1. Matematická logika



Podobné dokumenty
1. Matematická logika

0. ÚVOD - matematické symboly, značení,

M - Výroková logika VARIACE

LOGIKA VÝROKOVÁ LOGIKA

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Matematika B101MA1, B101MA2

λογος - LOGOS slovo, smysluplná řeč )

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výrok a jeho negace

Výroková logika. Teoretická informatika Tomáš Foltýnek

Spojování výroků (podmínek) logickými spojkami

1. MATEMATICKÁ LOGIKA A MNOŽINY

Základní pojmy matematické logiky

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Základy logiky a teorie množin

Matematické důkazy Struktura matematiky a typy důkazů

Matematická logika. Miroslav Kolařík

Matematika pro informatiky KMA/MATA

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

[a) (4 (7 + 5) = 4 12) (4 12 = 48); b) ( 1< 1) (1< 3); c) ( 35 < 18) ( 35 = 18)]

Formální systém výrokové logiky

Matematická indukce, sumy a produkty, matematická logika

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

teorie logických spojek chápaných jako pravdivostní funkce

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

1 Základní pojmy. 1.1 Množiny

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

1 Úvod do matematické logiky

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Výroková logika. p, q, r...

Logika. 1. Úvod, Výroková logika

Úvod do informatiky. Miroslav Kolařík

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

1.4.6 Stavba matematiky, důkazy

Logika. 6. Axiomatický systém výrokové logiky

ZÁKLADY LOGIKY A METODOLOGIE

Logika, výroky, množiny

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

Klasická výroková logika - tabulková metoda

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Logika a studijní předpoklady

VÝUKOVÝ MATERIÁL. Bratislavská 2166, Varnsdorf, IČO: tel Číslo projektu

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

1.4.3 Složené výroky implikace a ekvivalence

Výroková logika - opakování

Příklad z učebnice matematiky pro základní školu:

Matematická logika. Rostislav Horčík. horcik

Aplikace: Znalostní báze

Nepřijde a nedám 100 Kč měl jsem pravdu, o této

- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

KMA/MDS Matematické důkazy a jejich struktura

7. Funkce jedné reálné proměnné, základní pojmy

Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...

KMA/MDS Matematické důkazy a jejich struktura

Predikátová logika Individua a termy Predikáty

Modely Herbrandovské interpretace

SLOŽENÉ VÝROKY. Konjunkce. Motivační příklad společné zadání pro další příklady:

Systém přirozené dedukce výrokové logiky

1.4.2 Složené výroky konjunkce a disjunkce

Okruh č.3: Sémantický výklad predikátové logiky

Aplikovaná matematika I, NMAF071

7 Jemný úvod do Logiky

Bakalářská matematika I

KMA/MDS Matematické důkazy a jejich struktura

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu

Predikátová logika (logika predikátů)

Jestliže prší, pak je mokro.

Pravda jako funkce - ano, nebo ne?

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Logický důsledek. Petr Kuchyňka

Výroková a predikátová logika - II

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Normální formy. (provizorní text)

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

I. Úvodní pojmy. Obsah

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

1.4.3 Složené výroky konjunkce a disjunkce

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

Kapitola 1: Reálné funkce 1/13

Výroková a predikátová logika - VII

přednáška 2 Marie Duží

Převyprávění Gödelova důkazu nutné existence Boha

1. Základy logiky a teorie množin

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

Maturitní témata profilová část

Matematika B101MA1, B101MA2

Matematická analýza 1

7. Funkce jedné reálné proměnné, základní pojmy

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Transkript:

MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika si vybudovala svůj vlastní matematický jazyk. K jeho specifickým odlišnostem patří zejména významové rozlišení symbolů na konstanty a proměnné a užívání vět specifického druhu výroků. KONSTANTA, PROMĚNNÁ Konstanta je symbol, jehož význam se považuje za jednoznačně určený (významem je nejčastěji hodnota). Proměnná je symbol, jehož význam není určen jednoznačně, lze však za něj dosazovat konstanty podle určitých pravidel, aby příslušná věta měla smysl. (a) Ve větě A je strojírenský výrobek je strojírenský výrobek konstanta, A je proměnná, za kterou lze dosazovat konstanty názvy výrobků. (b) Ve větě 2 + x y jsou symboly 2, +, - konstanty, x, y proměnné, za které lze dosazovat konstanty čísla různého typu. Jak v matematice, tak v aplikacích se pak hovoří o konstantních, příp. proměnných veličinách. Při řešení každé úlohy je třeba mít od začátku zcela jasno, které veličiny se považují za konstanty a které za proměnné. V aplikačních úlohách toto rozlišení bezprostředně souvisí s podstatou a formulací úlohy. Při procesu stanovení prodejní ceny výrobku lze za konstanty považovat fixní režijní náklady a zákonem stanovené daňové sazby, za proměnné pohyblivé ceny vstupů a poptávku. VÝROK Výrok je věta (gramaticky správná), u které má smysl rozhodovat, zda je pravdivá (platí) či nepravdivá (neplatí), přičemž může nastat právě jediná z těchto dvou možností. V tomto smyslu se za výroky považují i věty obsahující proměnné, o jejichž pravdivosti (nepravdivosti) se rozhodne až po dosazení konstant za všechny proměnné, případně podle konkrétní situace. 1

(a) Věta Vltava je město je výrok, který je nepravdivý. (b) Věta 2 je sudé číslo je výrok, který je pravdivý. (c) Věta 3 + 2 není výrok. (d) Věta A je město na Moravě je výrok, o jehož pravdivosti (nepravdivosti) se rozhodne až po dosazení konstanty (názvu města) za proměnnou A. (e) Věta Dobrý den není výrok. (f) Věta x + y 2 je výrok, o jehož pravdivosti (nepravdivosti) se rozhodne až po dosazení konstant (reálných čísel) za proměnné x, y. (g) Věta Současný král Středoevropské republiky je líný se nepovažuje za výrok, neboť skutečnost tvořící významové jádro věty reálně neexistuje. (h) Věta Výrobek má výšku větší než 1 metr je výrok, o jehož pravdivosti (nepravdivosti) lze rozhodnout v dané situaci měřením. (i) Věta Jsou mraky je výrok, jehož pravdivost (nepravdivost) závisí na konkrétní situaci. OPERACE S VÝROKY K zadaným výrokům lze vhodným způsobem podle určitých pravidel konstruovat výroky nové. Hovoří se o operacích s výroky (též o skládání výroků); výsledkem je složený výrok. K základním operacím s výroky patří negace, konjunkce, disjunkce, implikace a ekvivalence. Negace výroku A je výrok není pravda, že A, který platí, jestliže A neplatí, a naopak; značí se A. (a) Negace výroku A: x < 2 je výrok A : x 2. (b) Negace výroku A: výrobek je zmetek, je výrok A : výrobek není zmetek. (c) Negace výroku A: všichni studenti ve třídě jsou výborní, je výrok A : alespoň jeden student, ve třídě není výborný (pozor například výrok všichni studenti ve třídě nejsou výborní by nemusel být chápán v jednoznačném významu). Uvažujme nyní dva výroky A, B. Pak mohou nastat následující čtyři alternativy jejich platnosti či neplatnosti: i. A platí, B platí. ii. A platí, B neplatí. iii. A neplatí, B platí. iv. A neplatí, B neplatí. 2

