1. Molekulová stavba kapalin



Podobné dokumenty
Vlastnosti kapalin. Povrchová vrstva kapaliny

STRUKTURA A VLASTNOSTI KAPALIN

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7

LOGO. Struktura a vlastnosti kapalin

Struktura a vlastnosti kapalin

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

Měření povrchového napětí

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

Měření povrchového napětí kapalin a kontaktních úhlů

Dynamika. Dynamis = řecké slovo síla

Hydromechanické procesy Hydrostatika

3.3 Částicová stavba látky

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

ZMĚNY SKUPENSTVÍ LÁTEK

Kinetická teorie ideálního plynu

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tuhého tělesa

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

4. Práce, výkon, energie a vrhy

4. Statika základní pojmy a základy rovnováhy sil

VI. STRUKTRURA A VLASTNOSTI KAPALIN

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 06_5_ Struktura a vlastnosti kapalin

STRUKTURA KAPALIN STRUKTURA KAPALIN

Mol. fyz. a termodynamika

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

Vnitřní energie, práce a teplo

LOGO. Molekulová fyzika

4.1.7 Rozložení náboje na vodiči

IDEÁLNÍ PLYN. Stavová rovnice

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

Interakce mezi kapalinou a vlákenným materiálem

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

Kapka kapaliny na hladině kapaliny

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

2.5 Rovnováha rovinné soustavy sil

6. Mechanika kapalin a plynů

1 Tuhé těleso a jeho pohyb

7. Gravitační pole a pohyb těles v něm

MOLEKULOVÁ FYZIKA KAPALIN

4. Napjatost v bodě tělesa

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika

Mechanické vlastnosti kapalin hydromechanika

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Práce, energie a další mechanické veličiny

Integrovaná střední škola, Sokolnice 496

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole...

10. Energie a její transformace

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

Příklad 5.3. v 1. u 1 u 2. v 2

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

Přehled otázek z fyziky pro 2.ročník

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

7. MECHANIKA TEKUTIN - statika

Molekulová fyzika a termika:

2. Molekulová stavba pevných látek

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

F8 - Změny skupenství Číslo variace: 1

Molekulové jevy Molekula Mezimolekulové síly Koheze a adheze Kapalina Povrchové napětí Povrchová energie Molekulový tlak Kapilární tlak

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

3 Mechanická energie Kinetická energie Potenciální energie Zákon zachování mechanické energie... 9

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Seriál II.II Vektory. Výfučtení: Vektory

Kde 1... vzduch (plyn) 2... kapalina 3... stěna

2. Vlnění. π T. t T. x λ. Machův vlnostroj

Struktura a vlastnosti kapalin

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Archimédův zákon, vztlaková síla

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Mechanika tekutin. Tekutiny = plyny a kapaliny

Látkové množství n poznámky 6.A GVN

Molekulová fyzika a termika. Přehled základních pojmů

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Magnetické pole - stacionární

Interference vlnění

TŘENÍ A PASIVNÍ ODPORY

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

Transkript:

1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá molekula má jinou rychlost, a proto je obraz pohybové energie dosti složitý Vznik kapaliny V plynu existuje určité rozdělení rychlostí molekul Vyskytují se oblasti, v nichž je pohybová energie molekul nižší než střední pohybová energie označujeme fluktuace pohybové energie v plynu Začneme snižovat teplotu plynu do doby, kdy platí: střední pohybová energie dvou blízkých molekul je srovnatelná s jejich polohovou energií plyn má teplotu blízkou kapalnění V určitých oblastech, které označíme jako fluktuační má plyn i teplotu nižší a projevuje se polohová energie molekulových sil V těchto oblastech se molekuly začnou spojovat v soudržné celky a to tímto způsobem: molekuly se spojí po dvou Vytvoří molekulové dvojče, ve kterém kmitají K nim se přidávají další molekuly a vzniká malá kapka Shlukování molekul nazýváme kondenzací Místo kde ke kondenzaci dochází označíme jako kondenzační jádro Tím nám vznikách kapalina Co vznik kapaliny urychlí? Tvorbu kondenzačních jader urychlíme, bude-li v plynu přítomný prach či ionty plynu Případně pokud nastane adiabatické rozpětí plynu nad kapalinou, páry se ochladí a pozorujeme mlhu 1 Kapka a povrchová energie Nejprve budeme zkoumat kapku Kapka se rozpadne či rozteče, je-li tak velká, že tíhová síla působící na její části je větší než její přitažlivé molekulové síly Jak to vypadá v beztížném stavu (např vesmír)? Existují tam libovolně velké kapky a mají vždy tvar koule Tzn jedná se o tvar, kdy kapka má nejmenší povrch při daném objemu Na prvním obrázku vidíme tvar kapky v našich podmínkách Má přibližný tvar koule Na druhém obrázku vidíme kapku zdeformovanou a to díky použití sklíčka Kapka zvětšuje svůj povrch, ale objem je stejný Odstraníme-li sklíčko, tak se kapka vrátí do povodního tvaru 1

