Mechanika zemin II 6 Plošné základy



Podobné dokumenty
Mechanika zemin II 5 Zemní tlaky, opěrné konstrukce

Mechanika zemin II 2 Chování zemin in situ; parametry pro praxi

Mechanika zemin II 1 Kritické stavy CSSM

Mechanika zemin II 3 Metody pro výpočet únosnosti. 1. Plastické teorémy 2. Metody mezní rovnováhy 3. Příklady jednoduchých použití

Mechanika zemin II 7 Piloty

Mechanika zemin I 4 Stlačitelnost

Mechanika zemin II 8 Zhutňování. 1. Zlepšování 2. Zhutňování laboratorní křivka: hustota vs vlhkost 3. Kontrola zhutnění

Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy

Výpočet konsolidace pod silničním náspem

KONSOLIDACE ZEMIN. Pod pojmem konsolidace se rozumí deformace zeminy v čase pod účinkem vnějšího zatížení.

Výpočet konsolidace pod silničním náspem

MECHANIKA HORNIN A ZEMIN

Sedání piloty. Cvičení č. 5

Mechanika zemin II 4 Stabilita svahů

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Druhy plošných základů

Interakce ocelové konstrukce s podložím

Zakládání staveb 5 cvičení

Nejprve v rámu Nastavení zrušíme zatrhnutí možnosti nepočítat sedání. Rám Nastavení

Katedra geotechniky a podzemního stavitelství

MECHANIKA HORNIN A ZEMIN

VÝPOČET ZATÍŽENÍ SNĚHEM DLE ČSN EN :2005/Z1:2006

Postup zadávání základové desky a její interakce s podložím v programu SCIA

3 Plošné základy. 3.1 Druhy plošných základů. Plošné základy

STANOVENÍ PARAMETRŮ PRO NUMERICKÉ MODELY POMOCÍ KONVENČNÍCH LABORATORNÍCH ZKOUŠEK. Vybrané kapitoly z geotechniky (VKG)

Zakládání ve Scia Engineer

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK

Pilotové základy úvod

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN

4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i

list číslo Číslo přílohy: číslo zakázky: stavba: Víceúčelová hala Březová DPS SO01 Objekt haly objekt: revize: 1 OBSAH

Sedání vrtané piloty. Cvičení 3

5. Cvičení. Napětí v základové půdě

NUMERICKÉ MODELOVÁNÍ A SKUTEČNOST. Alexandr Butovič Tomáš Louženský SATRA, spol. s r. o.

Téma 12, modely podloží

Co můžeme zakládat. Základy budov patky pasy. Mostní pilíře. Přehrady. desky

4+5. Cvičení. Voda v zeminách Napětí v základové půdě

Výpočet svislé únosnosti a sedání skupiny pilot

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Posouzení mikropilotového základu

ZAKLÁDÁNÍ STAVEB VE ZVLÁŠTNÍCH PODMÍNKÁCH

Příklady ke cvičení Mechanika zemin a zakládání staveb

Typ výpočtu. soudržná. soudržná

Posouzení piloty Vstupní data

RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník

ÚDOLNÍ 597/35A V BRNĚ, STATICKÝ PŘEPOČET OBJEKTU Stránka 1 (161)

Program cvičení z mechaniky zemin a zakládání staveb

Katedra geotechniky a podzemního stavitelství

ZÁKLADOVÉ KONSTRUKCE

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

WEBFLOOR PATENTOVANÁ TECHNOLOGIE PRO ZAKLÁDÁNÍ PODLAHOVÝCH KONSTRUKCÍ

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu

Posouzení plošného základu Vstupní data

Program ZAKL1-2 sedání a přípustné zatížení.

