4EK211 Základy ekonometrie



Podobné dokumenty
4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

AVDAT Klasický lineární model, metoda nejmenších

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu

5EN306 Aplikované kvantitativní metody I

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

Bodové a intervalové odhady parametrů v regresním modelu

4EK211 Základy ekonometrie

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

4EK211 Základy ekonometrie

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

5EN306 Aplikované kvantitativní metody I

4EK211 Základy ekonometrie

Regresní a korelační analýza

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC.

Regresní a korelační analýza

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

4EK211 Základy ekonometrie

Bodové a intervalové odhady parametrů v regresním modelu

4EK211 Základy ekonometrie

Stavový model a Kalmanův filtr

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.

Tomáš Karel LS 2012/2013

AVDAT Geometrie metody nejmenších čtverců

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

Regresní a korelační analýza

PRAVDĚPODOBNOST A STATISTIKA

Tomáš Karel LS 2012/2013

Odhad parametrů N(µ, σ 2 )

PRAVDĚPODOBNOST A STATISTIKA

AVDAT Nelineární regresní model

Ekonometrie. Jiří Neubauer

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Inovace bakalářského studijního oboru Aplikovaná chemie

Statistika II. Jiří Neubauer

Lineární regrese. Komentované řešení pomocí MS Excel

odpovídá jedna a jen jedna hodnota jiných

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0

Heteroskedasticita. Vysoká škola ekonomická Praha. Fakulta informatiky a statistiky. Katedra statistiky a pravděpodobnosti

Základy teorie odhadu parametrů bodový odhad

Ilustrační příklad odhadu LRM v SW Gretl

LINEÁRNÍ REGRESE. Lineární regresní model

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

Ilustrační příklad odhadu SM v SW Gretl

PROGNÓZOVÁNÍ POMOCÍ EKONOMETRICKÝCH MODELŮ. ÚLOHA OČEKÁVÁNÍ V EKONOMII.

Úvodem Dříve les než stromy 3 Operace s maticemi

4EK216 Ekonometrie. Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, 30. října 2015

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Korelační a regresní analýza

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

Odhad parametrů N(µ, σ 2 )

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

PRAVDĚPODOBNOST A STATISTIKA

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

Semestrální práce. 2. semestr

Regresní a korelační analýza

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Časové řady, typy trendových funkcí a odhady trendů

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

Simulace. Simulace dat. Parametry

Dynamické metody pro predikci rizika

Časové řady, typy trendových funkcí a odhady trendů

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Regresní a korelační analýza

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

6. Lineární regresní modely

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

Soustavy lineárních rovnic-numerické řešení

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

Praktikum z ekonometrie Panelová data

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Regresní a korelační analýza

Opravená data Úloha (A) + (E) Úloha (C) Úloha (B) Úloha (D) Lineární regrese

Příloha č. 1 Grafy a protokoly výstupy z adstatu

Regresní analýza 1. Regresní analýza

Odhady Parametrů Lineární Regrese

6 Vícerovnicové ekonometrické soustavy 1

Transkript:

4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE

Upřesnění k pojmům a značení parametr β i odhad parametru, odhadnutý koeficient, regresní koeficient b i, β i směrodatná odchylka (Standard Deviation) směrodatná chyba (Standard Error) vektor náhodných složek u vektor reziduí e, u Vektory a matice značíme tučně. Vektory se považují za sloupcové, transponované vektory za řádkové. CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 2

1. Gaussovy-Markovovy předpoklady Zapište a vysvětlete G-M předpoklady. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 3

1. Gaussovy-Markovovy předpoklady Zapište a vysvětlete G-M předpoklady. 1. E(u) = 0 2. E(uu T ) = σ 2 I n 3. X je nestochastická matice 4. X je má plnou hodnost CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 4

1. Gaussovy-Markovovy předpoklady První předpoklad: náhodné složky mají identické rozdělení s nulovou střední hodnotou 1. E(u) = 0 Porušení předpokladu: nenulová střední hodnota se promítne do odhadu úrovňové konstanty odhad bude vychýlený CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 5

1. Gaussovy-Markovovy předpoklady Druhý předpoklad: týká se kovarianční matice náhodné složky 2. E(uu T ) = σ 2 I n Co je na diagonále kovarianční matice náhodné složky? Co je mimo diagonálu? Jak by měla při splnění tohoto předpokladu kovarianční matice vypadat? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 6

