1 Matematicko-fyzika lní gramotnost Metodika pro inovovanou výuku v přírodovědných předmětech Mgr. Lucie Písařová, Jana Hanáková
2 Obsah Obsah... 2 Úvod... 3 Proces výuky... 4 Cíle výuky... 5 Obsah výuky a rozvoj příslušných kompetencí... 7 Motivace žáků v přírodovědných předmětech... 12 Navrhované výukové metody... 14 Prezentace... 15 Pracovní návody... 16 Pracovní listy... 16 Realizace inovované výuky v přírodovědných předmětech a zpětná vazba... 19 Závěr... 30 Použitá literatura... 31
3 Úvod Tato metodika se zaměřuje na motivaci žáků a uplatnění prostředků, které zatraktivní přírodní vědy ve výuce na střední škole. Cílem je poskytnout učitelům průvodce, který by jim pomohl zařadit aktivizující metody do běžné výuky těchto předmětů. Hlavním cílem je inovace výuky přírodních věd na školách pro rozvoj klíčových kompetencí žáků se zaměřením na podporu matematicko-fyzikální gramotnosti žáků a pro zvýšení jejich motivace ke vzdělávání v těchto oborech. Dalším cílem je podpoření environmentálního vzdělávání, výchovy a osvěty v rámci výuky přírodovědných předmětů. Tato podpora bude uskutečněna díky praktickému vyučování a díky lepšímu využití mezipředmětových vazeb. První kapitola bude zaměřena na výuku jako výchovně vzdělávací proces. V dalších kapitolách budou stanoveny výukové cíle, obsah výuky a začlenění motivačních metod. Dále budou navrženy metody a formy pro inovaci v přírodovědných předmětech. V poslední kapitole se zaměříme na samotnou realizaci těchto metod a jejich zpětnou vazbu.
4 Proces výuky Výuka je proces, který můžeme rozčlenit na jednotlivé fáze. Tyto sekvence se však vzájemně doplňují, prolínají a střídají se, a proto je v žádném případě nelze vnímat jako izolované. Fáze výuky v rámci vyučovacího procesu jsou následující [5]: motivace (získání zájmu žáka a jeho odhodlání učit se); expozice (zprostředkování nového učiva žákům); fixace (upevňování osvojených vědomostí a dovedností u žáků); diagnóza (zkoušení a prověřování znalostí a dovedností žáků, jejich hodnocení a známkování); aplikace (využití získaných vědomostí a dovedností v praktické činnosti). Tyto fáze v uvedeném pořadí vyjadřují ideální posloupnost na sebe navazujících činností celého vyučovacího procesu. V praxi se jejich pořadí může měnit podle vzdělávacích cílů, podmínek výuky i aktuální situace ve výuce. Jednotlivé fáze se mohou vzájemně prolínat a doplňovat. V každé výukové jednotce mohou být buď všechny fáze, nebo jen některé, podle cíle dané vyučovací hodiny. Z hlediska řešené problematiky je pro nás stěžejní otázka zařazení prostředků k podpoře zájmu o přírodovědné vzdělání. Tedy mezi podstatné fáze vyučovacího procesu se řadí vstupní motivace k získání znalostí a jejich převedení v aplikační fázi na dovednosti týkající se praktického využití poznatků. Nové metody využívání pracovní listů se mohou uplatnit jak v motivační tak i fixační fázi vyučovacího procesu. Pracovní listy zaměřené na laboratorní měření a pozorování se řadí do aplikační fáze výuky. Inovace bude spočívat v zavedení moderních výukových metod a činností pro zvýšení úrovně a kvality výuky přírodních věd. Samotná výuka se posune směrem k větší názornosti, efektivnosti, praktičnosti a kvalitě a bude splňovat kritéria potřeb společnosti. Implementace výukového programu a témat EVVO umožní aktivní zapojení žáků do výuky a podpoří změnu přístupu žáků ke svému vzdělávání.