Základové konstrukce (3)

Výpočet sedání osamělé piloty

Návrh rozměrů plošného základu

Výpočet přetvoření a dimenzování pilotové skupiny

Mechanika zemin I 3 Voda v zemině

ZÁKLADOVÁ KONSTRUKCE část nosné konstrukce přenášející zatížení od stavby do základové půdy. Fakulta stavební ČVUT v Praze

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

GEOSTATICKÉ NAPĚTÍ 1. CELKOVÉ NAPĚTÍ (TOTAL STRESS) 1.1 CELKOVÉ NAPĚTÍ V HOMOGENNÍ ZEMINĚ (TOTAL STRESS IN HOMOGENEOUS SOIL)

STATICKÉ POSOUZENÍ ZALOŽENÍ RD HOSTIVICE STATICKÉ POSOUZENÍ. p.č. 1161/57, k.ú. HOSTIVICE ING. ROMAN BALÍK ING. MARTIN KAMEŠ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

Rozměr síta , , , , , ,

RIB stavební software s.r.o. Zelený pruh 1560/99 tel.: CZ , Praha

ZEMNÍ KONSTRUKCE. LUMÍR MIČA, ING., Ph.D. ÚSTAV GEOTECHNIKY

Katedra geotechniky a podzemního stavitelství

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Smyková pevnost zemin

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Katedra geotechniky a podzemního stavitelství

MECHANIKA ZEMIN rozpis cvičení (včetně požadovaných dokumentů)

Návrh skupiny pilot. Běžně se používají tři metody návrhu:

Výpočet svislé únosnosti a sedání pilot vyšetřovaných na základě zkoušek CPT

Geotextilie při zakládání štěrkopískovými pilotami

Program cvičení z mechaniky zemin a zakládání staveb ČÍSLO STUDENTA/KY. Příklad 1. Příklad 2

MECHANIKA HORNIN A ZEMIN

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

1 Úvod. Poklesová kotlina - prostorová úloha

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

Témata profilové části ústní maturitní zkoušky z odborných předmětů

NÁVRH NETRADIČNÍHO POSTUPU ZPEVNĚNÍ NÁSYPOVÉHO TĚLESA ŽELEZNIČNÍ TRATI

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá

Primární a sekundární napjatost

Výpočet sedání kruhového základu sila

ING. VLASTIMIL BÁRTA Bezručova 1, Blansko tel.: Obsah:

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Příloha B: Návrh založení objektu na základové desce Administrativní budova

VLASTNOSTI PILÍŘŮ TRYSKOVÉ INJEKTÁŽE PRO SANACI ZÁKLADOVÉHO PODLOŽÍ NÁDRŽE NA ROPU

Příklad oboustranně vetknutý nosník

Průvodní zpráva ke statickému výpočtu

Sylabus 16. Smyková pevnost zemin

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Nosné konstrukce AF01 ednáška

Transkript:

Mechanika zemin II 6 Plošné základy 1. Definice 2. Vliv vody na stabilitu a sedání 3. Únosnost 4. Sedání Výpočet okamžitého, konsolidačního a konečného sedání Výpočet podle teorie pružnosti Výpočet podle oedometrického modelu Distribuce napětí - Boussinesq 5. Parametry 6. ČSN EN 1997-1 (platná) a ČSN731001 (zrušená) 1

Definice Základ konstrukce / část stavby určená pro přenos sil do horninového prostředí Podloží Základová půda (resp. hornina, zemina) Základ plošný hluboký (hlubinný) 2

Definice Typy základů Plošný (vhodnější - zahraniční - termín: mělký ) plošný základ neuvažuje se přenos sil (napětí) na svislých částech za mělký (plošný) základ se považuje do D/B=1 Hluboký D/B = cca 1 až cca 3 např. studna, keson, podzemní stěny, i pilotový rošt Pilota, pilíř štíhlý základový prvek D/B > cca 3 3

Definice Plošný základ Podle tvaru patka pás (pas) deska Podle materiálu kámen beton ŽB 4

Definice Hlubinné základy Pilota Podzemní stěna Skupina pilot Studna Keson 5

Definice Základová spára Šířka základu B = vždy menší z půdorysných rozměrů (větší rozměr: délka L) Hloubka základové spáry / základu D hloubka pod upraveným terénem ale pro únosnost základu je nutné uvažovat jako D minimální mocnost zeminy vedle základu (např. úroveň podlahy ve sklepě, nikoliv upravený terén vně stavby): 6

