Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistické metody v marketingu. Ing. Michael Rost, Ph.D."

Transkript

1 Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích

2 K pojmu distiribuční funkce Distribuční funkce je definována vztahem: F (x) = P (X x i ) Distribuční funkce je definována na předem daném intervalu. Její základní vlastnosti jsou: 0 F (x) 1 F (x i ) F (x j ) pro každou dvojici čísel x i < x j lim F (x) = F ( ) = 0 x lim F (x) = F (+ ) = 1 x+ P (a < X b) = F (b) F (a) Distribuční funkce F (x) je zprava spojitá a má nejvýš spočetně bodů nespojitosti.

3 K pojmu distiribuční funkce Grafu distribuční funkce odpovídá v popisné statistice graf kumulativních relativních četností. Distribuční funkce diskrétní náhodné veličiny je nespojitá. Pro diskrétní náhodnou veličinu platí: F (x i ) = P (X x i ) = j i p j Pro spojitou náhodnou veličinu, nabývající všech hodnot z intervalu x [a; b] F (x) = P (X x i ) = x a f(t)dt

4 K hustotě pravděpodobnosti Funkci definovanou vztahem df (x) f(x) = = F (x) (1) dx nazýváme frekvenční funkcí nebo hustotou pravděpodobnosti. Základní vlastnosti hustoty pravděpodobnosti jsou: f(x) 0 lim x f(x)dx = 0 lim f(x)dx = 0 x+ b a f(x)dx = 1 pro x [a; b] P (a < X b) = b a f(x)dx

5 K pojmu kvantil Velmi důležitý je pojem kvantilu. P -kvantilem nebo P 100%-ním kvantilem náhodné veličiny X, která má jisté spojité rozdělení náhodné veličiny s distribuční funkcí F (x) a hustotu pravděpodobnosti f(x), je číslo x P pro které platí F (x P ) = P (X x P ) = x P f(x)dx = P Některé kvantily mají speciální názvy např.: dolní kvartil, medián, horní kvartil, decil, percentil,

6 Rozdělení Lze rozlišovat diskrétní a spojité: Diskrétní: Alternativní A(π), binomické Bi(n, π), hypergeometrické H(M, N, n), Poissnovo P o(λ) atd.. Spojité: Normální N(µ, σ 2 ), Studentovo t(n), χ 2 -rozdělení, Fisherovo-Snedecorovo F (m, n), atd...

7 Pomocí R Prostředí Rumožňuje velmi snadno určovat hodnoty distribučních funkcí pro různá x a různé typy rozdělení. Slouží k tomu několik jednoduchých příkazů.

8 K intervalovému odhadu Vyjadřujeme jej pomocí dvou čísel, mezi nimiž se pohybuje skutečná hodnota hledaného parametru s předem zvolenou pravděpodobností. Čísla vymezující tento interval se nazývají dolní a horní mez intervalu spolehlivosti. Takový interval nazýváme 100(1 α)%-ní konfidenční interval nebo též 100(1 α)%-ní interval spolehlivosti. Číslo 1 α pak nazýváme koeficientem spolehlivosti. Číslo α pak hladinou významnosti. Spolehlivost odhadu voĺıme sami. Většinou chceme aby byla bĺızko 1 a voĺıme α = 0, 01 nebo častěji α = 0, 05.

9 K intervalovému odhadu Podstata intervalového odhadu charakteristiky Θ spočívá v určení hodnot(statistik) T D a T H, tak aby platilo P (T D Θ T H ) = 1 α v případě oboustranného intervalu spolehlivosti, nebo P (Θ T H ) = 1 α resp. P (T D Θ) = 1 α v případě jednostranných intervalů spolehlivosti. Např. je-li náš výběr získán z rozdělení N(µ; σ 2 ), kde rozptyl není znám, lze hledaný oboustranný 100(1 α)%-ní interval spolehlivosti parametru µ zapsat jako: P ( x s n t 1 α/2 (n 1) < µ < x + s n t 1 α/2 (n 1) ) = 1 α.

10 K testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení lze nazvat hypotézou, resp. statistickou hypotézou. Statistickou hypotézu lze pak zapsat například ve tvaru H 0 : θ = θ 0 Takto formulovanou hypotézu nazveme testovanou hypotézou (nulovou hypotézou). Příklad: H 0 : Člověk denně spotřebuje v průměru 2,3 l tekutin. H 0 : µ = 2, 30

11 Alternativní hypotéza Proti testované hypotéze formulujeme alternativní hypotézu H A neboli H 1. Rozlišujeme zpravidla tři typy alternativních hypotéz: Pravostranná hypotéza H A : Θ > Θ 0 Levostranná hypotéza H A : Θ < Θ 0 Oboustranná hypotéza H A : Θ Θ 0. Je velmi důležité, jak budeme své hypotézy specifikovat. Dle formulace problému se musíme správně rozhodnout mezi třemi variantami: nebo H 0 : Θ = Θ 0 vs. H A : Θ Θ 0, nebo H 0 : Θ = Θ 0 vs. H A : Θ > Θ 0 H 0 : Θ = Θ 0 vs. H A : Θ < Θ 0.