5 Cíle výuky Každá učební činnost musí mít jednoznačně dán výukový cíl, což je výsledek, ke kterému učitel s žáky směřuje. Bez určení cíle by nešlo prakticky hodnotit úspěšnost edukačního procesu. Výukové cíle můžeme rozdělit do dvou základních oblastí[1]: vzdělávací cíle; výchovné cíle. V běžné výuce ve škole nelze plnění těchto skupin cílů oddělit. Proto také často hovoříme o výchovně vzdělávacích cílech. Výchovné cíle se podílejí na rozvoji a formování charakterových vlastností žáků a vzdělávací cíle jsou zaměřeny na osvojování učiva. Dalším faktorem pro dělení výchovně vzdělávacích cílů je jejich vymezení podle doby jejich naplnění[1]: nižší (konkrétnější, krátkodobější); vyšší (obecnější, dlouhodobější). Nižší cíle jsou uskutečňovány během konkrétní vyučovací hodiny. Pokud jsou naplněny, můžeme je rozvinout ve vyšší cíle. K uskutečnění vyšších cílů dochází až po delší době, může to být až po absolvování celého středoškolského studia. Konkrétní příklady cílů v naší problematice přírodovědných předmětů jsou uvedeny níže. Nižší cíle můžeme vyjádřit následovně: získání zájmu žáků o probíranou problematiku konkrétního vyučovaného předmětu; uskutečnění laboratorního měření a konfrontace výsledků s obecně platnými zákony; vedení žáků k uvědomování si důležitosti poznatků konkrétního vyučovaného předmětu;
6 získání zájmu pro konkrétní přírodovědný předmět. Vyšší cíle zahrnují: získání zájmu žáků o přírodovědné obory; motivování žáků k dalšímu studiu přírodovědných oborů; uvědomění si velkého významu přírodních věd v lidském životě. Vzdělávací cíle by měly splňovat následující požadavky 0: komplexnost slučuje v sobě funkce cílů kognitivních (vzdělávací, poznávací), afektivních (postojové) a psychomotorických (výcvikové neboli dovednostní); konzistentnost (soudržnost) zachovávají logickou posloupnost učiva; přiměřenost výukové metody i učivo je přizpůsobeno věku, vyspělosti i nadání žáků, množství informací předkládaných žákům je takové, aby je nepřetěžovalo; kontrolovatelnost lze snadno zjistit, zda bylo či nebylo cíle dosaženo. Stanovení vzdělávacích cílů se odvíjí od toho, jakou kompetenci chceme v průběhu edukačního procesu u žáků rozvíjet. Se stanovenými cíly úzce souvisí i struktura a obsah výukový materiálů.
7 Obsah výuky a rozvoj příslušných kompetencí Obsah přírodovědného vzdělávání je dán Rámcovým vzdělávacím programem pro střední školy. Konkrétně se jedná o následující dvě vzdělávací oblasti: Přírodovědné vzdělávání; Matematické vzdělávání. Výuka přírodních věd přispívá k hlubšímu a komplexnímu pochopení přírodních jevů a zákonů, k formování žádoucích vztahů k přírodnímu prostředí a umožňuje žákům proniknout do dějů, které probíhají v živé i neživé přírodě. Přírodovědné vzdělávání nemůže být nahrazeno pouhou znalostí vybraných faktů, pojmů a procesů. Cílem přírodovědného vzdělávání je především naučit žáky využívat přírodovědných poznatků v profesním i občanském životě, klást si otázky o okolním světě a vyhledávat k nim relevantní, na důkazech založené odpovědi. Vyučování přírodních věd směřuje k tomu, aby žáci uměli: využívat přírodovědných poznatků a dovedností v praktickém životě ve všech situacích, které souvisejí s přírodovědnou oblastí; logicky uvažovat, analyzovat a řešit jednoduché přírodovědné problémy; pozorovat a zkoumat přírodu, provádět experimenty a měření, zpracovávat a vyhodnocovat získané údaje; komunikovat, vyhledávat a interpretovat přírodovědné informace a zaujímat k nim stanovisko, využívat získané informace v diskusi k přírodovědné a odborné tematice; porozumět základním ekologickým souvislostem a postavení člověka v přírodě a zdůvodnit nezbytnost udržitelného rozvoje; posoudit chemické látky z hlediska nebezpečnosti a vlivu na živé organismy.
8 V afektivní oblasti směřuje přírodovědné vzdělávání k tomu, aby žáci získali: motivaci přispět k dodržování zásad udržitelného rozvoje v občanském životě i odborné pracovní činnosti; pozitivní postoj k přírodě; motivaci k celoživotnímu vzdělávání v přírodovědné oblasti. Matematické vzdělávání má v odborném školství kromě funkce všeobecně vzdělávací ještě funkci průpravnou pro odbornou složku vzdělávání. Obecným cílem matematického vzdělávání je výchova přemýšlivého člověka, který bude umět používat matematiku v různých životních situacích (v odborné složce vzdělávání, v dalším studiu, v osobním životě, budoucím zaměstnání, volném čase apod.). Vzdělávání v matematice směřuje k tomu, aby žáci dovedli: využívat matematických vědomostí a dovedností v praktickém životě: při řešení běžných situací vyžadujících efektivní způsoby výpočtu a poznatků o geometrických útvarech; aplikovat matematické poznatky a postupy v odborné složce vzdělávání; matematizovat reálné situace, pracovat s matematickým modelem a vyhodnotit výsledek řešení vzhledem k realitě; zkoumat a řešit problémy, včetně diskuse výsledků jejich řešení; číst s porozuměním matematický text, vyhodnotit informace získané z různých zdrojů, grafů, diagramů, tabulek a internetu, přesně se matematicky vyjadřovat; používat pomůcky: odbornou literaturu, internet, PC, kalkulátor, rýsovací potřeby. V afektivní oblasti směřuje matematické vzdělávání k tomu, aby žáci získali: pozitivní postoj k matematice a zájem o ni a její aplikace; motivaci k celoživotnímu vzdělávání; důvěru ve vlastní schopnosti a preciznost při práci.