Definice Zatížení základu, napětí od základu Kontaktní napětí napětí v základové spáře q = (V + W) / A Totální geostatické napětí totální napětí v zemině před stavebním zásahem pro výpočet deformací (změna efektivního napětí...) p0 = Σ γ H ( σvo; σor v ČSN...); obecně ΣH D Efektivní geostatické napětí p0' = Σ γ H - γw Hw ( σvo') Přitížení v základové spáře = změna totálního napětí = změna efektivního napětí (viz str. 35) pn = q p0 ( pnet Δσ σnet) Svislé napětí v základové půdě σz = průběh svislého napětí do hloubky (distribuce za/přitížení základem do hloubky) 7

Definice Únosnost základu = mezní zatížení qm Při zvyšování kontaktního napětí q roste sednutí s až do mezního zatížení qm Únosnost qm je fcí pevnosti, γ, geometrie základu Únosnost lze definovat jako mezní a) celkové zatížení q b) přitížení qn 8

Definice Stupeň bezpečnosti FS; Faktor zatížení LF V praxi se někdy sedání nepočítalo/á, místo výpočtu se zajišťuje, aby skutečné napětí (přípustné, dovolené) bylo zlomkem qm: qa = qm / FS Tzn.: volí se velikost stupně bezpečnosti FS tak, aby chování pružné a deformace (sedání) malé V takovém případě je vhodné definovat únosnost pro přitížení (výpočet z qn) Podle EN, ČSN: Při výpočtu mezního zatížení R (qm) se faktorují parametry pevnosti částečnými stupni bezpečnosti součiniteli základové půdy Sedání se počítá samostatně, nikoliv faktorováním únosnosti 9

Definice Tuhý vs poddajný základ Tuhý základ např. ŽB patka Poddajný základ např. násyp i ŽB deska velkých plošných rozměrů a malé tloušťky může být poddajná 10

Definice Tuhý základ (na pružném a zplastizovaném podloží) Poddajný 11

Definice Tuhý vs poddajný základ Jedna z možností: sednutí tuhého základu = 0,8 (sednutí pod středem poddajného) Postup podle zrušené ČSN 731001 (podle DIN) U tuhého základu se sedání počítá pod tzv. charakteristickým bodem, kde je sedání tuhého a poddajného základu stejné Kritérium pro rozlišení tuhého a poddajného základu (zrušená ČSN 731001): Ezákladu / Edef zeminy (tloušťka / (B nebo L))3 < 1 poddajný základ 12

Definice Sedání vs odvodněné/neodvodněné zatížení Při odvodněném zatížení sedání roste současně s růstem přitížení Při neodvodněném zatížení sednutí okamžité (v čase t0), pokud je umožněna deformace do stran sednutí časově proměnné (v průběhu konsolidace disipace PT) sednutí konečné (disipace skončena) Při odvodněném i neodvodněném zatížení sedání sekundární (creep) Shrnutí definic: Při návrhu základů je zpravidla třeba spočítat mezní zatížení qm při neodvodněném zatížení okamžité sednutí si konečné sednutí po konsolidaci sc (sednutí v čase t ) časový průběh sednutí sednutí v závislosti na době konsolidace st při odvodněném zatížení: sednutí sc (= konečné) 13

Vliv vody na stabilitu základu Je pro stabilitu základu rozhodující odvodněné nebo neodvodněné zatížení? Dráha napětí při standardní trojosé zkoušce (osové napětí roste, radiální konstantní) V podzákladí je dráha napětí odlišná (σh konst), ale v každém případě bude růst σ i τ principiálně je dráha podobná 14

Vliv vody na stabilitu základu Je pro stabilitu základu rozhodující odvodněné nebo neodvodněné zatížení? neodvodněné zatížení Neodvodněné zatížení je rozhodující disipací kladných pórových tlaků se stabilita zvyšuje 15

Únosnost plošného základu Neodvodněné zatížení celková únosnost základového pásu v hloubce D... zemina nad základovou sparou (ZS) má nulovou pevnost: qm = (2 + π) su + γ D... zemina nad ZS má nenulovou pevnost (Nc funkcí hloubky základu): qm = su Nc + γ D kde Nc je součinitel únosnosti, jenž je funkcí tvaru základu: Nc obdélník / Nc čtverec = 0,84 + 0,16 B / L [1] 16