Vysvětlení pružnosti kapky Aby vznikla soudržná soustava molekul, musí mezi molekulami působit přitažlivé síly Představme si středový průřez kapkou o poloměru r Molekulové síly působí na vzdálenost a vymezíme okolo zvolené vnitřní molekuly A sféru působení molekulový sil Molekuly jsou okolo A rovnoměrně rozloženy Molekula A je přitahována ze všech stran stejně a výslednice sil je nulová Na přemístění vnitřní molekuly tedy není třeba žádná vnější síla Molekula je ve volném rovnovážném stavu Vytvoříme u povrchu molekulu B Síly působí jen na půlku a kapky Výslednice molekulový sil působících na molekulu není nulová Výslednice sil působí do středu kapky Uvažujeme-li povrchovou vrstvu tloušťky a, platí: síla působící na molekuly blízko pod 9 povrchem je poněkud menší (platí pro molekuly C a D) Tloušťka povrchové vrstvy je 10 m chceme-li posunout molekuly C, D směrem k povrchu musíme působit silou opačnou proti původní síle Tím vykonáme práci a molekuly nabudou větší polohové energie Hustota polohové energie molekul v povrchové vrstvě se nazývá povrchová energie Jednotka je J m Při stlačování kapky se prací vykonanou působením vnější síly se kapka deformovala a zvětšila se její povrchová energie Po uvolnění se kapka vrátí do rovnovážného stavu s nejmenší povrchovou energií Co se stane, když se dvě kapky dotknou? Dotknou-li se navzájem dvě malé kapky spojí se v jednu větší, protože povrchová energie nové kapky je menší než součet povrchových energií jednotlivých kapek Závěr: Kapalina zaujímá v rovnovážném stavu vždy takový tvar, aby její povrchová energie byla co nejmenší 11 Povrchové napětí Budeme zkoumat povrch kapaliny Vybereme spolu sousedící molekuly, ležící na čáře s I na povrchu působí mezi molekulami síly, které jsou vzhledem k povrchu kapaliny silami tečnými Má-li vybraná řada molekul sousedící molekuly po obou stranách, tečné síly mají výslednici sil nulovou Síla, která síla působí kolmo k řadě molekul na jednotku délky, určuje povrchové napětí kapaliny F Vztah pro povrchové napětí: Jednotka: l 1 N m Na čem závisí povrchové napětí? Na druhu kapaliny, na prostředí nad povrchem S rostoucí teplotou povrchové napětí klesá Závěr: Povrchové napětí se projeví na styku kapaliny s plynem či s jinou kapalinou nebo i s látkou pevnou

Odvození povrchového napětí Chceme-li zvětšit povrch kulové plochy o S, posune se silou F okraj blány o délku s Z toho vyplývá, že změna práce je následující: W F s Za F dosadíme: F l a dostaneme vztah: W l s To můžeme v konečném důsledku upravit do vztahu W S S - značí přírůstek plochy blány Tato práce zvětšuje energii blány o E a můžeme psát: E S E Z toho je povrchové napětí S Povrchové napětí v praxi: 1 Vytvořme mydlinovou blánu na pevném rámečku a položíme na ni uzavřenou smyčku z tenké niti Když propíchneme blánu uvnitř smyčky, povrchovým napětím se nit napne do kroužku Slabý proud vody mydlinovou blánu v sítku neprotrhne Platí to potud, pokud se molekuly blanky nárazem proudící vody nevzdálí vzájemně více, než je poloměr sféry molekulového působení 3 Položíme-li jehlu nebo žiletku na povrch kapaliny, pozorujeme, že plave na kapalině a povrchová vrstva se pod ní prohne Povrchové napětí se s rostoucí teplotou zmenšuje Při kritické teplotě mizí 13 Vlastnosti povrchové vrstvy kapaliny Povrchová blána kapaliny se podobá napjaté pružné bláně Snaží se nabýt tvaru rovné plochy Vypnutá blána se snaží narovnat a působí tlakem na vrstvy ležící níže Každá zakřivená povrchová vrstva působí na kapalinu přídavným tlakem, který se přičítá k tlaku, jenž by působil na tutéž kapalinu s rovinným povrchem Je-li povrch vypuklý je přídavný tlak kladný, je-li vydutý pak je tlak záporný Tlak označujeme jako kapilární tlak 3

