o 12 cm delší než strana b. Urči délky jednotlivých stran trojúhelníku. obvod cm a... x 15 b... x c... x cm 30 cm 42 cm sestav rovnici a dopočítej příklad 6
7 Zemědělci oseli žitem, pšenicí a ječmenem celkem 196 ha pozemků. Žitem oseli 1,5 krát větší výměru než pšenicí. Ječmenem oseli 5 krát menší výměru než žitem. Vypočítej, na kolika hektarech vyseli zemědělci jednotlivé obiloviny. celkem ha žito... 1,5. x ha pšenice... x ha ječmen... 1,5x : 5 = 0,3x ha 7
8 Budík, dámské hodinky a pánské hodinky stojí celkem Kč. Kolik stojí každá z věcí, jestliže dámské hodinky jsou šestkrát dražší než budík a pánské hodinky jsou o 200 Kč dražší než dámské hodinky? celkem Kč budík... x dámské hod x = 6x pánské hod.... 6x Kč 540 Kč 740 Kč sestav rovnici a dopočítej příklad 8
9 Součet tří přirozených čísel, ze kterých je každé následující o 5 větší než předcházející, je 204. Která jsou to čísla? celkem x 2... x x = x sestav rovnici a dopočítej příklad 9
10 Skautský oddíl ušel na třídenním výletu celkem 22 km. V neděli ušel dvakrát delší trasu než v pátek a v sobotu ušel trasu 2 km delší než v pátek. Kolik kilometrů ušel skautský oddíl v jednotlivých dnech? 5 km, 7 km, 10 km Karel, Petr, Jan a Martin celkem odevzdali 47 kg papíru. Karel nasbíral dvakrát více než Petr, Jan o 8 kg méně než Petr a Martin o 3 kg více než Jan. Kolik kg papíru sebral každý? 24 kg, 12 kg, 4 kg, 7 kg Za tři dny prodali v obchodě kg brambor. První den prodali o 100 kg brambor méně než druhý den, třetí den dvakrát tolik, co prodali druhý den. Kolik kilogramů brambor prodali v jednotlivých dnech? 275 kg, 375 kg, 750 kg 10
11 270 Kč se chlapci rozdělili tak, že Petr dostal třikrát více než Pavel a Ivan dostal o 120 Kč více než Pavel. Kolik dostal každý? 90 Kč, 30 Kč, 150 Kč Obvod trojúhelníku se rovná 205 cm. Strana b je dvakrát delší než strana a, strana c je o 35 cm kratší než strana b. Vypočítej délky jednotlivých stran? 48 cm, 96 cm, 61 cm V trojúhelníku je vnitřní úhel β o 20 menší než úhel α a úhel γ je třikrát větší než úhel β. Urči velikost vnitřních úhlů trojúhelníku. 52, 32, 96 11
12 Čtyři spolužáci uspořili za rok 925 Kč, Druhý uspořil dvakrát tolik co první, třetí o 35 Kč více než druhý a čtvrtý o 10 Kč méně než první. Kolik Kč uspořil každý z nich? 150 Kč, 300 Kč, 335 Kč, 140 Kč šroubů má být rozděleno na 3 skupiny tak, aby v 1. skupině bylo o 300 šroubů více než ve 2. skupině a ve 2. skupině o 150 šroubů méně než ve 3. skupině. Kolik šroubů bude v každé skupině? 550, 250, 400 šroubů 12
13 Turisté ušli za 3 dny 45 km. Druhý den ušli dvakrát víc než první den. Třetí den ušli třikrát víc než druhý den. Kolik kilometrů ušli v jednotlivých dnech? 1. den...5 km 2. den km 3. den...30 km Na třech hromadách bylo uloženo 260 tun písku. Na první bylo o 35 t písku více než na druhé, na třetí bylo o 60 t méně než na druhé. Kolik tun písku bylo na jednotlivých hromadách? na hromadách je 130t, 95t, 35t 128 kostek je rozděleno do tří krabic takto: V první je o 8 kostek méně než ve třetí. Ve druhé je jich dvakrát víc než v první. Kolik kostek je v každé krabici? kost kost kostek 13
Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,
1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik
M - Slovní úlohy řešené rovnicí - pro učební obory
M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento
Slovní úlohy řešené rovnicemi 1 řešení
Slovní úlohy řešené rovnicemi 1 řešení 1) V rovnoramenném trojúhelníku je velikost úhlu při hlavním vrcholu o 20 menší než dvojnásobná velikost úhlu při základně. Jaké jsou vnitřní úhly trojúhelníku? úhel
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029
Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace
Slovní úlohy řešené lineární rovnicí pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě
Slovní úlohy řešené rovnicí pro učební obory
Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní
Přijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka
Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
1. otázka. 2. otázka = Ve které z následujících možností je výsledek uvedeného výpočtu? 3. otázka
1. otázka Paní Irena měla černé, bílé a černobílé kočky. elkově jich měla dvanáct. Z toho bylo šest černých a čtyři bílé. Jakou část z celkového počtu představují černobílé kočky? 2. otázka 24 + 12 3 5
Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč
2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce
Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7.
Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Marie Smolíková Datum: 7. 02. - 10. 2. 2012 Ročník: 7. Vzdělávací oblast: Vzdělávací obor: Tematický okruh:
2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1
2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.
Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
ANALYTICKÉ INFORMACE ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 2006
ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 26 Výměra zemědělské půdy V roce 26 byla výměra zemědělské půdy v Pardubickém kraji 231,9 tis. ha, z čehož 78,5 % zaujímala orná půda a 21,1 % trvalé travní porosty.
Slovní úlohy řešené soustavou rovnic
Slovní úlohy řešené soustavou rovnic Jirka s maminkou byl na nákupu. Maminka koupila 2 kg broskví a 5 kg brambor a platila 173 Kč. Sousedka koupila 3 kg broskví a 4 kg brambor a platila 186 Kč. Kolik stál
VÝVOJ OSEVNÍCH PLOCH A PRVNÍ ODHAD SKLIZNĚ
26. 7. VÝVOJ OSEVNÍCH PLOCH A PRVNÍ ODHAD SKLIZNĚ Informace o očekávané sklizni polních plodin zveřejňuje Český statistický úřad každoročně v první polovině července. Podkladem pro výpočet jsou osevní
MATEMATIKA 8. ročník II. pololetí
MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)
Celkově ke sklizni (ha) Sklizeno ke dni aktualizace (ha)
Žně 2017 postup sklizně dle okresů 8/11/17 Pšenice ozimá Pšenice jarní Ječmen ozimý Ječmen jarní Žito Oves Tritikale Obiloviny celkem Domažlice Celkově ke sklizni (ha) 12840 730 2776 1445 468 574 471 19304
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
SAZEBNÍK ÚHRAD PEČOVATELSKÉ SLUŽBY
SAZEBNÍK ÚHRAD PEČOVATELSKÉ SLUŽBY Pečovatelská služba Kroměříž, o.p.s. Nitranská ul. 4091-2 767 01 Kroměříž IČO: 26940931 tel: 573 341 700 e-mail : prochazkova@pecovat.cz ředitelka : Ing. Michaela Procházková
RNDr. Zdeněk Horák 23. 11. 2013 VII.
Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní
Přímá a nepřímá úměrnost
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Přímá
ČEST (A) obvinění (B) léčka (C) bolest (D) hanba (E) zármutek
V každé z následujících úloh vyberte dvojici slov, mezi nimiž je vztah nejpodobnější vztahu mezi dvojicí slov v zadání. Na pořadí slov ve dvojicích záleží. 1. KOUŘ : UZENÍ (A) kost : lámání (B) lék : zranění
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
SLOVNÍ ÚLOHY 3. ROČNÍK JEDNODUCHÉ SLOVNÍ ÚLOHY NA NÁSOBENÍ A DĚLENÍ A NÁSOBENÍ A DĚLENÍ S POROVNÁVÁNÍM
VY_32_INOVACE_M_207 SLOVNÍ ÚLOHY 3. ROČNÍK JEDNODUCHÉ SLOVNÍ ÚLOHY NA NÁSOBENÍ A DĚLENÍ A NÁSOBENÍ A DĚLENÍ S POROVNÁVÁNÍM Autor: Mgr. Irena Štěpánová Použití: 3. ročník Datum vypracování: 12. 8. 2012
Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.
