Reakce jednotlivých kationtů



Podobné dokumenty
Kvalitativní analytická chemie

Analytické třídy kationtů

LABORATOŘE Z ANALYTICKÉ CHEMIE

Základy analýzy potravin Přednáška 1

PŘÍPRAVA NA URČOVÁNÍ NEZNÁMÉHO VZORKU

Učebnice pro studenty 3. ročníku Gymnázia Botičská, kteří navštěvují seminář z chemie Sestavil: Stanislav Luňák verze 2010

Přehled užitečných informací z chemie (kompilace: Martin Slavík, TUL 2005)

Schéma dělení kationtů I. třídy

ANALYTICKÁ CHEMIE KVALITATIVNÍ. prof. Viktor Kanický, Analytická chemie I 1

Analytická chemie. Dělí se na kvalitativní a kvantitativní analytickou chemii.

Repetitorium chemie IV. Stručné základy klasické kvalitativní analýzy anorganických látek

Příklad Sestavte rovnice následujících dějů: reakce hydroxidu sodného s kyselinou tetrahydrogendifosforečnou 4NaOH + H 4 P 2 O 7 Na 4 P 2 O 7

Laboratorní cvičení z lékařské chemie I

Úloha č. 12 Kvalitativní analýza anorganických iontů

1H 1s. 8O 1s 2s 2p H O H

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 14 SRÁŽECÍ REAKCE

Ústřední komise Chemické olympiády. 56. ročník 2019/2020 ŠKOLNÍ KOLO. Kategorie A. Praktická část Zadání 40 bodů

DUM VY_52_INOVACE_12CH01

DUM VY_52_INOVACE_12CH19

Přechodné prvky, jejich vlastnosti a sloučeniny

Součástí cvičení je krátký test.

Gymnázium Jana Pivečky a Střední odborná škola Slavičín. III/2 Inovace a zkvalitnění výuky prostřednictvím ITC

Chemické názvosloví anorganických sloučenin 1

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Kvalitativní analýza - prvková. - organické

STUPNĚ ph NEUTRALIZACE PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

Ústřední komise Chemické olympiády. 48. ročník 2011/2012. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

KVALITATIVNÍ ELEMENTÁRNÍ ANALÝZA ORGANICKÝCH LÁTEK

STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra

3) Kvalitativní chemická analýza

Oborový workshop pro ZŠ CHEMIE

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D

1234,93 K, 961,78 C teplota varu 2435 K, 2162 C Skupina

Cvičení z analytické chemie 1 Analytická chemie kvalitativní

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic

Chemické názvosloví anorganických sloučenin 2

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace. Digitální učební materiály

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp

Oxidační číslo je rovno náboji, který by atom získal po p idělení všech vazebných elektronových párů atomům s větší elektronegativitou.

a) b) c) d) e) f) g) h) i) j) oxid manganatý Ca(H 2 BO 3 ) 2 dusitan stříbrný FeBr 3 hydroxid železitý

1.Skupinové reakce: Kationty: dělíme je podle reakcí do tříd.

Anorganická kvalitativní semimikroanalýza Laboratorní příručka

ANORGANICKÁ KVALITATIVNÍ (SEMI)MIKROANALÝZA

ZÁKLADNÍ ANALYTICKÉ METODY Vážková analýza, gravimetrie. Jana Sobotníková VÁŽKOVÁ ANALÝZA, GRAVIMETRIE

Analytické experimenty vhodné do školní výuky

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

LABORATORNÍ CVIČENÍ Z ANALYTICKÉ CHEMIE I.