9 Výuka v obou vzdělávacích oblastech směřuje také k utváření a rozvíjení obecných tedy tzv. klíčových kompetencí. V následujícím textu se zaměříme na výčet těchto kompetencí. Jejich rozdělení bude odpovídat Rámcovému vzdělávacímu programu pro střední školy. Kompetence k učení mít pozitivní vztah k učení a vzdělávání; ovládat různé techniky učení, umět si vytvořit vhodný studijní režim a podmínky; uplatňovat různé způsoby práce s textem (zvl. studijní a analytické čtení), umět efektivně vyhledávat a zpracovávat informace; být čtenářsky gramotný; využívat ke svému učení různé informační zdroje, včetně zkušeností svých i jiných lidí; znát možnosti svého dalšího vzdělávání, zejména v oboru a povolání. Kompetence k řešení problémů porozumět zadání úkolu nebo určit jádro problému, získat informace potřebné k řešení problému, navrhnout způsob řešení, popř. varianty řešení, a zdůvodnit jej, vyhodnotit a ověřit správnost zvoleného postupu a dosažené výsledky; uplatňovat při řešení problémů různé metody myšlení (logické, matematické, empirické) a myšlenkové operace; volit prostředky a způsoby (pomůcky, studijní literaturu, metody a techniky) vhodné pro splnění jednotlivých aktivit, využívat zkušeností a vědomostí nabytých dříve; spolupracovat při řešení problémů s jinými lidmi (týmové řešení). Komunikativní kompetence formulovat své myšlenky srozumitelně a souvisle, v písemné podobě přehledně a jazykově správně; účastnit se aktivně diskusí, formulovat a obhajovat své názory a postoje; zpracovávat administrativní písemnosti, pracovní dokumenty i souvislé texty na běžná i odborná témata; vyjadřovat se a vystupovat v souladu se zásadami kultury projevu a chování.
10 Personální a sociální kompetence ověřovat si získané poznatky, kriticky zvažovat názory, postoje a jednání jiných lidí; mít odpovědný vztah ke svému zdraví, pečovat o svůj fyzický i duševní rozvoj, být si vědomi důsledků nezdravého životního stylu a závislostí; adaptovat se na měnící se životní a pracovní podmínky a podle svých schopností a možností je pozitivně ovlivňovat, být připraveni řešit své sociální i ekonomické záležitosti, být finančně gramotní; pracovat v týmu a podílet se na realizaci společných pracovních a jiných činností; přijímat a odpovědně plnit svěřené úkoly. Občanské kompetence a kulturní povědomí chápat význam životního prostředí pro člověka a jednat v duchu udržitelného rozvoje; uznávat hodnotu života, uvědomovat si odpovědnost za vlastní život a spoluodpovědnost při zabezpečování ochrany života a zdraví ostatních. Matematické kompetence správně používat a převádět běžné jednotky; používat pojmy kvantifikujícího charakteru; provádět reálný odhad výsledku řešení dané úlohy; nacházet vztahy mezi jevy a předměty při řešení praktických úkolů, umět je vymezit, popsat a správně využít pro dané řešení; číst a vytvářet různé formy grafického znázornění (tabulky, diagramy, grafy, schémata apod.); aplikovat znalosti o základních tvarech předmětů a jejich vzájemné poloze v rovině i prostoru; efektivně aplikovat matematické postupy při řešení různých praktických úkolů v běžných situacích.