Odvození kapilárního tlaku F Kapilární tlak se vypočítá p S Musíme nejprve určit sílu F Síly povrchového napětí jsou tečny k povrchu Celková síla F se vypočítá: F f1 Určíme f1 a to takto: f1 sin f1 je f 1 f sin f Výsledný vztah dosadíme do celkové síly F: F f sin Na část obvodu l působí síla f Výpočet f je: f l Celková síla F bude mít tvar: F l sin sin l r Určíme si sin a to: sin Dále určíme l : l r (obvod kruhu) a oboje dosadíme do vztahu pro r sílu: F r F Výpočet kapilárního tlaku: p Do vztahu dosadíme: p S r běžně se =r Pro povrch válce je kapilární tlak: p Pro libovolně zakřivený povrch: p 1 1 1, 1, poloměry normálních řezů na sebe kolmých Kapilární tlak pro bublinu: p 4 14 Styk kapaliny a tuhé látky Stýká-li se kapalina s povrchem pevného tělesa a se vzduchem, stýkají v bodě A tři prostředí: 1 vzduch, voda, 3 stěna nádoby Povrchová napětí na jednotlivých označíme 1, rozhraních - vzduch, voda; - voda, stěna; 4

1,3 - stěna, vzduch Deformovat se může jen rozhraní voda, vzduch ovnovážný stav nastane, jestliže vektor 1, svírá s vektorem úhel a bude platit: 1,3,3 1, cos Nastanou dva případy: 1) 1, 3 > - pak platí cos 0 - úhel je ostrý, jak ukazuje obrázek Povrch vody se vyduje a vystoupí podél stěny Tento případ nastává při styku vody se sklem a se vzduchem Ve vlasové trubičce (kapiláře) se povrch vody zvýší kapilární elevace ) 1, 3 < - úhel je tupý Tento případ nastává při styku rtuti se sklem a se vzduchem Povrch kapaliny je při stěně vypuklý a snížený Ve vlasové kapiláře se povrch sníží kapilární deprese Tvar povrchu kapaliny v kapiláře meniskus Je-li v kapiláře o vnitřním poloměru r povrch zvýšen (nebo snížen) proti povrchu ve vnější nádobě o výšku h a je poloměr kapaliny v kapiláře, působí zde dva tlaky: tlak hydrostatický 1, 1, p1 h g a tlak kapilární p Oba tlaky se rovnají: h g Určíme h (rozdíl hladin v kapiláře a nádobě): Pro běžné výpočty se =r h 1, g Praktické použití: Vlhnutím stěn v domech souvisí s kapilární elevací Výstup vody kořenovými kapilárami a kmenem stromu není možno vysvětlit jenom kapilárními jevy Ve vodorovné kapiláře o 5

stálém průřezu se kapka nepohybuje V kapiláře, jež se k jednomu konci zužuje se kapka kapaliny, jež jeví elevaci, pohybuje do užšího průřezu, kapka z kapaliny, jež jeví depresi, se pohybuje do širšího průřezu Proč se půda okopává? Jinak voda vyvzlíná a odpaří se Proč se půda stlačuje? Tím v půdě vytváříme kapiláry a voda se dostane k semenům 15 Pára sytá a přehřátá Máme kapalinu v uzavřené nádobě Při chaotickém pohybu molekul rychlost některých směřuje k povrchu kapaliny Práce některých z nich stačí k jejich úniku ze silového pole zbylých molekul, a proto tyto molekuly vyletují z kapaliny a stávají se molekulami páry Srážky s jinými molekulami a se stěnami nádoby způsobí, že se některé vracejí zpět do kapaliny Při konstantní teplotě vznikne mezi kapalinou a párou v uzavřeném prostoru nad kapalinou termodynamická rovnováha Páru nad kapalinou označíme jako sytá pára Díky tomu je hustota syté páry za dané teploty stejná Při zvětšení objemu nebo teploty se rovnováha poruší a další molekuly se mění v páru až do ustanovení nové rovnováhy Nejvyšší teplotu, při které ještě existuje termodynamická rovnováha, nazýváme kritická teplota a po jejím překročení jsou v uzavřené nádobě pouze páry přehřáté Pro sytou páru neplatí stavová rovnice Páry, které nejsou v termodynamické rovnováze se svou kapalinou, se nazývají páry přehřáté Za téže teploty je hustota a tlak menší než u sytých par Jsou v otevřeném prostoru nad kapalinou, nebo v prostoru, kde není kapalina U kapaliny je za každé teploty při povrchu vrstva syté páry, z ní unikají molekuly dále do volného prostoru, kde tvoří páru přehřátou Sytá pára je přechodný stav mezi kapalinou a plynem Veškerý vývoj mezi kapalnou a plynnou látkou můžete pozorovat na spodním obrázku 6