15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč
Očekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby.
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 18.7.2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Matematika I: Aplikované úlohy
Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí
Svobodná chebská škola, základní škola a gymnázium s.r.o. Slovní úlohy řešené rovnicemi I. procvičování
METODICKÝ LIST DA75 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Slovní úlohy řešené rovnicemi I. procvičování Astaloš Dušan Matematika devátý frontální, fixační samostatná
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 12 19 9:02 Základy statistiky Statistika je vědní obor, který
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš
3.2.13 Slovní úlohy II
3..13 Slovní úlohy II Předpoklady: 0301 Pedagogická poznámka: První příklad je opakování z minulé hodiny. Při prvním průchodu se ukázalo, že žáci mají problém s tím, co zvolit za neznámou a jak vyjadřovat.
Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PID16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
MATEMATIKA. 1 Základní informace k zadání zkoušky. 2 Pravidla správného zápisu řešení. 3.2 Pokyny k uzavřeným úlohám 7-15 DIDAKTICKÝ TEST
MATEMATIKA PŘIJÍMACÍ ZKOUŠKY DIDAKTICKÝ TEST B TS-M5MBCINT Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
Slovní úlohy v učivu matematiky 1. stupně základní školy
Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.
Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:
Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.
Autor: Jana Krchová Obor: Matematika. Procenta
Procenta Vypočítej zpaměti: a) 123 : 78 : 4356 : 10 82 : 28 190 : 6 : b) 9 : 0,5 : 0,34 : 6,4 : 0,072 : 0,73 : Vypočítej: 3 a) : 4 2 5 : 6 7 : 5 12 : 7 15 : 1 2 3 4 8 b) 1 : 2 : 3 : 2 : 5 : 2 5 4 7 9 1
Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2:
Řešení Příklad 1: Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté
1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.
. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..
Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková
VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění
1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150
Varianta B 1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150 10 A 5 20 170 2) Vyber číslo, které se ve výpočtu skrývá za A:. A) 70 B) 56 C) 44 D) 36 3) Součet všech číslic deseticiferného
Metodický list. Název materiálu: Úlohy ze sadu a ze zahrady Autor materiálu: Jana Kuchtíková
Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006
Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište
Kompletní informace k výluce vlaků v Brně (od 15. 8. do 31. 8. 2011)
Kompletní informace k výluce vlaků v Brně (od 15. 8. do 31. 8. 2011) Pondělí 15. 8. 2011 Výluka Řečkovice v době od 0.00 do 24.00 hodin Úterý 16. 8. 2011 Výluka Řečkovice v době od 0.00 do 24.00 hodin
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
Historie. první písemná zmínka o Žižicích je z roku 1318 v r. 1848 administrativně sloučeny obce Žižice, Vítov, Luníkov, Osluchov a Drnov
Obec Žižice Historie první písemná zmínka o Žižicích je z roku 1318 v r. 1848 administrativně sloučeny obce Žižice, Vítov, Luníkov, Osluchov a Drnov Historie Zemědělství na Žižicko historicky patří Původní
1.3.7 Řešení slovních úloh pomocí Vennových diagramů II
1.3.7 Řešení slovních úloh pomocí Vennových diagramů II Předpoklady: 010306 Pedagogická poznámka: Ideální je, pokud tato hodina vyjde na cvičení. Postup žáků je totiž velmi individuální a dělají velké
Příčíme. Příčíme Zadání první úlohy Zadání druhé úlohy. Příčíme. Jiří Přibyl UJEP
Příčíme Zadání první úlohy Zadání druhé úlohy Příčíme Jiří Přibyl UJEP Úloha první Příčíme Zadání první úlohy Zadání druhé úlohy Úkol Určete příčku mimoběžek p a q, která je dána vektorem w(1, 1, 2), a
3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE
Veličiny užívané ve statistice Aleš Drobník strana 1 3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech). Statistika jako
3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?
