výška (cm) počet žáků



Podobné dokumenty
výška (cm) počet žáků

Statistika. 2) U 127 zaměstnanců firmy byl zjištěn počet jejich rodinných příslušníků a výsledek shrnut v tabulce:

Digitální učební materiál

9. Kombinatorika, pravd podobnost a statistika

MATEMATIKA základní úroveň obtížnosti

Statistika. Počet přestupků počet odebraných bodů za jeden přestupek. Statistický soubor 1

Digitální učební materiál

4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde?

Pracovní list č. 3 Charakteristiky variability

Přípravný kurz - Matematika

22. Pravděpodobnost a statistika

Základy statistiky pro obor Kadeřník

23. Matematická statistika

Přípravný kurz - Matematika

ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

Digitální učební materiál

MATEMATIKA základní úroveň obtížnosti

Statistika. zpracování statistického souboru

Statistika pro geografy

Základy popisné statistiky

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Renáta Bednárová STATISTIKA PRO EKONOMY

Základy statistiky. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace

. Určete hodnotu neznámé x tak, aby

Deváťáci a přijímací zkoušky

Téma 2. Řešené příklady

Minimální hodnota. Tabulka 11

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Statistika - charakteristiky variability

Statistika. pro žáky 8. ročníku. úterý, 26. března 13

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

Kam si chodíme posedět?

Statistika I (KMI/PSTAT)

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

HODNOCENÍ VÝUKY STUDENTY PEDF UK ZS 2016/2017

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Test z matematiky. Přijímací zkoušky na bakalářský obor Bioinformatika

ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50

MATEMATIKA III V PŘÍKLADECH

Statistické šetření: programová nabídka televizních stanic

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA základní úroveň obtížnosti

10a) Procenta, promile

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

Pracovní list slouží k procvičení statistiky. Žáci se především procvičí v základních pojmech, které se týkají statistiky.

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Vztah k životnímu prostředí a chování domácností květen 2014

Kód uchazeče ID:... Varianta: b. 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.

Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/ Autor: Mgr. Marie Smolíková. Datum: Ročník: 7.

Pravděpodobnost a statistika

RNDr. Zdeněk Horák VII.

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematická statistika

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Příklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2)

MATEMATIKA. základní úroveň obtížnosti DIDAKTICKÝ TEST MAGZD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! Didaktický test obsahuje 20 úloh.

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Příprava na pololetní písemnou práci 9. ročník

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

U každé úlohy je uveden maximální počet bodů.

Analýza výsledků maturit 2018 na Gymnáziu Teplice

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)

Statistické vyhodnocení průzkumu funkční gramotnosti žáků 4. ročníku ZŠ

Zápočtová práce STATISTIKA I

Popisná statistika kvantitativní veličiny

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Tabulka extrémních výsledků

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

Popisná statistika. Statistika pro sociology

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

MATEMATICKÉ DOVEDNOSTI

Úměrnosti - opakování

Příprava na pololetní písemnou práci 9. ročník

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Nápovědy k numerickému myšlení TSP MU

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Pojem a úkoly statistiky

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

NETMONITOR CONSUMER 8. VLNA

EVALUACE PRAHA 2007/2008

Transkript:

Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně navštěvovalo jednu ZŠ, c) kolik žáků průměrně bylo v jedné třídě. a) 19, tříd; b) 55 žáků; c) 3 žáků ) Rozložení prospěchu žáků jedné třídy v matematice je dáno v tabulce. Určete a) průměrný prospěch žáků třídy v matematice, b) procento žáků, kteří mají dvojku, c) četnost žáků, kteří mají čtyřku, d) relativní četnost žáků, kteří mají známku horší než trojku. stupeň 1 3 5 počet žáků 7 9 5 3 1 a),; b) 36%; c) 3; d) 16% 3) Divadlo nabízí pro každé představení celkem vstupenek po 3 korunách a vstupenek po 5 korunách. Během deseti představení bylo šestkrát zcela vyprodáno a čtyřikrát se neprodala polovina dražších lístků. Jaká je průměrná tržba na jedno z deseti představení? 9 Kč ) Součet všech dvaceti položek je 6 Kč. Po odebrání dvou položek v celkové hodnotě 96 Kč se změní průměrná hodnota jedné položky. O kolik korun se změní průměrná hodnota? sníží se o Kč 5) Z jedné třídy chodilo do kroužku anglického jazyka 1 žáků, německého 7 a francouzského 3 žáci. Osm žáků nenavštěvovalo žádný kroužek cizího jazyka. Žádný z žáků nenavštěvoval více než jeden kroužek cizího jazyka. Určete a) kolik procent žáků třídy navštěvovalo některý z kroužků cizího jazyka, b) kolik procent žáků třídy navštěvovalo kroužek německého jazyka, c) kolik procent z žáků, kteří navštěvovali některý jazykový kroužek, navštěvovalo kroužek německého jazyka. a) 71%; b) 5%; c) 35%) 6) Ze žáků je ve věku 17 let, 3 ve věku 1 let a ve věku 19 let. Jaký je průměrný věk žáků? 17,77 7) Při měření délky válečku byly získány hodnoty v milimetrech: 6,; 6,; 6,7; 6,; 6,6; 6,7; 6,; 6,9; 6,; 6,7; 6,. Určete a) aritmetický průměr délky válečku, b) modus, c) medián. a) 6,76; b) 6,; c) 6,) ) Daný vzorek chemické sloučeniny byl vážen různými žáky s těmito výsledky: 3,g; 3,g; 3,3g; 3,g; 3,3g; 3,1g a třikrát 3,5g. Určete a) průměrnou hmotnost vzorku, b) modus, c) medián. a) 3,g; b) 3,5g; c) 3,g 9) Průměrný prospěch žáků 6. 9. ročníků je uveden v tabulce. Vypočítejte průměrný prospěch žáků školy.,65 1) V rámci Majáles byla pořádána soutěž ve skoku do výšky. Výsledky soutěže zaznamenal učitel tělesné výchovy do tabulky. Určete a) jakou výšku průměrně skočil v této soutěži jeden žák, b) modus, c) medián. třída 6.A 6.B 7.A 7.B.A.B. počet žáků 3 9 31 3 9 31 průměrný prospěch,1, 1,95,1,1,5 1,9 výška (cm) počet žáků 1 15 11 115 5 13 135 1 3 5 3 1 1 a) 115cm; b) 15cm; c) 115cm 11) Na 5 pokusných polích byl zkoušen výnos nové odrůdy pšenice. Průměrný výnos z 1 ha pole byl na prvním pozemku 5,3 q, na druhém 55,1 q, na třetím 9, q na čtvrtém 51, q a na pátém pozemku 5,5 q. Určete průměrný výnos ze všech polí, víte-li, že 1. pozemek měl rozlohu ha,. pozemek 5 ha, 3. pozemek 1 ha,. pozemek 15 ha, 5. pozemek 3 ha. Výsledek zaokrouhlete na q. 53q ) Určete průměrnou známku z MAT pro celý ročník, údaje jsou v tabulce třída A B C D průměrná známka z MAT,1 1,,33,11 počet žáků 3 3,135 13) Na druhý stupeň základní školy v Postrkově chodí místní pěšky, ale všech 56 žáků z okolních obcí dojíždí. V diagramu je uvedeno rozložení počtu žáků podle místa bydliště.