Únosnost plošného základu Odvodněné zatížení celková únosnost: qm = c' Nc + (γ-yw) D Nq +½ (γ-yw) B Nγ [+ D yw ] kde součinitele únosnosti: Nq = eπtgφ' tg2(45º+½φ') Nc = (Nq -1) cotgφ' Nγ = (1,5 až 2) (Nq -1) tgφ' ( Terzaghi; další autoři navrhli podobné součinitele) V příručkách/normách jsou do rovnice doplněny součinitele pro tvar základu, šikmost zatížení, sklon základové spáry, hloubky založení, sklon terénu atd. (např. v ČSNEN1997-1, viz dále) Pokud není v zemině HPV: γw = 0 Pokud by zemina měla vlastnosti vody (c'=φ'=0; γ=γw) musí rovnice dát Archimédův zákon; některá znění to nesplňují např. zrušená ČSN 731001 viz doplnění členem +Dγw výše... [1] 17

Sedání velká plocha, malá mocnost 1. Přitížení na velké ploše + relativně malá mocnost stlačující se vrstvy svislé napětí (přitížení) směrem do hloubky se nemění horizontální deformace nulová ( symetrie) výpočet sednutí podle oedometrické zkoušky (oedometrický model pro sedání) 18

Sedání velká plocha, malá mocnost Výpočet sednutí podle oedometrické zkoušky (oedometrický model pro sedání) viz MZ1: s = - Δe / (1+e0) h0 = εv h0 sčítání přes j vrstev: s = sj výpočet s jednotlivými parametry : sj = Cc h0 / (1+e0) log ((σv0' + Δσv') / σv0') sj = Ccε h0 log ((σv0' + Δσv') / σv0') sj = mv h0 Δσv' (mv není konstanta) sj = h0 Δσv' / Eoed (Eoed není konstanta) (Δσv' = změna efektivního napětí, σv0' = počáteční efektivní napětí) 19

Sedání velká plocha, malá mocnost Výpočet sednutí podle oedometrické zkoušky (oedometrický model pro sedání) viz MZ1: OC zemina, např. při použití Ccε: s = Crε h0 log (σp' / σv0') + Ccε h0 log ((σv0' + Δσv') / σp') (Δσv' = změna efektivního napětí, σv0' = počáteční efektivní napětí, σp' = (pseudo)překonsolidační efektivní napětí) 20

Sedání malá plocha, relativně velká mocnost 2. Přitížení základem (na relativně malé ploše) průběh napětí způsobeného základem do hloubky není konstantní horizontální deformace není nulová okamžité sednutí při neodvodněném zatížení pružná zemina konečné sednutí stejné při odvodněné a neodvodněné dráze s = sc; celkové sednutí s = sc = sokamžité v čase t0 + skonsolidační = si + s1 Pokud by byl creep významný: s = sc + s2 = si + s1+ s2 s1 funkcí času: primární stlačení (disipace pór. tl.) s2 funkcí času: sekundární stlačení 21

Sedání malá plocha, relativně velká mocnost. ad 2. Přitížení základem (na relativně malé ploše) průběh napětí způsobeného základem do hloubky není konstantní a horizontální deformace není nulová Celkové sednutí (bez creepu) podle teorie pružnosti (Hooke) s = Σ (1/E' (σz' ν'(σx + σz) H) ; sčítání po vrstvách, nebo s = qn B (1 ν'2) / E' součinitele; pro homogenní zeminu; lze použít i pro okamžité sednutí s parametry pro neodvodněné zatížení Podle oedometru s = Σ ( σz' / Eoed' H součinitele) pro vrstevnatou i homogenní zeminu Pro vrstevnatou zeminu (pro kompletní Hooke-ův zákon i pro oedometrický model) je třeba znát změnu svislého napětí σz v hloubce (ve střednicích jednotlivých vrstev) σz se stanoví podle teorie homogenního, izotropního, lineárně pružného poloprostoru, zatíženého na povrchu (Boussinesq) 22