Konjunkce výroků A, B je výrok A a B, který platí pouze jestliže oba výroky A, B platí (tj. v případě i), jinak neplatí (tj, v případech ii, iii, iv); značí se též A B. Disjunkce výroků A, B je výrok A nebo B, který platí, jestliže alespoň jeden z výroků A, B platí (tj. v případech i, ii, iii), jinak neplatí (tj, v případě iv); značí se též A B. (a) Pro výroky A: leden má třicet dní, B: Berlín je město v Německu, je výrok A a B: leden má třicet dní a Berlín je město v Německu, výrok A nebo B: leden má třicet dní nebo Berlín je město v Německu; výrok A a B neplatí, výrok A nebo B platí (jde o případ iii). (b) Pro výroky A: x > 3, B: x 6, je výrok A a B: x > 3 a x 6, výrok A nebo B: x > 3 nebo x 6. Je zřejmé, že výrok x > 3 a x 6 vyjadřuje totéž, co výrok x (3, 6 a výrok x > 3 nebo x 6 totéž co výrok x je libovolné reálné číslo a naopak (takové výroky se budou nazývat ekvivalentní, jak uvidíme později). Poznámka: Spojka a v definici konjunkce vyjadřuje totéž co v živém jazyce a současně, spojka nebo v definici disjunkce má význam alternativy (nikoliv význam vzájemně vylučující ve smyslu buď a nebo ). Implikace výroků A, B je výrok jestliže platí A, pak platí B, který platí v případech i, iii, iv a neplatí v případě ii; značí se A B. Jestliže výroky A, B obsahují proměnné, pak se formulací A B platí rozumí, že výrok A B vždy platí, tj. po dosazení libovolných konstant (přicházejících v úvahu) za všechny proměnné; jinak se používá formulace A B neplatí. (a) Pro výroky A: Brno je v Čechách, B: 3 > 1, je výrok A B: jestliže Brno je v Čechách, pak 3 > 1, výrok B A: jestliže 3 > 1, pak je Brno v Čechách; výrok A B platí (jde o případ iii), výrok B A neplatí (jde o případ ii). (b) Pro výroky A: x < 4, B: x 2, je výrok A B: x < 4 x 2. Určíme, pro která reálná čísla x výrok A B neplatí. A B neplatí pouze v případě ii, tj. x < 4 (A platí) a x < 2 (B neplatí), tj. x < 2. V ostatních případech A B platí, a tedy A B platí pro x 2. (c) Pro výroky A: prší, B: jsou mraky, je výrok A B: jestliže prší, pak jsou mraky, výrok B A: jestliže jsou mraky, pak prší; výrok A B platí (neboť případ ii je reálně vyloučen), výrok B A neplatí (neboť případ ii, tj, jsou skutečně mraky a přitom neprší je reálně možný). Upozorněme na důležitý fakt, že v případě těchto dvou výroků (vlivem jejich fyzikální závislosti) může platnost jednoho ovlivnit platnost druhého; jinak řečeno, výroky A, B jsou pravdivostně závislé. U výroků A, B uvedených v (a), (b) tomu tak není. Také si připomeňme, že v (b), (c) obsahují výroky A, B proměnné, i když v (c) nejsou vyjádřeny symboly. 3

Implikace výroků hraje velmi významnou roli při formulaci matematického tvrzení. K vyjádření implikace A B, se kromě již uvedeného ve stejném významu užívá z A plyne B, A implikuje B, platí-li A, platí B, A je předpoklad, B je závěr, případně dalších běžných jazykových obměn. Pro výroky A: x je racionální číslo, B: x je reálné číslo, lze implikaci A B vyjádřit např. těmito významově stejnými formulacemi. (a) Je-li x číslo racionální, pak je x číslo reálné. (b) Nechť x je číslo racionální. Pak x je číslo reálné. (c) Z platnosti, že x je číslo racionální, plyne, že x je číslo reálné. Jak se lze snadno přesvědčit, výrok A B znamená totéž, jako výrok oba výroky neplatí pouze v případě ii. B A, neboť Pro výroky A: voda vře, B: teplota vody je vyšší než 80 o C, vyjadřuje výrok A B: jestliže voda vře, pak teplota vody je větší než 80 o C, totéž jako výrok nevře. B A : není-li teplota vody vyšší než 80 o C, pak voda Ekvivalence výroků A, B je výrok A B a B A ; značí se A B. Jinak vyjádřeno výroky A, B jsou ekvivalentní, jestliže z A plyne B a z B plyne A. Jak je patrno, výrok A B platí v případech i, iv, jinak neplatí (tj. v případech ii, iii). (a) Výroky A: muž je ženatý, B: muž má manželku, jsou ekvivalentní, A B. (b) Výroky A: trojúhelník je rovnostranný, B: trojúhelník má všechny vnitřní úhly shodné, jsou ekvivalentní. K vyjádření ekvivalence výroků A, B se užívá též formulací A platí, právě když platí B, A je ekvivalentní s B. Prakticky to znamená, že výroky A, B jsou vzájemně nahraditelné z hlediska pravdivosti. Symboly,,,,, označující operace s výroky se nazývají logické operátory. 4