TEORETICKÁ ČÁST (OH) +II

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie anorganická analytická chemie kvantitativní. Datum tvorby

Laboratorní cvičení z lékařské chemie I

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

ANODA KATODA elektrolyt:

dichroman amonný (NH 4 ) 2 Cr 2 O 7, azbestová síťka, špejle

DŮKAZY ANIONTŮ. prof. Viktor Kanický, Analytická chemie I 1

Reakce organických látek

Názvosloví anorganických sloučenin

Sbírka příkladů z teoretických základů analytické chemie Tomáš Křížek Karel Nesměrák

KOMPLEXOTVORNÉ REAKCE

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Ústřední komise Chemické olympiády. 50. ročník 2013/2014. OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

Sešit pro laboratorní práci z chemie

OKRUH 7 Karboxylové kyseliny

Analytická chemie předběžné zkoušky

Chemické postupy, jenž se užívají při kvalitativní analýze anorganických látek

Inovace profesní přípravy budoucích učitelů chemie

Názvy slou enin. íslovkové p edpony

NABÍDKA PRODUKTŮ PRO ŠKOLY

Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test ANOTACE

Redoxní reakce - rozdělení

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

2. CHEMICKÉ ROVNICE Obecné zásady

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

-ičelý -natý -ičitý - ečný (-ičný) -istý -ný -itý -ový

Ukázky z pracovních listů B

CHO cvičení, FSv, ČVUT v Praze

Autorem materiálu je Ing. Dagmar Berková, Waldorfská škola Příbram, Hornická 327, Příbram, okres Příbram Inovace školy Příbram, EUpenizeskolam.

FYZIKÁLNÍ A CHEMICKÝ ROZBOR PITNÉ VODY

DUM č. 19 v sadě. 24. Ch-2 Anorganická chemie

2. Laboratorní den Příprava jodičnanu draselného oxidačně-redukční reakce v roztoku. 15 % přebytek KMnO 4. jméno: datum:

ODMĚRNÁ ANALÝZA - TITRACE

Součástí cvičení je krátký test.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Oxidace benzaldehydu vzdušným kyslíkem a roztokem

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

ANALYTICKÁ CHEMIE I.

volumetrie (odměrná analýza)

Základy analýzy potravin Přednáška 3

DUM VY_52_INOVACE_12CH07

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 07

VY_32_INOVACE_30_HBEN11

Ústřední komise Chemické olympiády. 47. ročník 2010/2011. ŠKOLNÍ KOLO kategorie C ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

KOMPLEXNÍ SLOUČENINY OTÁZKY A ÚLOHY

Triviální Voda (H 2 O) Amoniak Soda. Systematické. Většina názvů se skládá ze 2 slov Výjimka: např. chlorovodík např. jodid draselný (KI)

Metody gravimetrické

1 mol (ideálního) plynu, zaujímá za normálních podmínek objem 22,4 litru. , Cl 2 , O 2

Transkript:

Analýza kationtů Při důkazu kationtů se používají nejprve skupinová činidla. Ta srážejí celou skupinu kationtů. Kationty se tak mohou dělit do jednotlivých tříd. Například kationty I. třídy se srážejí (tj. vytváří sraženinu) kyselinou chlorovodíkovou. Mezi skupinová činidla patří kyselina chlorovodíková (HCl, 18%), kyselina sírová (H 2 SO 4 ), sulfan (H 2 S), hydroxid alkalického kovu (NaOH, KOH, 20%), amoniak (NH 3, konc.) jodid draselný (KI, 10%), uhličitan alkalického kovu (Na 2 CO 3, K 2 CO 3 ), chroman draselný (K 2 CrO 4 ) a hydrogenfosforečnan alkalického kovu (Na 2 HPO 4, K 2 HPO 4 ). Reakce jednotlivých kationtů Přehled důležitých reakcí jednotlivých kationtů: Ag + Ag + + Cl - -> AgCl (bílá sraženina, fotoredukce -> tmavne, rozpouští se v amoniaku) Ag + + 2NH 3 -> červenohnědý Ag 2 O, rozpustný v nadbytku na bezbarvý [Ag (NH 3 ) 2 Cl] Ag + + Br - -> AgBr nažloutlý, rozpustný v NH 3 Ag + + I - -> AgI žlutý, v NH 3 - nerozpustný - zbělá) Ag + + OH - -> AgOH -> Ag 2 O (hnědý, rozpustný v koncentrovaném amoniaku a kyselině dusičné) Ag + 2- + CO 3 -> Ag 2 CO 3 (nažloutlý, varem na hnědý Ag 2 O) Ag + 2- + CrO 4 -> Ag 2 CrO 4 (červenohnědý) Ag + + S 2- -> AgS (černý) Ag + + [Fe(CN) 6 ] 3- -> Ag 3 [Fe(OH) 6 ] (červenohnědý) Pb 2+ : Pb 2+ + 2 Cl - -> PbCl 2 (bílá sraž. ve studené vodě nerozpustná, ve vroucí vodě rozpustná, rozpustná v alkalických hydroxidech na PbO 2-2 ) Pb 2+ + S 2- -> PbS (hnědý až černý) Pb 2+ + SO 2-4 -> PbSO 4 (bílý nerozp.) Pb 2+ + 2 I - -> PbI 2 (žlutá sraženina, v nadbytku rozpustná na -> K 2 [PbI 4 ]) Pb 2+ + OH - (NH 3 ) -> Pb(OH) 2 (bílá sraženina, v nadbytku hydroxidu rozpustná na [Pb(OH) 3 ] - ) Pb 2+ + CrO 2-4 -> PbCrO 4 (žlutá nerozp.) Pb 2+ + CO 2-3 -> PbCO 3 (bílá sraženina ) Cu 2+ Cu 2+ roztok je světle modrý [ Cu(H 2 O) 4 ] 2+ Cu 2+ + S 2- -> CuS (hnědočervený) Cu 2+ + [Fe(CN) 6 ] 4- -> Cu 2 [Fe(CN) 6 ] (červenohnědý ) ( ferokyanid měďnatý) tzv. " Hatchetova hněď " Cu 2+ + 2OH - -> Cu(OH) 2 ( modrá sraženina - rozp. v amoniaku ) Cu(OH) 2 -t-> CuO ( hnědočerný ) Cu 2+ + NH 3 -> nejprve světle modrý hydroxid Cu(OH) 2, pak se rozpouští na tmavě modrý [Cu(NH 3 ) 4 ] 2+ Cu 2+ + CO 3 2- -> CuCO 3 (světle modrý, nerozp.). Ve sutečnosti vzniká směs zásaditých uhličitanů. Varem z ní černý CuO. Cu 2+ + I - -> Cu 2 I 2 (bílá srov.) + I 2 (hnědý)