Sedání malá plocha, relativně velká mocnost...ad 2. Přitížení základem (na relativně malé ploše) průběh napětí způsobeného základem do hloubky není konstantní a horizontální deformace není nulová... Postup: a) Profil b) Stanovení zatížení (stálé zatížení; proměnné - dlouhodobé, krátkodobé, mimořádné ) Výpočet přitížení v základové spáře c) Výpočet konečného (celkového) sednutí podle pružnosti není třeba uvažovat roznos napětí do hloubky, nebo podle oedometrického modelu, ale s distribucí svislého napětí v podloží (zpravidla po vrstvách) případně i další metody d) Neodvodněné zatížení výpočet okamžitého (neodvodněného) sednutí v čase t0 (podle pružnosti uvažovat neodvodněný modul) e) Neodvodněné zatížení výpočet konsolidačního sednutí sednutí v čase t (t0; t ) 23

Sedání malá plocha, relativně velká mocnost a) Profil 24

Sedání malá plocha, relativně velká mocnost b) Stanovení zatížení (stálé zatížení; proměnné - dlouhodobé, krátkodobé, mimořádné) výpočet přitížení v základové spáře q = (F + W) / A p0 = γ D qn ( Δσ σnet) = q p0 γ = 20 knm-3 B = 1 m, L = 2 m, D = 2 m F + W = 400 kn Geostatické napětí (zemina nasycená nad HPV): p0 = 2 20 = 40 knm-2 Celkové kontaktní napětí: q = 400 / 2 = 200 knm-2 Přitížení v základové spáře: qn = 200 40 = 160 knm-2 Efektivní kontaktní napětí v základové spáře: q' = q u = 200 10 = 190 knm-2 Efektivní přitížení základové spáry: q' p0' = 190 30 = 160 knm-2 25

Sedání malá plocha, relativně velká mocnost b) Stanovení zatížení (stálé zatížení; proměnné - dlouhodobé, krátkodobé, mimořádné) výpočet přitížení v základové spáře q = (F + W) / A p0 = γ D qn ( Δσ σnet) = q p0 Efektivní přitížení základové spáry = totální přitížení: q' = q - γw hw p0' = γ D - γw hw q' p0' = q - γw hw (γ D - γw hw) = q - γ D = q p0 = qn 26

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí Podle pružnosti s = qn B (1-ν2) / E' Např ČSN731001 platná do roku 1988: s = qn B α m m1 (1-ν2) / E Podle oedometrického modelu, ale s distribucí svislého napětí v podloží (zpravidla po vrstvách) s = Σ (σz,j Hj / Eoed,j ) Např. ČSN 731001 (zrušená 1/4/2010): s = Σ ((σz,j mjσor,j ) Hj / Eoed,j ), kde m je opravný součinitel zohledňující strukturní pevnost zeminy 27

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Přibližné určení napětí v hloubce pod základovou sparou metoda 2:1 28

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Přibližné určení napětí v hloubce pod základovou sparou metoda 2:1 29

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq σz = 3 F / (2 π) z3 / R5 = funkce (x/z) F/z2 30

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq Zatížení na ploše napětí pod rohem plochy [2] 31

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq Zatížení na ploše napětí pod charakteristickým bodem [2] 32

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq - vs skutečný základ: Hloubka založení a blízká nestlačitelná vrstva 33

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq - vs skutečný základ: Vliv hloubky založení 34

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle oedometru napětí od přitížení Teorie pružnosti homogenní, izotropní, lineárně pružný poloprostor, zatížený na povrchu - Boussinesq - vs skutečný základ: Vliv blízké nestlačitelné vrstvy 35

Sedání malá plocha, relativně velká mocnost c) Výpočet konečného (celkového) sednutí podle zrušené ČSN731001 upravený vzorec pro oedometrické sedání, tzv. strukturní pevnost : s = Σ ((σz,j mjσor,j ) Hj / Eoed,j ) pomocí strukturní pevnosti se vymezuje deformační zóna (aktivní hloubka) 36