1. Gaussovy-Markovovy předpoklady Druhý předpoklad: týká se kovarianční matice náhodné složky 2. E(uu T ) = σ 2 I n CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 7

1. Gaussovy-Markovovy předpoklady Druhý předpoklad: týká se kovarianční matice náhodné složky 2. E(uu T ) = σ 2 I n autokorelace heteroskedasticita Vysvětlete oba pojmy. Jak v tom případě vypadá kovarianční matice? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 8

1. Gaussovy-Markovovy předpoklady Třetí předpoklad: nezávislost vysvětlujících proměnných a náhodné složky 3. X je nestochastická matice simultánní rovnice CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 9

1. Gaussovy-Markovovy předpoklady Čtvrtý předpoklad: matice X nemá lineárně závislé sloupce 4. X má plnou hodnost perfektní multikolinearita - kdy se s ní můžeme setkat? multikolinearita - v čem je pak háček? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 10

1. Gaussovy-Markovovy předpoklady Jsou-li všechny G-M předpoklady splněny, můžeme použít MNČ a odhady budou nestranné, vydatné a konzistentní. http://upload.wikimedia.org/wikipedia/commons/thumb/7/70/aamarkov.jpg/220px-aamarkov.jpg http://www.magnet.fsu.edu/education/tutorials/pioneers/images/carlfriedrichgauss.jpg CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 11

1. Gaussovy-Markovovy předpoklady Příklad: Uvažujte model: útrata = β 0 + β 1 mzda + u (útrata je měsíční útrata v Kč, mzda je měsíční mzda v Kč) 1. Respondenti byli vybrání náhodným losováním z populace. Co byste v modelu spíš očekávali: heteroskedasticitu nebo autokorelaci? 2. Který G-M předpoklad bude v tom případě porušen? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 12

2. Vlastnosti MNČ: obecně Při splnění G-M předpokladů můžeme tvrdit, že odhady metodou nejmenších čtverců mají některé vlastnosti: nestrannost vydatnost konzistence asymptotická nestrannost asymptotická vydatnost CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 13

1. Vlastnosti MNČ: obecně NESTRANNOST E(b) = β Vychýlená odhadová funkce parametr systematicky podhodnocuje E(b) < β či nadhodnocuje E(b) > β f(b) Nestrannost ß Zdroj: prezentace Zuzana Dlouhá 4EK211 b CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 14

1. Vlastnosti MNČ: obecně VYDATNOST s b je nejnižší ze všech možných postupů (odhadová funkce má nejmenší rozptyl mezi všemi nestrannými odhadovými funkcemi) f(b) Vydatnost ß Zdroj: prezentace Zuzana Dlouhá 4EK211 b CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 15

1. Vlastnosti MNČ: obecně KONZISTENCE (pro velké výběry) hodnota b s rostoucím rozsahem výběru konverguje ke skutečné hodnotě parametru Konzistence n=1000 n=500 p lim n b β f(b) n=200 β Zdroj: prezentace Zuzana Dlouhá 4EK211 b CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 16

1. Vlastnosti MNČ: obecně ASYMPTOTICKÁ NESTRANNOST (pro velké výběry) slabší vlastnost než konzistence p lim E( b) n β Asymptotická nestrannost Je každý konzistentní odhad i asymptoticky nestranný? Je každý asymptoticky nestranný odhad i konzistentní? f(b) n=500 n=200 ß Zdroj: prezentace Zuzana Dlouhá 4EK211 E(b) CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 17

1. Vlastnosti MNČ: obecně ASYMPTOTICKÁ VYDATNOST (pro velké výběry) rozptyl konverguje k nule rychleji v porovnání s jinými konzistentními odhadovými funkcemi f(b) Asymptotická vydatnost n=500 n=200 ß Zdroj: prezentace Zuzana Dlouhá 4EK211 b CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 18