Cu 2+ + CrO 4 2- -> CuCrO 4 (hnědožlutá sraženina vznikající jen v neutrálním prostředí, snadno rozpustná v zředěných kyselinách a amoniaku) Cd 2+ Cd 2+ + S 2- -> CdS (žlutý. nerozpustný v sulfidech) Cd 2+ + OH - (také s NH 3 ) -> Cd(OH) 2 bílá sraženina (rozp v NH 3 na [Cd(NH 3 ) 4 ](OH) 2 ), (zahřátím -> CdO hnědý) Cd 2+ + CO 3 2- -> bílý uhličitan Cd 2+ + CrO 4 2- -> CdCrO 4 (nažloutlá sraženina, rozpustná v kyselinách a amoniaku) Cr 3+ roztok je nazelenalý až nafialovělý Cr 3+ + OH - (také NH 3 )-> Cr(OH) 3 (šedozelený), rozpustný v kyselinách Cr(OH) 3 + H 3 O + -> chromitá sůl i v hydroxidech Cr(OH) 3 + OH - -> [Cr(OH) 6 ] 3- Cr 3+ + CO 3 2- -> špinavě zelená sraženina zásaditého hydroxidu Fe 3+ žlutohnědé roztoky, reagují kysele, hydrolyzují Fe 3+ + [Fe(CN) 6 ] 4- -> Fe 4 [Fe(CN) 6 ] (berlínská modř) Fe 3+ + 3SCN - -> Fe(SCN) 3 (krvavě červený) Fe 3+ + 6SCN - -> [Fe(SCN) 6 ] 3- (krvavě červený) Fe 3+ +S 2- -> Fe 2 S 3 (černý) (Pokud použijeme H 2 S -redukce Fe 3+ na Fe 2+ -> vyredukuje se koloidní S - bíložlutá) Fe 3+ + OH - (také s NH 3 ) -> Fe(OH) 3 (rezavá, vločkovitá sraženina, není rozpustná v nadbytku OH - ) Fe 3+ + fenol -> červenofialové zbarvení Fe 3+ +I - -> Fe 2+ +I 2 (hnědý zakalený roztok) Fe 3+ + CO 2-3 -> hnědočervená sraženina zásaditého uhličitanu, varem na hydroxid železitý Co 2+ roztok je růžový, pevné soli jsou modré Co 2+ + OH - -> nejprve modrá sraženina zásadité soli a hydroxidu, dalším přidáním OH - pak na Co(OH) 2 (slabě růžový gel ) (sraženina hydroxidu se na vzduchu rychle oxiduje na Co(OH) 3 tj hnědne) Co 2+ + NH 3 -> modré zásadité sole, dalším přidáním OH - pak na [Co(NH 3 ) 6 ] 2+ (hnědozelený až hnědý roztok) (platí pokud roztok neobsahuje amonnou sůl) Co 2+ + S 2- -> CoS (černohnědý) Co 2+ + CO 3 2- -> růžovofialový zásaditý uhličitan Co 2+ + dimethylglyoxim -> tmavěhnědý roztok Co 2+ + CrO 4 2- -> červenohnědá sraženina zásaditého chromanu CoCrO 4 Co(OH) 2 (snadno rozpustná v amoniaku) Ni 2+ roztoky jsou zelené, kyselé (hydrolýza) Ni 2+ + OH - -> Ni(OH) 2 (světlezelená objemná sraženina) Ni 2+ + NH 3 -> nejprve světlezelená sraženina, která je směsí zásaditých solí a hydroxidů. V nadbytku snadno rozpustná na modrofialový roztok [Ni(NH 3 ) 6 ] 2+ Ni 2+ + S 2- -> NiS (černý) Ni 2+ + dimethylglyoxim -> dimethylglyoximát nikelnatý ( červená sraženina) Ni 2+ + CrO 4 2- -> za tepla hnědá sraženina zásaditých solí, snadno rozpustná v zředěných kyselinách a amoniaku. Ni 2+ + CO 3 2- -> NiCO 3 světlezelená sraženina Mn 2+ roztoky bezbarvé, slabě kyselé (hydrolýza), krystalické soli - růžové Mn 2+ +2OH - -> Mn(OH) 2 (bílý, ale rychle se oxiduje na hnědý MnO(0H))