11 Kompetence využívat prostředky informačních a komunikačních technologií a pracovat s informacemi pracovat s osobním počítačem a dalšími prostředky informačních a komunikačních technologií; pracovat s běžným základním a aplikačním programovým vybavením; získávat informace z otevřených zdrojů, zejména pak s využitím celosvětové sítě Internet. Motivační metody budou rozvíjet i kompetence pedagogů: odborné pedagogické kompetence; kompetence sociální a personální; komunikativní. Celkově by tyto metody měli přispět ke zlepšení komunikace a spolupráce mezi žáky a učiteli. Výše citované výstupy je nutné naplňovat s pomocí metod aktivní práce žáků (aktivizujících metod výuky). Začlenění těchto metod do výuky se může stát i mocným nástrojem při získávání zájmů žáků o příslušné přírodovědné disciplíny.
12 Motivace žáků v přírodovědných předmětech Motivace je souhrn činitelů, které podněcují, orientují a udržují chování člověka. Na motivaci působí mnoho aspektů, z nich lze ovlivnit následující: míra nejistoty, průvodní pocity, úspěch, zájem, znalosti výsledků vlastní práce, vnitřní a vnější motivace, smysl učiva [2]. Míra nejistoty Mírná úroveň nejistoty vyučujícího v otázkách, zda žáci porozuměli výkladu, požadovaným úkolům, je žádoucí k dalšímu projevovanému úsilí učitele. Pokud by učitel nabyl dojmu plné jistoty v těchto otázkách, bude sám směřovat k pasivitě. Pozitivní dopad má i nejistota, k jakému závěru během laboratorní práce žáci dospějí. Tyto aspekty aktivují činnosti pedagoga a následně i samotných žáků. Průvodní pocity Průvodní pocity v sobě zahrnují to, jak se žák cítí v určité situaci. Vliv na pozitivní pocity má okolní prostředí, jako např. dostatek světla, tepla a času na vlastní práci. Úspěch Pocit úspěchu po splnění určitého úkolu zvyšuje motivaci žáků. Úspěch nepociťujeme, pokud jsme něčeho dosáhli bez námahy. Tyto pocity jsou u každého žáka individuální, proto je dobré méně nadaným žákům dávat lehčí úkoly, naopak nadaným zvýšit laťku. Zájem Zájem o určitou oblast vědění není vrozený, ale získaný. Lze ho zvyšovat např. přiblížení učiva k běžnému životu žáka. Raději než popisovat pohyb hmotného bodu, je lepší tuto úlohu převést na pohyb něčeho konkrétního, např. automobilu, vlaku, letadla Další probuzení zájmu je možné pomocí vlastního měření v přírodě nebo v laboratoři a vyvození vlastních výsledků měření a porovnání s obecně platnými přírodními zákony.
13 Znalost výsledků vlastní práce U vlastního měření nebo u konkrétních výpočtů je třeba podat zpětnou informaci o úrovni správnosti a přesnosti řešení. Pokud žák ví, co dělá dobře a co by naopak měl zlepšit, měl by mít optimální podmínky k vlastní motivaci dosáhnout co nejlepších výsledků své práce. Vnitřní a vnější motivace Vnitřní motivace je vlastní zájem a touha žáka, učit se. V praxi tedy málo časté. O úplnou vnitřní motivaci se jedná, když se žák učí, protože ho to zajímá a baví. Žák je vtažen do probírané problematiky předmětu a sám chce učivu porozumět a dozvědět se třeba i více, než mu bylo zprostředkováno učitelem ve škole. Vnější motivace je v praxi mnohem častějším jevem. Žák se učí, aby dosáhl odměny za to, že se učí např. dobré známky, pochvaly, Ve výuce bychom měli od vnější motivace směřovat k vnitřní. Pokud se nám to podaří aspoň u pár jedinců ve třídě, můžeme to pokládat za úspěch. Smysl učiva Poznání vlastního smyslu učiva je asi nejdůležitějším aspektem podporující motivaci žáků. Pokud žáci vědí, že to co se v hodinách naučili, mohou využít v praktickém životě, mnohem zodpovědněji přistupují k vlastnímu učení. Každý způsob motivace může dovést žáky k tomu, že v nich přírodní vědy vzbudí zájem a budou uvažovat o jejich dalším studiu, nebo budou tímto směrem postupovat i při volbě svého budoucího povolání.