1. Vlastnosti MNČ: obecně Budeme pracovat se skriptem Simulace.R Skript bude na webu, kdybyste si to chtěli doma zkoušet. 1. VYDATNOST: Porovnáme dvě odhadové techniky: MNČ a laický odhad, kdy parametr β 1 odhadneme jako směrnici přímky spojující body s nejnižší a nejvyšší hodnotou x. Porovnejte jejich rozptyl. Který odhad je podle vás nestranný? Který je vydatnější? 2. KONZISTENCE: Pomocí simulace se přesvědčíme, že s rostoucím rozsahem výběru konverguje b 1 ke skutečné hodnotě parametru β 1 Pozn: tohle je bonus, kdo jste nebyli na cvičení a neumíte s R, přijďte, pokud vás to zajímá, a pusťte to z hlavy, pokud vás to nezajímá CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 19

2. Vlastnosti MNČ: Monte Carlo simulace Otevřete soubor Simulace.xlsx (Zdroj: Krkošková, Ráčková, Zouhar: Základy ekonometrie v příkladech, 2010) 1. Vygenerujte hodnoty náhodné složky (funkce NORM.INV) 2. Spočítejte hodnoty Y. 3. Odhadněte parametry regresní přímky (funkce INTERCEPT, SLOPE) 4. Opakujte několikrát a sledujte, jak se mění graf. (klávesa F9) CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 20

2. Vlastnosti MNČ: Monte Carlo simulace 5. Pomocí Tabulky dat zopakujte totéž pro 500 různých výběrů. 6. Podívejte se na histogram četností odhadů b 0, b 1. Připomíná vám nějaké známé rozdělení? CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 21

3. Rozdělení odhadové funkce b Předpokládejme, že náhodná složka má rozdělení: u ~N(0, σ 2 I n ) Rozdělení odhadové funkce b: b ~N(β, σ 2 X X 1 ) Střední hodnota: E(b) ~β Kovarianční matice (pro 1 vysvětlující proměnnou) VAR(b 0 ) COV(b 0, b 1 ) COV(b 1, b 0 ) VAR(b 1 ) CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 22

3. Rozdělení odhadové funkce b Problém je, že rozptyl náhodné složky σ 2 v praxi neznáme. Můžeme jej ale odhadnout z reziduí: n s 2 1 2 = e n k 1 t t=1 Odhad kovarianční matice b pak získáme jako S(b) = s 2 X X 1 Odmocniny diagonálních prvků S(b) jsou tzv. směrodatné chyby (Std. Error, pracovali jsme s nimi v EViews už minule) CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 23

3. Rozdělení odhadové funkce b V sešitu Simulace je list Vyber. V něm je jeden konkrétní výběr při respektování parametrů z předchozí simulace. 1. Najděte odhad rozptylu náhodné složky. 2. Najděte odhad kovarianční matice odhadnutých koeficientů b 0, b 1. 3. Najděte odhady směrodatných chyb odhadnutých koeficientů b 0, b 1. Porovnejte odhad sm. chyb odhadnutých koeficientů b 0, b 1 s údaji zjištěnými během předchozí Monte Carlo simulace. (výsledky: viz samotný Excel) CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 24

3. Rozdělení odhadové funkce b Otevřete si tatáž data v EViews: soubor Vyber.wf1 1. Odhadněte a zapište regresní přímku. 2. Najděte v EViews odhad směrodatné odchylky reziduí. Jak souvisí s RSS? 3. Najděte v EViews odhad směrodatných chyb odhadnutých koeficientů b 0, b 1. 4. Najděte v EViews odhad kovarianční matice odhadnutých koeficientů b 0, b 1. CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 25

3. Rozdělení odhadové funkce b Otevřete si tatáž data v EViews: soubor Vyber.wf1 1. Odhadněte a zapište regresní přímku: y = 3,5 + 10,68x 4. Najděte v EViews odhad kovarianční matice odhadnutých koeficientů b 0, b 1 View Covariance Matrix CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 26

Na doma: Co byste měli umět 1. Jaké jsou G-M předpoklady a co znamenají? 2. Jaké jsou vlastnosti odhadů MNČ? 3. Co tyto vlastnosti přesně znamenají? (co je to přesně vydatnost, jaký je rozdíl mezi konzistencí a asymptotickou nestranností ) 4. Jaké rozdělení má b (za předpokladu normality náhodné složky)? 5. Jak lze odhadnout rozptyl náhodné složky? Jak jej zjistíme z EViews? 6. Jak lze odhadnout kovarianční matici b a jak z ní zjistíme odhady směrodatných chyb? Kde to všechno najdeme v EViews? CVIČENÍ 4 STATISTICKÉ VLASTNOSTI MNČ 27