Chvalduby 1% Vestec 15% Postrkov 3% Kdoule % Nemanín 5% Kolik žáků dojíždí z Nemanína? 1) Každý z hráčů prováděl tři trestné hody na koš a třikrát střílel po otočce. V tabulce jsou hráči rozděleni podle úspěšnosti v obou střeleckých disciplínách. (Například čtyřem hráčům se podařilo proměnit jeden trestný hod a dva hody po otočce.) Počet účastníků Hody po otočce Trestné hody 3 1 3 3 1 1 1 1 5 1 a) Kolik hráčů dalo stejný počet košů v obou disciplínách? b) Kolik hráčů dalo celkem koše? c) Kolik hráčů udělalo alespoň chyby? d) Kolik hráčů bylo lepších při trestných hodech než ve střelbě po otočce? a) ; b) 6; c) 7; d) 15) Ve fitcentru si vedou měsíční statistiky. Dvě pětiny návštěvníků chodí do fitcentra alespoň dvakrát týdně, osmina z nich dokonce denně. Čtvrtina návštěvníků chodí jedenkrát týdně. Každá dvacátá osoba se po první návštěvě fitcentra víckrát nevrátí. Zbytek návštěvníků chodí několikrát do měsíce, ale nepravidelně. Přiřaďte ke každé otázce (a. c.) odpovídající výsledek (A F): a. Kolik procent návštěvníků chodí do fitcentra alespoň dvakrát týdně? b. Kolik procent návštěvníků chodí do fitcentra denně? c. Kolik procent návštěvníků chodí do fitcentra pravidelně? d. Kolik procent návštěvníků chodí několikrát do měsíce, ale nepravidelně? A) 5%; B) 5%; C) 3%; D) %; E) 65%; F) jiná hodnota D; A; E; C 16) Celkem 96 obyvatel města odpovědělo v referendu na otázku, má-li radnice i nadále podporovat provoz kina a divadla. Jejich odpovědi jsou zaznamenány v následující tabulce. podporovat divadlo nepodporovat divadlo podporovat kino 5 nepodporovat kino 17 5 Rozhodněte o každém z následujících tvrzení zda je pravdivé (ANO), či nikoli (NE): a) Celkem 5 účastníků referenda odmítá jak podporu kina, tak i divadla. b) Podpora provozu kina má dvakrát více příznivců než podpora provozu divadla. c) Necelých 1 % účastníků referenda nechce podporovat provoz kina. d) Asi 7 % účastníků referenda by rádo podpořilo pouze jeden z obou provozů. ANO, ANO, NE, ANO

17) Graf A ukazuje, kolik žáků tří základních typů středních škol řešilo v roce 3 úlohy z matematiky. Graf B poskytuje informaci o průměrném počtu bodů (ze možných), které se jim podařilo získat. Průměrný počet bodů všech řešitelů byl 17,. Jaký průměrný počet bodů získali v tomto roce studenti SOŠ? Výsledek zaokrouhlete na desetiny. Graf A Graf B Rozdělení řešitelů podle typu školy Průměrný počet bodů podle typu školy SOU; 133 3,5? 15,3 SOŠ; 663 gymnázia; 117 1 gymnázia SOŠ SOU 17, 1) V grafu je statistika dopravních přestupků ve sledovaném období. (Například deseti řidičům bylo v tomto období odebráno po 5 bodech za jeden přestupek). Určete a) kolik bodů bylo za přestupky odebráno nejčastěji, b) průměrný počet bodů odebraných za jeden přestupek, c) kolikrát počet odebraných bodů překročil průměrnou hodnotu, d) medián. 19) V grafu jsou uvedeny počty filmových diváků v kinech (sledujte hodnoty v milionech vpravo) a průměrné ceny vstupného do kina (sledujte hodnoty vlevo) v době od r. 19 do r.. Návštěvnost klesala, ale vstupné se průběžně zvyšovalo. Z uvedených dat je možné vypočítat celkovou tržbu kin ze vstupného v libovolném roce. 1 16 1 1 6 a) body; b),5 bodu; c) ve případech; d) body Kč 11 1 9 7 6 5 3 1 počet přestupků 1 17 15 Dopravní přestupky 1 1 3 5 6 7 9 1 11 počet odebraných bodů za jeden přestupek 19 199 199 199 1996 199 vstupné 7 5 počet diváků (v mil.) 3 55 5 5 35 3 5 15 1 5 3 mil. diváků Celková roční tržba kin ze vstupného se od roku 199 do roku : A) v podstatě nezměnila, B) zvýšila jen velmi mírně, nejvýše o %, C) zhruba zdvojnásobila, D) zvýšila téměř pětkrát, E) zvedla více než o 5 %. C