Sedání malá plocha, relativně velká mocnost d) Neodvodněné zatížení výpočet okamžitého (neodvodněného) sednutí v čase t0 si = qn B μ0 μ1 / Eu Neodvodněný modul (!) Grafy μ0, μ1 pro nasycenou zeminu, v závislosti na geometrii (Janbu et al., 1956) [1] 37

Sedání malá plocha, relativně velká mocnost e) Neodvodněné zatížení výpočet konsolidačního sednutí sednutí v čase t (t0; t ) Stanovení podle teorie konsolidace (1D Terzaghi) U = Uavg= (s(t) si ) / s1 si počáteční, s1 konsolidační sednutí (t ) zanedbání s2 T = cv t / Hdr2 t (U) =... Vztah U vs T pro 1D např : [1] 38

Sedání malá plocha, relativně velká mocnost Příklad výpočet konsolidačního sedání viz MZ1: vrstva jílu o mocnosti h = 6m a cv = 6 10-8 m2s-1 je oboustranně drénována. a) Jaká část sednutí proběhla 1 rok po zatížení? b) Kdy dojde k 95% konečného sednutí? ad a) T = cv t / H2 = 6 10-8 365 24 3600 / 9 = 0,21 0,2 U 0,5 = s(t) / s1 Za 1 rok proběhlo 50% celkového konsolidačního sednutí s1 ad b) t = T H 2 / cv U = 0,95 T 1,2 t 1,2 32 / (6 10-8) = 1,8 108 s 6 let 95% sednutí nastane za cca 6 let 39

Parametry pro plošné základy Cíle projektanta: 1. zabránit ztrátě stability (splnit 1.MS) teoreticky je správné použít pevnost pro zplastizovaný materiál (odvození únosnosti pro ideálně plastický materiál) pevnost v kritickém stavu 2. zabránit nadměrným deformacím (tj. především splnit podmínky dané horní stavbou) 2. MS (především sedání) = rozhodující podmínka pro návrh základu Pokud se použije faktorovaní únosnosti (FS=2-3), je logické pro její výpočet užít vrcholovou pevnost Druhá metoda (dnes EN, ČSN EN...) - výpočet deformací z přitížení ZS provozním napětím rozhodujícími parametry jsou moduly (tuhost zeminy) Eoed, Edef, E Přesto se v praxi stále používá pro základy vrcholová pevnost Rozhodující pro 1.MS je krátkodobá stabilita (viz dráhy napětí) su stabilitu pro odvodněné zatížení ale vždy rovněž ověřujeme (Postup v praxi: 1.MS poté 2.MS) 40

ČSN EN 1997-1 Výpočet únosnosti podle ČSN EN 1997-1 Není předepsán žádný závazný postup (vzorec) V informativní (=nepovinné) příloze D je uvedena možnost: Redukované ( efektivní ) rozměry základu 41

Příklady ČSN EN 1997-1 - pokr. 42

ČSN EN 1997-1 Geotechnické kategorie (společná definice pro všechny geotechnické konstrukce) 43

ČSN EN 1997-1 Geotechnické kategorie (společná definice pro všechny geotechnické konstrukce) 44

ČSN EN 1997-1 Geotechnické kategorie (společná definice pro všechny geotechnické konstrukce) 45

ČSN 731001 (zrušena 1/4/2010) Geotechnické kategorie (definice platná pouze pro plošné základy) 46

Literatura pro předmět Základní povinná Atkinson, J. H. (2007) The mechanics of soils and foundations. 2nd ed. Taylor & Francis. (několik výtisků je v knihovně geologické sekce; první vydání (1993) lze najít na i-netu) Odkaz na prezentace přednášek je na http://natur.cuni.cz/~bohac/ Rozšiřující (omezeně dostupná na oddělení IG) Terzaghi, K, Peck, R.B. and Mesri, G. (1996) Soil mechanics in engineering practice. J. Wiley & Sons. Tomlinson, M.J. (1995) Foundation design and construction. 6th ed, Longman/J. Wiley & Sons. Fleming W.G.K., Weltman A.J., Randolph, M.F. and Elson, W.K. (1994) Piling engineering. 2nd ed. Blackie A&P. 47