Mn 2+ + S 2- -> MnS (pleťový, nerozpustný Mn 2+ + CO 3 2- -> MnCO 3 bílá, hnědnoucí sraženina Mn 2+ + NH 3 -> neúplně, částečně bílá sraženina Mn(OH) 2, na vzduchu hnědne Ca 2+ [Fe(CN) 6 ] 4- +2Ca 2+ -> Ca 2 [Fe(CN) 6 ] (bílá sraženina) Ca 2+ + SO 2-4 -> CaSO 4 (bílý) (při malé koncentraci Ca 2+ reakce neběží, kyselina musí být koncentrovaná) Ca 2+ + OH - -> Ca(OH) 2 bílá sraženina vznikající jen z koncentrovaných roztoků (v běžné praxi sraženina nevzniká). Sraženina vzniká se starším hydroxidem vlivem toho, že starší hydroxid obsahuje uhličitanové ionty. Ca 2+ + CO 2-3 -> CaCO 3 (bílý) Ca 2+ + 2F - -> CaF 2 (bílý, nerozpustný) Ba 2+ Ba 2+ + SO 2-4 -> BaSO 4 (bílý, nerozpustný) Ba 2+ + OH - -> Ba(OH) 2 bílá sraženina vznikající jen z koncentrovaných roztoků (v běžné praxi sraženina nevzniká). Sraženina vzniká se starším hydroxidem vlivem toho, že starší hydroxid obsahuje uhličitanové ionty. Ba 2+ + CrO 2-4 -> BaCrO 4 (žlutý) Ba 2+ +(COO) 2-2 -> Ba(COO) 2 (bílý) (běží špatně) Ba 2+ + CO 2-3 -> BaCO 3 (bílý) Bi 3+ Bi 3+ + S 2+ -> Bi 2 S 3 (černý, nerozpustný) roztok Bi je silně hydrolyzován -> vzniká zákal ( Bi(OH) 2,, BiO(OH) ) Bi 3+ + 3 I - -> BiI 3 (hnědá sraženina) -> BiIO(jodid oxid bismutitý, červený ) + HI Hg 2+ Hg 2+ + S 2- HgS (černý) (minerál "rumělka" je červený) Hg 2+ + 2I - HgI 2 (oranžověčervená sraženina) HgI 2 +2KI -> K 2 [HgI 4 ] (bezbarvé Nesslerovo činidlodůkaz amoniaku) K 2 [ HgI 4 ] + NH 3 -> žlutá až hnědá sloučenina HgCl 2 + NH 3 -> HgClNH 2 (bílý amidchlorid rtuťnatý) Hg 2+ + 2OH - -> HgO (žlutý, nerozpustný) + H 2 O, 2HgO -t -> 2Hg + O 2 Hg 2+ + CrO 2-4 -> HgCrO 4 (červenohnědý) Sn 2+ rozpustné, roztoky kyselé, silné redukční vlastnosti Sn 2+ + nerozpustný molybdenan -> molybdenová modř Sn 2+ + OH - -> Sn(OH) 2 (bílý), Sn(OH) 2 -t -> SnO (černý) + H 2 O, SnO -t -> SnO 2 (bílý), Sn(OH) 2 + 2OH - (ph = 13) -> [Sn(OH) 4 ] 2- (bezbarvý) Sn 2+ + S 2- (vysoká koncentrace) -> SnS (hnědý) Sn 4+ Sn 4+ + 2S 2- -> SnS 2 (žlutý) (v nadbytku se rozpouští -> SnS 3 2- ) Sn 4+ + OH - -> Sn(OH) 4 (bílá sraženina) (v nadbytku OH - -> [Sn(OH) 2 ] 2- (bezbarvý) As 3+ 2As 3+ +3S 2- -> As 2 S 3 (žlutý) (kyselé prostředí) (nerozpustný v HCl) As 2 S 3 + Na 2 S -> AsS 3 3- (thioarseničnan) -> AsS 4 3- (thioarsenitan) As 5+ 2As 5+ + 4S 2- -> As 2 S 3 + S (směs je žlutá) (kyselé prostředí) Marshova zkouška: As 5+ + HCl + Zn -> AsH 3 +..., 2AsH 3 -t -> 2As ("zrcátko") + 3H 2 Sb 3+ : typickou vlastností Sb - solí je hydrolýza -> mléčné zakalení