) Knihovna zveřejnila diagram znázorňující složení čtenářské obce a tabulku ročních poplatků za užívání služeb knihovny. Určete: a) průměrnou výši ročního poplatku, který knihovna vybrala od svých čtenářů b) kdo zaplatil dohromady víc muži nebo ženy a o kolik. počet čtenářů 5 5 35 3 5 15 1 5 1 19 věk čtenáře roční poplatek do 15 let Kč 15 6 let Kč nad 6 let Kč 9 6 56 69 do 15 let 15-6 let nad 6 let věk čtenářů a) 5 Kč, b) ženy zaplatili o 13 6 Kč víc 1) Na diagramech je znázorněn přibližný počet dopravních nehod na území ČR v letech 1997 a přibližný počet zraněných při těchto nehodách. 3 5 15 1 5 195 19 15 1 Počet nehod (v tisících) 19 1 6 1997 199 1999 3 37 36 35 3 33 3 Počet zraněných (v tisících) muži ženy 1997 199 1999 a) kolik dopravních nehod se na území ČR v letech 1997 stalo průměrně za jeden kalendářní rok? b) o kolik procent byl počet zraněných osob v roce 1997 větší než v roce? c) jaký byl v roce průměrný počet zraněných při jedné dopravní nehodě? a) 11 5, b) přibližně o %, c),16 ) Sloupcový diagram zachycuje výsledky průzkumu mezi studenty. Studenti v průzkumu uvedli svoji nejoblíbenější barvu. a) jaký celkový počet studentů se zúčastnil tohoto průzkumu? b) kolik procent studentů má nejraději bílou barvu? c) kolikrát více studentů uvedlo, že má raději červenou barvu než bílou? počet studentů 1 16 1 1 6 červená modrá žlutá bílá jiná barva

a) 6, b) přibližně 13%, c) dvakrát 3) Všech žáků psalo oba dva závěrečné testy A i B. V tabulce jsou uvedeny výsledky testů, chybí pouze počet jedniček a dvojek u testu B. známky 1 3 počet žáků průměr modus medián četnost známek Test A 3 9 Test B 9 a) Určete medián a modus známek z testu A b) V obou testech bylo dosaženo stejné průměrné známky. Vypočtěte průměrnou známku z testu A a počet jedniček v testu B. a) medián, modus 3; b),3; 7 jedniček ) Osm šéfů gangu představuje pouhá,5 procenta počtu všech členů gangu, ale připadá na ně celá polovina zisku. Kolikrát větší je průměrný zisk šéfa gangu oproti průměrnému zisku řadového člena gangu? A) 19krát B) krát C) 5krát D) 39krát E) krát Správná odpověď je D. 5) Průměrný plat ve skupině deseti pracovníků byl 6 Kč. Čtyřem pracovníkům zvýšili plat o stejnou částku, proto se průměrný plat desetičlenné skupiny zvedl o Kč. O kolik korun si polepšil každý z platově zvýhodněných pracovníků? A) o Kč B) o Kč C) o Kč D) o 96 Kč E) o jinou částku Správná odpověď je E (zvedl se o 6 Kč). 6) V obchodním centru zákaznice testovaly tři druhy parfémů A, B, C. Pouze jednomu z parfémů mohly dát svůj hlas. Preference zákaznic jsou zaznamenány v tabulce. A B C nerozhodnuté celkem Četnost Relativní četnost % Vypočtěte, kolik zákaznic preferovalo vítězný parfém. 1 7) Graf znázorňuje četnost známek z matematiky. Zjistěte z grafu aritmetický průměr, medián a modus. počty žáků 1 1 6,5; medián = 3; modus = ) Ve škole byl zkoumány dva statistické soubory žaků. Statistickým znakem byla hmotnost. Hodnoty statistického znaku byly rozděleny do intervalů, u každého je dána četnost hodnoty znaku. Vypočítejte průměrnou hmotnost chlapců i dívek.

kg chlapci dívky 5 1 5 5 6 11 6 7 119 36 7 7 15 9 1 9 1 1 1 11 3 1 11 1 73,1 kg, 61,51 kg 9) Pro deset naměřených hodnot: 5,6; 5,31;,9; 5,5;,16;,96; 5,11; 5,3;,97; 5,3 určete aritmetický průměr a směrodatnou odchylku. 5,6;,37 3) Pro dané hodnoty určete aritmetický průměr, směrodatnou odchylku, variační koeficient, modus a medián: x i n i 1 9 19 3 9 1 5 7 6 7 1 1,; 1,3;,5; 3; 3 31) Podle údajů v tabulce vypočítejte směrodatnou odchylku. hodnota znaku 1 3 5 četnost 1 6,9 3) V následující tabulce jsou údaje o trvanlivosti pneumatik. Určete aritmetický průměr a směrodatnou odchylku. počet km počet pneumatik - 3 3-95 5 5 6 9 6 7 76 9; 13 59 33) Měření výšek 3 osob, data v tabulce. Vypočtěte aritmetický průměr a směrodatnou odchylku. intervaly výšky v cm četnosti n j 153 157 7 15 16 163 167 35 16 17 9 173 177 17 1 6 13 17 7 1 19 1 193 197 17,;,3