Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací
7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak není neznáme užitky protihráčů při aukcích, nákladové funkce konkurenčních firem apod. většinou úplnou informaci nemáme Mgr. Jana Sekničková, Ph.D. 2
7.1 Informace Hry s úplnou informací známe výplatní matice (i soupeřovy), prostory strategií, pravidla hry postupy lze využít, pokud neúplnost informace dramaticky neovlivní výsledky Hry s neúplnou informací (Bayesovské hry) nemáme úplnou informaci o hře pokud je neúplnost zásadní vlastností Mgr. Jana Sekničková, Ph.D. 3
Příklad: Šachy, NIM, mariáš, prší, všechna pravidla znám před hrou, vím, jaké tahy hráč může hrát, vím, kolik dostane vítěz a jak vítěze poznám Hry s úplnou informací ( otevřená hra ) Šachy, NIM Hry s neúplnou informací ( utajená hra ) karetní hry, např. mariáš, prší, poker apod. neznám soupeřovy karty Mgr. Jana Sekničková, Ph.D. 4
7.1 Informace Nezaměňovat neúplnou a nedokonalou info! Hry s (ne)úplnou informací (info před hrou) Hry s (ne)dokonalou informací (info během hry) Hry s dokonalou informací každý hráč zná všechny předchozí tahy zná tedy i aktuální pozici (uzel) ve stromě hry šachy, NIM hry s dokonalou informací mariáš, poker hry s nedokonalou informací Mgr. Jana Sekničková, Ph.D. 5
7.1 Informace Soukromá informace informace, která není k dispozici ostatním hráčům (např. karty, které držím v ruce při pokeru, mariáši apod.) počáteční soukromá informace se označuje jako typ hráče Všeobecně známá informace informace dostupné všem hráčům Mgr. Jana Sekničková, Ph.D. 6
John C. Harsanyi (Maďarsko, Austrálie, USA) 1994 Nobelova cena 1967 1968 články v Management Science konfliktní situace s neúplnou informací navrhl doplnění neúplné informace apriorní tah fiktivního hráče Příroda, který určí typ každého hráče Mgr. Jana Sekničková, Ph.D. 7
Pouze hráč sám zná svůj skutečný typ Všichni hráči ale znají ex ante všechny možné typy ostatních hráčů a pravděpodobnostní rozdělení, ze kterého jsou vybrány typy ostatních hráčů Mgr. Jana Sekničková, Ph.D. 8
Původní hra se v tu chvíli stává hrou s úplnou informací, neboť všichni hráči znají všechny možné výplatní hodnoty všech typů všech hráčů (informace před začátkem hry) hrou s nedokonalou informací, neboť ne všichni zjistí apriorní tah fiktivního hráče Příroda (informace v průběhu hry) Mgr. Jana Sekničková, Ph.D. 9
Příklad karetní hra, např. mariáš, prší, poker apod. jsou rozdány karty a já znám ty své, ne však soupeřovy hra s neúplnou informací (na začátku neznají všichni všechno) Příroda doplní neúplnou informaci: vím, jaké karty mohou dostat soupeři, a vím, s jakou pravděpodobností je dostanou navíc vím, jaké jsou hodnoty výplatních funkcí Mgr. Jana Sekničková, Ph.D. 10
Příklad stejné informace mají také ostatní hráči jedná se tedy o hru s úplnou informací zároveň se jedná o hru s nedokonalou informací, protože ne všichni hráči se dozví, jak byly karty rozdány znám ty své vím, jaké karty mi dala Příroda, ale nevím, jaké karty dala příroda soupeřům Mgr. Jana Sekničková, Ph.D. 11
Předpoklad: všichni hráči mají stejné apriorní názory na pravděpodobnostní rozdělení tahu Přírody Což ale v praxi nemusí platit Mgr. Jana Sekničková, Ph.D. 12