3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.
Fyzikální veličiny. Převádění jednotek
Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.
g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?
Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla
5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?
0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU blazkova@ped.muni.cz V úvodu si položme několik otázek: - Proč řešíme slovní úlohy? - Je řešení slovních úloh žáky oblíbené? - Jaká tématika slovních
P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K
P Y T H A G O R I Á DA 37. ročník 013/014 8. R O Č N Í K Š K O L N Í K O L O Adresář krajských garantů soutěží na školní rok - 013/014 Kraj Krajský úřad pověřená osoba * Mgr. Michaela Knappová. Magistrát
. František měl v prasátku o 32 Kč více než Josef a Josef měl o 34 Kč více než Karel. Kolik měl v prasátku Karel, měli-li chlapci dohromady 280 Kč? Karel x Josef x + 34 František x + 66 x + x + 34 + x
Slovní úlohy řešené rovnicemi 4 různé - řešení
Slovní úlohy řešené rovnicemi 4 různé - řešení 1. Sud s vodou váží 63kg. Když odlijeme 60% vody, má sud se zbývající vodou hmotnost 33kg. Jakou hmotnost má sud? sud x kg voda..63-x -60% vody 33kg 0,4.
GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí
Slovní úlohy: Pohyb. a) Stejným směrem
Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil
Matematický KLOKAN 2007 kategorie Junior (A) 8 (B) 9 (C) 11 (D) 13 (E) 15 AEF? (A) 16 (B) 24 (C) 32 (D) 36 (E) 48
Matematický KLOKAN 007 kategorie Junior Úlohy za 3 body 1. Lucka, Radek a David mají dohromady 30 míčů. Jestliže Radek dá 5 míčů Davidovi, David dá 4 míče Lucce a Lucka dá míče Radkovi, budou mít oba chlapci
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:
S = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
8. ročník - školní kolo
PVTHAGORIÁDA 2012/2013 8. ročník - školní kolo ZADÁNí 1) Které číslo nepatří mezi ostatní? 225; 168; 144; 289; 324; 196; 121; 361 2) Tyč byla rozříznuta na poloviny, poté jednu část dále rozřízli na dva
Březen v 1. polovině hezké jarní počasí byla zaseta většina obilovin. Od 16. března ochlazení, déšť, sněžení, mrazy 5 až 10.
Rok 1997 Počasí. Počasí v r. 1997. Leden přetrvává mrazivé počasí z minulého roku. Mrazy však zmírnily na 10 až 20.Od 13. ledna ve dne slunečno, teploty do 5, v noci 10. Od 20. ledna je zmírnění ve dne
Matematický KLOKAN 2005 (A) 2 005 002 005 (B) 20 052 005 (C) 2 007 005 (D) 202 555 (E) 202 505 (A) 8 (B) 6 (C) 4 (D) 2 (E) 1
Matematický KLOKAN 2005 kategorie Benjamín Úlohy za 3 body 1. Vypočítej 2 005. 100 + 2 005. (A) 2 005 002 005 (B) 20 052 005 (C) 2 007 005 (D) 202 555 (E) 202 505 2. Anička a Bětka mají dohromady 10 bonbonů.
Cvičná přijímací zkouška 16.1.2013. d) Kolikrát je součin čísel 163 a 48 větší než rozdíl čísel 385 a 377?