14 Navrhované výukové metody Výukovou metodou máme na mysli cílevědomou a záměrnou posloupnost činností učitele a žáků směřující k danému výukovému cíli. Učením si žáci pod vedením učitele osvojují vědomosti, dovednosti, návyky, ale např. i postoje a rozvíjejí své schopnosti. Výukové metody můžeme rozdělovat podle různých kritérií. Jedním z nich je třídění metod podle zapamatovatelnosti učiva. Na základě statistických šetření, která se týkala efektivnosti při zapamatování učiva, se zjistilo, že si žáci pamatují[4]: 5 10 % z toho, co slyší; 15 % z toho, co vidí; 20 % z toho, co současně vidí a slyší; 40 % z toho, o čem diskutují; 80 % z toho, co přímo zažijí nebo sami dělají; 90 % z toho, co se pokouší naučit druhé. U každého jedince je navíc schopnost zapamatovat si probírané téma závislé na nejpreferovanějším stylu jeho učení. Podle toho rozdělujeme osoby na vizuální, auditivní, hapticko-kinestetické. Statistické rozdělení společnosti podle učebních stylů v současnosti vypadá takto[4]: vizuální typ 35 % populace; auditivní typ 20 % populace; hapticko-kinestetický typ 40 % populace. Podle tohoto šetření je patrné, že nejméně početnou skupinou jsou osoby, které se učí nejlépe z mluveného projevu. Tito žáci se tedy nejvíce naučí z přednášek, diskuzí a audio-materiálů. Početnější je skupina osob, která zahrnuje ty, co preferují zrakové vjemy. Žáci se tedy nejraději učí z textů a obrazových materiálů.
15 Nejpočetnější je skupina lidí, která při zapamatování učiva dává přednost pohybu a přímému kontaktu s věcmi. Žáci tedy nejvíce informací udrží v paměti pomocí realizace pokusů nebo prostřednictvím her, které podporují pohyb[3]. Prezentace Prezentace má většinou jednak aktivizační funkci v hodině, ale hlavně umožňuje žákům snáze a rychleji si zapamatovat podstatné informace z výkladu. Při tvorbě vlastní prezentace bychom měli dodržovat určitá pravidla, která pomohou optimálnímu zapamatování všeho podstatného. Jedním z prvních pravidel, která musíme dodržovat, je zápis textu. Text by měl obsahovat jednoduché věty nebo lepší a přehlednější je zapisovat text pomocí odrážek. Na každém slidu by nemělo být moc textu, vždy je lepší text rozdělit do několika stránek, aby orientace žáků v informacích byla lepší. Dále v prezentaci můžeme podpořit vizuální paměť studentů tak, že stránky budou obsahovat obrázky, fotografie, videa atd. Podstatná je také barevná skladba slidů. Zde platí pravidlo méně je více. Barva pozadí a samotného textu by měla být zvolena vhodně tak, aby byl text čitelný i z dálky. Zde se doporučuje vyzkoušet si prezentaci přímo na projektoru, barvy jsou trochu jiné než na displeji počítače. Při vkládání tabulek a grafů musíme mít na paměti, aby jednotlivé řádky byly barevně odlišené a grafické závislosti byly znázorněné kontrastními barvami. Celá prezentace by měla být konzistentní. Tedy na všech slidech by měl být zvolen určitý základní font, velikost písma a barva textu. Prezentace má při výkladu nového učiva funkci motivační a aktivizační. Měla by u žáků vzbudit zájem o danou problematiku, což můžeme ovlivnit vhodným výběrem obrázků. Dále by měla podpořit názornost a aktuálnost informací z přírodních věd. Tohoto se dá docílit jen pečlivou přípravou, protože poznatky z přírodních věd se neustále doplňují a upřesňují. Nemůžeme tedy připravit prezentaci a nedoplňovat o nové informace. Naopak musíme doplňovat probíranou teoretickou látku o praktické využití nejlépe v běžném životě nebo aspoň o využití na poli vědeckého výzkumu. Většinu žáků totiž nejvíce zajímá, kde se s daným zákonem mohou setkat v praxi. Tímto propojením teorie s praxí dosáhneme mnohem větší motivace ze strany žáků a vzbuzení jejich