Příklad: hraje se mariáš, každý dostává 8 karet, jedna barva jsou trumfy všichni se shodnou na tom, že pravděpodobnost, že trumfové eso má jeden konkrétní soupeř je p = 1 1 31 8 7 32 8 8 Mgr. Jana Sekničková, Ph.D. 13
Pokud uvedený předpoklad platí, dostáváme hru s úplnou informací (všichni před hrou vědí vše) ale s nedokonalou informací (neznám karty) Na takovou hru lze použít koncepci Nashovy rovnováhy Mgr. Jana Sekničková, Ph.D. 14
Bayesovská hra (hra s neúplnou informací) je určena Množinou hráčů {1, 2,, N} Množinou prostorů strategií {X1, X2,, XN} Xi označuje prostor strategií i-tého hráče konkrétní strategie pak označíme (x1, x2,, xn) Množinou prostorů typů hráčů {T1, T2,, TN} i-tý hráč zná svůj typ t i T i, ale nezná typy ostatních hráčů typ t i T i odpovídá určité výplatní funkci hráče i Mgr. Jana Sekničková, Ph.D. 15
Bayesovská hra (hra s neúplnou informací) je určena Množinou hráčů, Množinou prostorů strategií, Množinou prostorů typů hráčů Množinou názorů hráčů {p1, p2,, pn} pi je názor hráče i, který má o typech ostatních hráčů subjektivní pravděpodobnostní funkce Množinou výplatních funkcí {f1(x1, x2,, xn, t1, t2,, tn),, fn(x1, x2,, xn, t1, t2,, tn)} Mgr. Jana Sekničková, Ph.D. 16
V Bayesovské hře budeme považovat každý typ každého hráče za samostatného hráče Příklad: každá možná kombinace rozdaných 8 karet představuje jednoho hráče Příroda náhodně vybere ty hráče, kteří budou hru skutečně hrát na základě pravděpodobnostního rozdělení, které znají všichni hráči Mgr. Jana Sekničková, Ph.D. 17
Každý typ každého hráče vybere svoji strategii dříve, než Příroda rozhodne, kdo bude hrát Tím k původní hře H s neúplnou informací dostáváme hru H* s nedokonalou informací Mgr. Jana Sekničková, Ph.D. 18
Původní hra H (s neúplnou informací) N hráčů, i = 1, 2,, N hráč i má mi typů množina prostorů strategií {X1, X2,, XN} množina výplatních funkcí {f1(x1, x2,, xn, t1, t2,, tn),, fn(x1, x2,, xn, t1, t2,, tn)} Odvozená hra H* (s nedokonalou informací) M hráčů, j = 1, 2,, M M = i=1 Kolik je M? Mgr. Jana Sekničková, Ph.D. 19 N m i
Odvozená hra H* (s nedokonalou informací) M hráčů, j = 1, 2,, M, kde M = N i=1 j = (i, ti) každý typ každého hráče množina prostorů akcí {Y1, Y2,, YM} akce = volba hráče, který už zná svůj typ m i strategie = akce hráče, který ještě svůj typ nezná a musí tak naplánovat optimální akci pro každý svůj možný typ množina výplatních funkcí {g1(y1, y2,, ym),, gn(y1, y2,, ym)} Mgr. Jana Sekničková, Ph.D. 20
Hodnoty výplatních funkcí jsou počítány jako očekávané hodnoty g i y 1, y 2,, y M = t i p t i f i (x, t) (chybný index ve skriptech) Mgr. Jana Sekničková, Ph.D. 21
Bayesova-Nashova rovnováha ve hře s neúplnou informací H (Bayesovská hra) Nashova rovnováha ve hře s nedokonalou informací H* = V každé konečné hře s neúplnou informací existuje alespoň jedna Bayesova-Nashova rovnováha Mgr. Jana Sekničková, Ph.D. 22
Příklad 2 Manželský spor (BoS) Manželé jdou večer na koncert rozhodují se mezi Bachem a Stravinským Muž preferuje Bacha, žena Stravinského Každý chce jít na koncert a nejraději půjdou spolu Pokud spolu nepůjdou, nebudou mít žádný užitek 23