Cvičná přijímací zkouška 16.1.2013 1) Vypočítejte: a) 137 48 2769 = b) 36 2 11+ 36 2 16 + 55 2 30 + 56 2 15 = c) O kolik je rozdíl čísel 137 a 98 menší než jejich součet? d) Kolikrát je součin čísel 163
II. kolo kategorie Z9
6. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II Je dán kosodélník jako na obrázku. Po straně se pohybuje bod a po straně se pohybuje bod tak, že úsečka je rovnoběžná s. Když byl průsečík úseček
Přehled úprav jízdních řádů veřejné linkové dopravy v rámci závazku veřejné služby Středočeského kraje Číslo linky Název linky Spoj Poznámka
Přehled úprav jízdních řádů veřejné linkové dopravy v rámci závazku veřejné služby Středočeského kraje Číslo linky Název linky Spoj Poznámka 19 převeden do financování obcí (ODO) s ukončením v Kovohutích
M08-01 Přijímačky nanečisto osmileté studium matematika
M08-01 Přijímačky nanečisto osmileté studium matematika Řešení 1) Bratři Martin a Tomáš dostali stolní hru, ve které se hrálo o papírové peníze - dolary. Martin rozdělil peníze před začátkem hry tak, že
Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,
Grafické sčítání úseček teorie
Grafické sčítání úseček teorie Nezáleží na tom, kterou úsečku přeneseme na polopřímku jako první. Úsečka AD je grafickým součtem úseček AB a CD. Příklad 1 Hana jde ze školy na poštu, z pošty do knihovny.
VELIČINY UŽÍVANÉ V EKONOMICE A STATISTICE
VELIČINY UŽÍVANÉ V EKONOMICE A STATISTICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech) Statistika jako užitá (aplikovaná) věda pracuje s pojmenovanými čísly, např.
Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.
Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení
Slovní úlohy na procenta
Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož
Statistika. 2) U 127 zaměstnanců firmy byl zjištěn počet jejich rodinných příslušníků a výsledek shrnut v tabulce:
Statistika 1) Každý z 250 žáků školy navštěvuje právě jeden volitelný předmět, kterými jsou angličtina, němčina, ruština a španělština. Určete relativní četnost je-li rozdělení četností je dáno tabulkou,
Obecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
Očekávaný výstup Závěrečné procvičení typických slovních úloh Speciální vzdělávací žádné
Název projektu Život jako leporelo Registrační číslo CZ..07/..00/2.76 Autor Ing. Renata Dupalová Datum 7. 8. 20 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika Tematický
MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK1
MANUÁL Výukových materiálů Matematický kroužek 8.ročník MK1 Vypracovala: Mgr. Jana Kotvová 2014 Číslo hodiny: 1 Téma: Celá čísla, racionální čísla Očekávané výstupy: žáci počítají složitější příklady na
MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí
MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí I. Celá čísla,vypočítejte: -3 + 8-5 + 2-9 4 8 8 2-6 + 9-6 2 25 + 32 4 5-8 + 5-6 2-6 + 4-2 + 30 8 9 42 20-9 + 3 9 +25 4 7-3 + 0 9
Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.
Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9
Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika
PRACOVNÍ DNY <
- - - - - - - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 4.38 4.40 4.41 4.42 4.42 4.43 4.44 4.45 4.47 4.48 4.49 4.50 4.51 4.53 4.55 5.17 5.18 5.20 5.21 5.22 5.24
FarmProfit. Ekonomický software pro zemědělce. www.farmprofit.cz
FarmProfit Ekonomický software pro zemědělce www.farmprofit.cz Výzkumný ústav živočišné výroby, v. v. i. Přátelství 815 104 00 Praha Uhříněves Česká republika http://www.vuzv.cz Ing. Jan Syrůček tel.:
PRACOVNÍ DNY < <
- - - - - - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 (Benešovo nám./ul.28.října) 4.54 4.55 4.56 4.58 4.59 5.00 5.01 5.03 5.04 5.06 5.08 5.09 5.10 5.11 5.16 5.21
4. Žádná odpověď není správná -0
1. Auto rychlé zdravotnické pomoci jelo první polovinu dráhy rychlostí v1 = 90 km.h -1, druhou polovinu dráhy rychlostí v2 = 72 km.h -1. Určete průměrnou rychlost. 1. 81,5 km.h -1-0 2. 80 km.h -1 +0 3.