FORMY MATEMATICKÉHO VYJADŘOVÁNÍ K tomu, aby matematika byla pravdivým obrazem reálného světa, si vytváří tzv. formální systémy. Zhruba řečeno, formální systém se skládá z pojmů a výroků o jejich vlastnostech. Schéma výstavby formálního systému je znázorněno na obr. 1.1. V prvním kroku výstavby formálního systému se nejprve vybere skupina tzv. primitivních pojmů, které se považují za zcela srozumitelné (opírají se o zkušenost) a dále se používají bez vysvětlení významu (např. bod, množina). Význam a smysl každého dalšího pojmu je třeba vysvětlit pomocí primitivních pojmů, případně pojmů, jejichž význam byl již dříve vysvětlen. K tomuto účelu se používá definic (obvykle jsou uvedeny slovy definice nebo jen def nebo bez uvedení, a pak je z kontextu zřejmé, že jde o definici); říkáme pak, že jsme pojem definovali (též zavedli). V druhém kroku se vybere nejprve skupina výroků o pojmech, jejichž pravdivost považujeme za zcela zřejmou. Tyto výroky se nazývají axiomy (např. axiómy operací s reálnými čísly). Další výroky o vlastnostech pojmů se přijímají za pravdivé teprve po potvrzení platnosti postupem zvaným důkaz. Dokázané výroky se nazývají věty (též teorémy, příp. lemmata). Takto se i v matematickém textu uvádějí; vzhledem k tomu, že se v dalším výkladu (až na výjimky) důkazy neprovádějí, zmíněné označení se někdy vynechává a hovoří se o vlastnostech pojmů. primitivní pojmy pojmy axiomy věty převzaty ze zkušenosti přesvědčivé bezesporné vlastnosti pojmů (nedokazují se) vlastnosti pojmů (dokazují se) Obrázek 1.1 Schéma výstavby formálního systému Dodejme, že ne každý systém tvořený pojmy a výroky o nich je formální systém v matematickém slova smyslu. Tento systém musí splňovat velmi přesné podmínky, například bezespornost, nezávislost, úplnost, což není předmětem dalších úvah. 5

Cílové znalosti 1) Rozeznat konstanty a proměnné. 2) Rozhodnout, zda věta je výrok či ne. 3) K zadaným výrokům konstruovat negaci, konjunkci, disjunkci, implikaci a ekvivalenci včetně slovního vyjádření a určit, zda platí či ne. 4) Vyjádřit implikaci různými způsoby v matematických formulacích. 5) Rozumět, co je primitivní pojem, definice, axiom, věta, důkaz. 6

I. Matematická logika_cvičení 1. V zadaných větách rozhodněte, které symboly (slova) jsou konstanty, a které proměnné. a) Brno je město. b) a + b = 7. c) Alice je ženské jméno. d) Státní rozpočet má deficit x korun. e) a je reálné číslo. 2. O zadaných větách rozhodněte, zda jsou výroky či ne; v kladném případě rozhodněte, zda jsou pravdivé či ne (pokud to lze). a) 2 = 4. b) Co budeš dělat zítra? c) a + b = c. d) Franta je milionář. e) Paříž je ve Francii. f) Pro každé reálné číslo x platí x 2 0. g) Jsou-li mraky, pak vždy prší. h) x 0. 2 i) x + 4x+ 3= 0. j) Současný král Středoevropské republiky je líný. 3. Najděte negaci zadaných výroků A: Odra není řeka. B: x < 3. C: Článek je dlouhý. D: Soused má více než jedno auto. E: a < 5. F: 1=1. G: Sníh je černý. H: Počítač je velmi rychlý. 7

4. K zadaným výrokům A, B najděte konjunkci, disjunkci, implikaci a ekvivalenci a rozhodněte o jejich pravdivosti (nepravdivosti) (pokud to lze). Formulaci výsledku vyjádřete, co nejstručněji. a) A: Renáta má více než 15 let. B: Renáta má méně než 18 let. b) A: x > 1. B: x 4. c) A: x 1. B: 1 x. 5. Pro výroky A: je zima, B: prší, vyjádřete co nejstručněji následující výroky a) A. b) A B. c) A B. d) A B. e) A B. f) B A. g) A B. h) ( A B) A. 6. Pro výroky A: Bob je vysoký, B: Bob je urostlý, vyjádřete následující výroky symbolicky pomocí logických operátorů. a) Bob je vysoký a urostlý. b) Bob je vysoký, ale není urostlý. c) Je lež, že Bob je malý nebo urostlý. d) Bob není ani vysoký ani urostlý. e) Bob je vysoký, nebo je malý a urostlý. f) Není pravda, že Bob je malý nebo není urostlý. 8