16 zájmu o přírodní vědy. V prezentaci by na závěr měli být odkazy nejen na zdroje, ze kterých se čerpaly informace, ale také odkazy na další literaturu, kde se žáci mohou dočíst další podrobnosti. Tyto odkazy přispívají k větší informovanosti žáků v dané problematice. Pracovní návody Pracovním návodem by měl být srozumitelný a přehledný text, pomocí kterého žáci zvládnou vypracovat pracovní list na dané téma nebo provést laboratorní měření včetně výpočtů. Tento text by měli mít žáci dostupný dříve, než začnou se samotným laborováním nebo vypracováním pracovního listu. Součástí každého návodu by mělo být téma, kterým se návod zabývá. Dále by měl být uveden cíl, čeho by měli žáci po nastudování návodu a jeho realizaci dosáhnout. Nedílnou součástí je seznam pomůcek, které budou potřebovat pro optimální dosažení stanovených cílů. Dále by měl být přehledně zpracovaný teoretický úvod, ve kterém jsou uvedeny všechny potřebné zákonitosti přírodních věd a také vzorce, pro výpočet jednotlivých veličin. Na samém konci pracovního návodu by měl být popsán pracovní postup, který by měli žáci dodržet, aby dosáhli cíle zkoumané problematiky. Pracovní listy Pracovní listy podporují kromě vizuálních také haptické dovednosti. Měli by se stát podstatnými nositeli informací o probíraném tématu. Jejich využití může být ve všech fázích výukového procesu. Vlastní koncepce pracovních listů se odvíjí od využití daného listu v konkrétní fázi výuky. Pracovní listy jako motivační prvek před probíranou látkou Tyto listy předpokládají samostatnou nebo skupinovou činnost žáků, která by měla být realizována za pomocí dostupné literatury nebo s využitím internetových zdrojů. Žáci si podle požadavků v pracovním listě zjišťují a postupně třídí potřebné informace. Takové pracovní listy mají funkci opory pro samostudium. Výsledkem motivačních listů by měl být ucelený závěr, který by měl vzniknout na základě diskuzí s ostatními žáky. Jak by to vypadalo v praxi? Žáci by buď pracovali samostatně, nebo v malých skupinkách vyhledávali informace, které by doplňovali do pracovních listů. Každá skupina žáků by pracovala nezávisle na jiných skupinách. Výsledkem by ovšem nemohl být jen vyplněný list danou skupinou. U této práce
17 je nejpodstatnější porovnání zjištěných informací napříč pracovními skupinami. Vždy by po samotném vyplňování listů měla být diskuze, která by vedla k jednotnému závěru. Pomocí motivačních pracovních listů se u žáků prohlubuje schopnost vyhledávat a třídit informace. Dále to žáky posiluje v kontrole a ověřování dostupných zdrojů, na internetu se nedá věřit všemu, co je napsáno. V neposlední řadě to formuje žáky ke spolupráci a k nácviku vlastního vysvětlování probírané látky mezi samotnými žáky. Žáci si tedy probíranou látku osvojí během výuky ve škole a většinu informací uchovají v paměti mnohem lépe, než po běžné vyučovací hodině. Učitel je tedy postaven do role pouhého koordinátora, který dohlíží nad prací žáků a v případě vzniklých problémů posouvá žáky správným směrem. Pracovní listy určení k procvičování probírané problematiky Tyto listy mohou procvičovat získané poznatky na konkrétních praktických příkladech. Konkrétně se může jednat o zajímavý příklad z fyziky, který by měli žáci vyřešit. Určitě radši a ochotněji budou pracovat na výpočtu pohybu a popisu chování konkrétního dopravního prostředku, než jen pouhého hmotného bodu. Tento příklad může být také motivován nějakou zajímavostí ze sportu, nových technologií v dopravě nebo pohybu v samotném vesmíru. Témat, která zaujmou žáky je nepřeberné množství, stačí si jen vybrat a zapracovat takové téma do pracovního listu. V biologii a chemii se takové listy mohou týkat environmentální výchovy a výchovy ke zdraví. Podpora ekologického pohledu na svět je velice důležitá. Hlavní je, aby si sami žáci uvědomili, jak svojí činností mohou prospět přírodě. Technický pokrok nezastavíme a to ani nechceme, ale můžeme zmírnit následky, které zanechává v prostředí kolem nás. V matematice se také můžeme zaměřit na úlohy, které využijí nacvičenou strategii řešení typových úloh, v praktické rovině života. Konkrétně se může jednat o podporu a rozvoj finanční gramotnosti. V dnešní společnosti se bez těchto aplikací matematiky nemůžeme bez závažných následků pohybovat. Ať už se jedná o uzavření hypotéky nebo jen samotná orientace ve slevách a akcích různých obchodních řetězců. Další a velice zajímavou problematikou, která má okamžitý a velice důležitý (významný) vliv na běžný život je statistika. S pomocí jejích nástrojů můžeme zpracovat různá témata o životě obyvatel a tato témata ve formě konkrétních výsledků a grafů prezentovat dál. Tímto způsobem se podporují i mezipředmětové vztahy.