Sb 3+ + 3H 2 O -> SbO + (antimonyl barví bíle) + 2H 3 O + 2Sb 3+ +3S 2- -> Sb 2 S 3 (oranžový, rozpustný v HCl) Sb 2 S 3 + S 2- -> SbS 3 3- Hg 2 2+ -> SbS 4 3- Hg 2+ 2 + HCl -> Hg 2 Cl 2 ( kalomel ) Hg 2+ 2 + S 2- -> HgS + Hg0 (oboje černé) Hg 2+ 2 + 2 OH - -> HgO + Hg0 +H 2 O Hg 2+ 2 + 2 I - -> Hg 2 I 2 -> K 2 HgI 4 + Hg0 (Hg 2 I 2 se rozpouští v KI ) ( žlutozelená sraž. ) Hg 2+ 2-2 + CrO 4 -var-> Hg 2 CrO 4 ( červený ) Al 3+ dokazuje se špatně, protože netvoří barevné sloučeniny, reaguje kysele Al 3+ +OH - -> Al(OH) 3 (bílá gelovitá sraženina, amfoterní), Al(OH) 3 + H 3 O + -> hlinité soli, Al(OH) 3 + OH - -> [Al(OH)] 4 -, Al(OH) 3 + OH - -> [Al(OH)] 6 3- důkaz alizarinem (barvivo):k roztoku přidáme kapku alizarinu (červený, alkohol. roztok) -> srážíme hydroxid (přidáváme OH - )-> Al(OH) 3 se červeně vybarví Al 3+ + PO 4 3- -> AlPO 4 (bílá sraženina) Zn 2+ Zn 2+ + OH - -> Zn(OH) 2 (bílá sraženina), Zn(OH) 2 + NH 3 -> [Zn(NH 3 ) 4 ](OH) 2 Zn 2+ + OH - (nadbytek) -> [Zn(OH) 4 ] 2- Zn 2+ + S 2- -> ZnS (bílý) Zn 2+ + [Fe(CN) 6 ] 4- -> Zn 2 [Fe(CN) 6 ] (bílý) Fe 2+ roztoky jsou světle zelené, nejsou stabilní, žloutnou, hnědnou (Fe 3+ ) Fe 2+ + [Fe(CN) 6 ] 3- -> Fe 3 [Fe(CN) 6 ] 2 (modrý, Turnbullova modř) Fe 2+ +OH - -> Fe(OH) 2 (bílá nebo světle zelená gelovitá sraženina), Fe(OH) 2 -oxidace-> Fe(OH) 3 (hnědý až rezavý) Fe 2+ + S 2- -> FeS (černý) Mg 2+ netvoří barevné sloučeniny, nebarví plamen Mg 2+ + 2OH - -> Mg(OH) 2 (bělavá gelovitá sraženina) (Ani v nadbytku OH - se nerozpustí) Mg 2+ + magnezon (org. činidlo) + NaOH -> Mg(OH) 2 (modrý) Sr 2+ plamen barví šarlatově červeně Sr 2+ +(COO) 2-2 -> Sr(COO) 2 (nelze použít kyselinu šťavelovou, šťavelan by se rozpustil) Sr 2+ + SO 2-4 -t-> SrSO 4 (bílý) (jako SO 2-4 můžeme použít sádrovou vodu) (běží velmi pomalu - zahřejeme) Sr 2+ +CrO 2-4 -> SrCO 4 (žlutý) (v kyselém prostředí neběží -> vzniká dichroman, který s Sr 2+ nereaguje) Na + plamen barví žlutě, srážecí reakce jsou málo běžné Na + + Zn(UO 2 ) 3 (CH 3 COO) 8 -> NaZn(UO 2 ) 3 (CH 3 COO) 9.9H 2 O (žlutá sraž.) (octan uranylozinečnatý) (nonahydrát octanu uranylozinečnatosodného) K + plamen barví fialově 3K + + [Co(NO 2 ) 6 ] 3- -> K 3 [Co(NO 2 ) 6 ] (žlutá sraženina) Li +