Příklad 2 Manželský spor (BoS) muž/žena Bach Str. Bach Stravinski 2,1 0,0 0,0 1,2 24
Příklad 2 Manželský spor (BoS) Předpokládejme nyní, že ráno došlo k hádce muž, který je nyní v práci, si není jistý, jestli je žena naštvaná či už ji to přešlo pokud je žena stále naštvaná, nechce manžela večer vidět pokud žena naštvaná není, manžela vidět chce 25
Příklad 2 Manželský spor (BoS) Muž odhaduje pravděpodobnost, že je žena naštvaná na 50 % Pokud žena naštvaná není: původní matice Pokud žena naštvaná je: jiné preference muž/žena Bach Str. Bach 2,0 0,2 Stravinski 0,1 1,0 26
Příklad 2 Manželský spor (BoS) Jedná se o hru s neúplnou informací muž totiž neví, zda ho manželka chce či nechce vidět žena tuto soukromou informaci samozřejmě má (ví, zda muže chce nebo nechce vidět) muž má tedy jeden typ, zatímco žena má 2 možné typy (nenaštvaná a naštvaná) 27
Příklad 2 Manželský spor (BoS) Převedeme tedy na hru s 3 hráči muž, nenaštvaná žena a naštvaná žena Pravděpodobnostní rozdělení typů ženy je (0.5, 0.5) oba ho znají před tahem Přírody na začátku hry se pouze žena dozví výsledek tahu Přírody, který určí její skutečný typ 28
Příklad 2 Manželský spor (BoS) Manžel nezná dnešní náladu manželky (typ ženy) Musí tedy odhadnout optimální akce pro oba typy Abychom mohli zapsat výsledky do jedné matice, vytvoříme pro ženu všechny možné kombinace 29
Příklad 2 Manželský spor (BoS) Uspořádaná dvojice (a,b) označuje nenaštvaná manželka volí akci a a zároveň naštvaná manželka volí akci b Pro ženu mohou tedy nastat 4 možnosti: (B, B), (B, S), (S, B) a (S, S) B Bach, S Stravinski 30
Příklad 2 Manželský spor (BoS) Výplatní matice pak uvádí tři hodnoty výplatu muže výplatu nenaštvané ženy výplatu naštvané ženy 31
Příklad 2 Manželský spor (BoS) m/ž1 B S B 2,1 0,0 S 0,0 1,2 m/ž2 B S B 2,0 0,2 S 0,1 1,0 = 0, 5 2 + 0, 5 0 = 1 m/(ž1, ž2) (B, B) (B, S) (S, B) (S, S) B 2,1,0 1, 1, 2 1,0,0 0,0,2 S 0,0,1 0.5,0,0 0.5,2,1 1,2,0 32
Příklad 2 Manželský spor (BoS) m/(ž1, ž2) (B, B) (B, S) (S, B) (S, S) B 2,1,0 1,1,2 1,0,0 0,0,2 S 0,0,1 0.5,0,0 0.5,2,1 1,2,0 V této hře hledáme Nashovu rovnováhu Bayesova-Nashova rovnováha Muž sloupcová maxima z prvních hodnot v ryzích strategiích (akcích) Nenaštvaná žena 1 řádková z druhých hodnot Naštvaná žena 2 řádková z třetích hodnot 33
Příklad 2 Manželský spor (BoS) m/(ž1, ž2) (B, B) (B, S) (S, B) (S, S) B 2,1,0 1,1,2 1,0,0 0,0,2 S 0,0,1 0.5,0,0 0.5,2,1 1,2,0 Rovnováha v ryzích strategiích {B, (B,S)} Muž volí Bacha, nenaštvaná žena také Bacha a naštvaná žena Stravinského Muž tedy jde na Bacha a čeká, zda přijde i žena 34
Statická Bayesovská hra hra s neúplnou informací v normálním tvaru pro úplnou info Nashova rovnováha pro neúplnou info Bayesova-Nashova rovnováha Dynamická Bayesovská hra hra s neúplnou informací v rozvinutém tvaru pro úplnou info dokonalá rovnováha podhry pro neúplnou info dokonalá Bayesova rovnováha (kombinace B-N rovnováhy a dokonalé rovnováhy podhry) 35
Typ hry Normální tvar Rozvinutý tvar Úplná informace Neúplná informace Nashova rovnováha Bayesova-Nashova rovnováha Dokonalá rovnováha podhry Dokonalá Bayesova rovnováha 36
KONEC Mgr. Jana Sekničková, Ph.D. 37