18 Pracovní listy k domácí přípravě žáků Tyto pracovní listy by měly být doplněny pracovním návodem, aby se eliminovalo nepochopení požadavků ze strany žáků. Cílem těchto pracovních listů může být jak procvičování probraného učiva nebo na aplikace teoretických poznatků do praktického života. Pracovní listy pro laboratorní měření Takový pracovní list rozvíjí nejvíce psychomotorických dovedností pro práci s pomůckami, přístroji a nástroji. Dále podporuje samostatnost žáků a umožňuje jim opakovat, prohlubovat a rozšiřovat učivo. Velice důležitá je schopnost formulovat závěry z praktického měření a jejich porovnání s předpokládanou teorií. Po každé nemusí vyjít měřená hodnota přesně podle teoretické znalosti, v tomto případě je potřeba zjistit, čím je odlišnost způsobena. Důvodů může být několik, chyba měření způsobená špatnou prací žáků, nepřesnost způsobená nedostatečně citlivým měřícím zařízením, nebo vliv okolní jevů na měřenou skutečnost. Tyto otázky prohlubují u žáků vlastní přemýšlení o platnostech přírodních zákonitostí a odůvodňování vzniklých anomálií v měřených jevech. Při pokusu je vždy zapojeno více smyslů, a proto se žáci za pomoci experimentů učí efektivněji, než bez něho.
19 Realizace inovované výuky v přírodovědných předmětech a zpětná vazba Realizace inovované výuky spočívala ve výběru a zpracování 18 témat pro rozvoj matematicko-fyzikální gramotnosti a 6 témat podporující EVVO. Ke všem tématům byl vytvořen nejprve vstupní dotazník, který byl rozdán cílové skupině studentů a na jehož základě byly vytvářeny výstupy podporující inovovanou výuku. Všechny vytvořené výstupy, jsou umístěny na webu a na CD nosiči. Výstupy pro inovovanou výuku jsou přehledně rozděleny do kategorií a seřazeny od nejnovějšího po nejstarší. Všichni pedagogové mají možnost tyto materiály stahovat a využívat je při výuce. Seznam vytvořených materiálů v jednotlivých předmětech Biologie OBLASTI NÁZEV ČÍSLO TYP VÝSTUPU NÁZEV LISTU POŘADOVÉ ČÍSLO TÉMATU KÓD LISTU Ochrana přírody v ČR 1 T Ochrana přírody v ČR 1 T-B1/1 Ochrana přírody v ČR 1 ML Ochrana přírody v ČR 1 ML-B1/1 Ochrana přírody v ČR 1 VP Ochrana přírody v ČR 1 VP-B1/1 Ekosystémy 2 PL Ekosystémy 1 PL-B2/1 Ekosystémy 2 ML Ekosystémy 1 ML-B2/1 Ekosystémy 2 VP Ekosystémy 1 VP-B2/1 Vlastnosti půdy a její ovlivňování lidskou 3 PL Půda 1 PL-B3/1 činností Vlastnosti půdy a její ovlivňování lidskou 3 ML Půda 1 ML-B3/1 činností Vlastnosti půdy a její ovlivňování lidskou 3 VP Půda 1 VP-B3/1 činností Toxické látky v Voda a toxické látky 4 PL prostředí v ní 1 PL-B4/1 Toxické látky v 4 ML Voda a toxické látky 1 ML-B4/1 prostředí Toxické látky v prostředí 4 VP v ní Voda a toxické látky v ní 1 VP-B4/1