plamen barví karmínově červeně 3Li + + PO 4 3- -> Li 3 PO 4 (bílý, špatně rozpustný) Analytické třídy kationtů, systematický postup dělení kationtů -zkumavkové nebo kapkové reakce Skupinovými činidly se snažíme kationty rozdělit do jednotlivých analytických tříd a pak dalším dělením selektivními činidly je dále rozdělit, pak dokázat specifickými činidly. Obsahuje-li vzorek více neznámých kationtů můžeme využít systematický postup dělení kationtů. Celý vzorek převedeme do roztoku. K roztoku přidáme činidlo a oddělíme sraženinu a roztok. Tím jsme oddělili skupinu kationtů srážejících se daným činidlem od skupiny kationtů, které dané činidlo nesráží. Poté k oddělenému roztoku a rozpuštěné sraženině přidáme další činidlo opět za vzniku sraženiny a roztoku. To se několikrát opakuje až zůstane jeden kation, který dokáži. Kationty se dělí do pěti tříd (skupin)podle toho, jakým čidlem se sráží. Kationty první analytické třídy: Ag +, Hg 2 2+, Pb 2+ Skupinové činidlo: HCl (kationty vytvářejí nerozpustné sraženiny chloridů s chloridovým aniontem). Kationty druhé analytické třídy: sráží se H 2 S v kyselém prostředí na sulfid příslušného kovu.. Dělí se ještě do dvou podtříd. Ve skupině B mají prvky amfoterní charakter a jejich sulfidy se působením sulfidu alkalického kovu rozpouštějí. Druhá A třída : Pb 2+, Bi 3+,Cu 2+, Cd 2+, Hg 2+ Druhá B třída: As 3+, 5+, Sb 3+, 5+, Sn 2+, 4+ Kationty třetí analytické třídy: Al 3+, Cr 3+, Zn 2+, Mn 2+, Fe 2+, 3+, Ni 2+, Co 2+ Sráží se sulfanem v prostředí amoniaku (zásaditý), neboli sulfidem amonným. V tomto roztoku je koncentrace sulfidových iontů mnohem větší, než v kyselém roztoku sulfanu. Proto se v této třídě vysrážejí další kationty, které se v druhé třídě nevysrážely. Kationty čtvrté analytické třídy: Mg 2+, Cu 2+, Sr 2+, Ba 2+ Sráží se uhličitanem amonným, který sráží uvedené prvky jako bílou sraženinu příslušného uhličitanu. Kationty páté analytické třídy: NH 4 +, Na +, K +, Li + Nesráží se jednotlivými činidly, neboli zůstávají v roztoku. Použitím skupinového činidla tedy získám skupinu kationtů stejné analytické třídy. K jejímu rozdělení na jednotlivé kationty se používají selektivní a následně specifická činidla.

Důkazy kationtů: Pomůcky: kapkovací destička, pipeta Chemikálie: roztoky s kationty Ag +, Hg 2 2+, Hg 2+, Pb 2+, Ba 2+, Ca 2+, Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 2+, Fe 3+, Cr 3+, Al 3+, Mn 2+, NH 4 +, HCl, H 2 SO 4, NaOH, NH 3, Na 2 CO 3, Na 2 HPO 4,KI,K 2 CrO 4 Postup: Na kapkovací destičku naneseme po kapce roztoků solí s kationty kovů. Pak k nim přidáváme 1 kapku činidla, začínáme HCl. Charakteristické barvy produktů zaznamenáváme do tabulky, nejlépe barevnou pastelkou. Do příslušného políčka v tabulce také zaznamenáme další pozorování, např. uvolňující se plyn atd. Kapkovací destičku dobře umyjeme a dosucha vyřeme. Celý postup zopakujeme s dalším činidlem. Nakonec provedeme specifické reakce pro dané kationty. Ag + HCl H 2 SO 4 NaOH NH 3 Na 2 CO 3 Na 2 HPO 4 KI K 2 CrO 4 Specifické reakce Hg 2 2+ Hg 2+ Pb 2+ Ba 2+ Ca 2+ Zn 2+ Cu 2+ Co 2+ Ni 2+

Fe 2+ Fe 3+ Cr 3+ Al 3+ Mn 2+ NH 4 +