20 Chemie OBLASTI POŘADOVÉ NÁZEV ČÍSLO TYP VÝSTUPU NÁZEV LISTU ČÍSLO TÉMATU KÓD LISTU Plasty 1 PL Vlastnosti plastů 1 PL-CH1/1 Plasty 1 ML Vlastnosti plastů 1 ML-CH1/1 Plasty 1 VP Vlastnosti plastů 1 VP-CH1/1 Voda 2 PL Vlastnosti vody 1 PL-CH2/1 Voda 2 ML Vlastnosti vody 1 ML-CH2/1 Elektrotechnika OBLASTI POŘADOVÉ NÁZEV ČÍSLO TYP VÝSTUPU NÁZEV LISTU ČÍSLO TÉMATU KÓD LISTU Elektřina 1 PL Faradayovy zákony 1 PL-F1/1 Elektřina 1 ML Faradayovy zákony 1 ML-F1/1 Elektřina 1 PL Kirchhoffovy zákony 2 PL-F1/2 Elektřina 1 ML Kirchhoffovy zákony 2 ML-F1/2 Elektřina 1 PL Ohmův zákon 3 PL-F1/3 Elektřina 1 ML Ohmův zákon 3 ML-F1/3 Elektřina 1 PL Zdroje elektrického napětí 4 PL-F1/4 Elektřina 1 ML Zdroje elektrického napětí 4 ML-F1/4 Fyzika OBLASTI TYP VÝSTUPU POŘADOVÉ ČÍSLO TÉMATU NÁZEV ČÍSLO NÁZEV LISTU KÓD LISTU Mechanika 1 PL Energie, výkon, účinnost 1 PL-F1/1 Mechanika 1 ML Energie, výkon, účinnost 1 ML-F1/1 Mechanika 2 PL Newtonův gravitační zákon 2 PL-F2/2 Mechanika 2 ML Newtonův gravitační zákon 2 ML-F2/2 Mechanika 2 PL Rovnoměrně zpomalený pohyb 3 PL-F2/3 Mechanika 2 ML Rovnoměrně zpomalený pohyb 3 ML-F2/3 Mechanika 2 PL Zákon zachování hybnosti 4 PL-F2/4 Mechanika 2 ML Zákon zachování hybnosti 4 ML-F2/4 Optika 3 PL Oko a oční vady 1 PL-F3/1 Optika 3 ML Oko a oční vady 1 ML-F3/1 Optika 3 VP Oko a oční vady 1 VP-F3/1 Optika 3 T Oko a oční vady 1 T-F3/1
21 Matematika OBLAST POŘADOVÉ NÁZEV ČÍSLO TYP VÝSTUPU NÁZEV LISTU ČÍSLO TÉMATU KÓD LISTU Analytická geometrie 1 PL Metrické úlohy v rovině 1 PL-M1/1 Analytická geometrie 1 ML Metrické úlohy v rovině 1 ML-M1/1 Analytická geometrie 1 PL Obsahy geometrických útvarů 2 PL-M1/2 Analytická geometrie 1 ML Obsahy geometrických útvarů 2 ML-M1/2 Funkce 2 PL Grafy funkcí 1 PL-M2/1 Funkce 2 ML Grafy funkcí 1 ML-M2/1 Funkce 2 PL Průběh funkce 2 PL-M2/2 Funkce 2 ML Průběh funkce 2 ML-M2/2 Funkce 2 PL Vlastnosti funkcí 3 PL-M2/3 Funkce 2 ML Vlastnosti funkcí 3 ML-M2/3 Planimetrie 3 PL Konstrukce trojúhelníku 1 1 PL-M3/1 Planimetrie 3 PL Konstrukce trojúhelníku 2 2 PL-M3/2 Planimetrie 3 PL Tvorba plakátu k rovinným útvarům 3 PL-M3/3 Planimetrie 3 PL Mnohoúhelníky 4 PL-M3/4 Rovnice a nerovnice 4 PL Počítání s rovnicemi a nerovnicemi 1 PL-M4/1 Rovnice a nerovnice 4 ML Počítání s rovnicemi a nerovnicemi 1 ML-M4/1 Rovnice a nerovnice 4 PL Slovní úlohy s nerovnicemi 2 PL-M4/2 Rovnice a nerovnice 4 ML Slovní úlohy s nerovnicemi 2 ML-M4/2 Rovnice a nerovnice 4 PL Slovní úlohy s rovnicemi 3 PL-M4/3 Rovnice a nerovnice 4 MP Slovní úlohy s rovnicemi 3 MP-M4/3 Statistika 5 PL Základy statistiky 1 PL-M5/1 Statistika 5 ML Základy statistiky 1 ML-M5/1 Statistika 5 VP Základy statistiky 1 VP-M5/1 Stereometrie 6 PL Objemy těles 1 PL-M6/1 Stereometrie 6 ML Objemy těles 1 ML-M6/1 Stereometrie 6 PL Povrch a objemy těles 2 PL-M6/2 Stereometrie 6 ML Povrch a objemy těles 2 ML-M6/2 Stereometrie 6 PL Řezy na tělesech 3 PL-M6/3 Stereometrie 6 ML Řezy na tělesech 3 ML-M6/3 Úpravy výrazů 7 PL Vzorce s třetí mocninou 1 1 PL-M7/1 Úpravy výrazů 7 ML Vzorce s třetí mocninou 1 1 ML-M7/1 Úpravy výrazů 7 PL Vzorce s třetí mocninou 2 2 PL-M7/2 Úpravy výrazů 7 ML Vzorce s třetí mocninou 2 2 ML-M7/2 Úpravy výrazů 7 VP Úvodní prezentace 1 VP-M7/1 Základní poznatky 8 PL Negace výroků 1 PL-M8/1 Základní poznatky 8 ML Negace výroků 1 ML-M8/1 Základní poznatky 8 PL Počítání se zlomky 2 PL-M8/2 Základní poznatky 8 ML Počítání se zlomky 2 ML-M8/2 Základní poznatky 8 PL Vennovy diagramy 3 PL-M8/3 Základní poznatky 8 ML Vennovy diagramy 3 ML-M8/3