12 Testové kritérium Pro rozhodnutí o tom, která z výše formulovaných hypotéz je pravdivá, tj. zda bude platit H 0 nebo naopak H A, rozhodujeme za pomoci tzv. testové statistiky T. Testová statistika je funkcí našich pozorování, tj.: T = g(x 1, x 2, x 3,..., x n ) a je tedy náhodnou veličinou nabývající určitého oboru hodnot, resp. hodnot z určité podmnožiny množiny reálných čísel. Na definovaném oboru hodnot testové statistiky T lze vymezit jistým způsobem dvě podmnožiny, a to oborem přijetí a kritický obor.

13 Chyby spojené s testováním hypotéz Otázka spočívá v tom jak stanovit hranici mezi těmito množinami? S tím souvisí problematika chyb, kterých se můžeme při testování hypotéz dopustit. Lze dojít ke čtyřem závěrům: Zamítneme nulovou hypotézu, přičemž ve skutečnosti platí alternativní hypotéza. Naše rozhodnutí je tedy správné. Nezamítneme nulovou hypotézu, přičemž ve skutečnosti nulová hypotéza platí. Naše rozhodnutí je tedy správné. Zamítneme nulovou hypotézu přestože je správná. Dopouštíme se tak chyby. Tento typ chyby nazýváme chybou I. druhu. Nezamítneme nulovou hypotézu přestože platí alternativní hypotéza. Dopouštíme se tak chyby. Tento typ chyby nazýváme chybou II. druhu.

14 Chyba I. druhu Pokud bychom tedy chtěli určit pravděpodobnost vzniku chyby I. druhu, platilo by následující: P (chyby I.) = P (přijmu H A H 0 ) = P (T K platí H 0 ). Ve většině případů požadujeme, aby tato pravděpodobnost nepřekročila určitou, předem danou hodnotu α. Hodnotu α nazýváme hladinou významnosti. Nejčastější volbou hodnoty α pro testování hypotéz je α = 0, 05 či α = 0, 01. V takovém případě připouštíme existenci vzniku chyby I. druhu s pravděpodobností 0,05 resp. 0,01. Kritický obor je konstruován tak, že platí: P (chyby I.) = P (T K platí H 0 ) = α.

15 Rozhodnutí o platnosti testované hypotézy Pokud jde o samotné testování hypotézy, pak to spočívá v aplikaci jednoduchého rozhodovacího pravidla: Leží-li hodnota testového kritéria T v kritickém oboru tj. platí-li: T K, zamítáme nulovou hypotézu H 0 ve prospěch hypotézy alternativní H A. Naopak, neleží-li hodnota testového kritéria v kritickém oboru, pak testovanou hypotézu nezamítáme a tvrdíme, že se nepodařilo zamítnout nulovou hypotézu na předem zvolené hladině významnosti α a na základě pozorovaných dat.

16 Chyba II. druhu Chyby druhého druhu se dopustíme tehdy, nezamítneme-li hypotézu H 0, přestože tato hypotéza ve skutečnosti neplatí. Pravděpodobnost toho, že se dopustíme chyby II. druhu lze vyjádřit následujícím způsobem: P (chyby II.) = P (nezamítnu H 0 H A ) = P (T K H A ) = β. Většinou se však zajímáme spíše o doplněk k této pravděpodobnosti. Tj. o pravděpodobnost toho, že se této chyby nedopustíme. Symbolicky lze hledanou pravděpodobnost definovat následovně: P (přijmu H A H A ) = P (T K H A ) = 1 β. (2) Tento doplněk k pravděpodobnosti chyby II. typu, tj. hodnotu 1 β, zpravidla nazýváme silou testu.

17 Druhy testů Z hlediska toho, jaké předpoklady činíme o rozdělení sledovaného statistického znaku, lze rozlišit dvě třídy testů: Parametrické testy: Jsou testy založené na znalosti charakteru rozdělení sledovaného statistického znaku. Parametrickými testy se pak testujeme předpoklady o neznámých hodnotách parametrů (může jít například o střední hodnotu či rozptyl). V převážné většině jde o početně náročnější, ale silné testy. Neparametrické testy: Jsou takové testy, které nevyžadují znalost předpokladů o charakteru rozdělení náhodných veličin. Neparametrické, se nazývají proto, že se netýkají parametrů rozdělení. Tyto testy mají obecně menší sílu ve srovnání s parametrickými testy.

18 Část II: Práce s R

19 Úvodem V současné době existuje na trhu celá řada statistického software. Asi nejrozšířenějším je statistický software SAS, SPSS, STATISTICA, MATLAB, případně S-plus. Jde především o komerční a monolitické systémy s relativně přátelským prostředím. Nevýhodou těchto programů je však jejich vysoká pořizovací cena. Alternativou může být profesionální programovací prostředí R.

20 Proč právě R? + R je zdarma a rozvíjí se. V mnoha ohledech překonává (a to i o několik let) některé jiné komerční programy. + Systém nápovědy ke každé funkci spolu s ukázkou použití příslušné funkce. Existuje široká uživatelská obec - možnost řešit problémy s předními odborníky. + Velmi dobrá grafika, import a export dat a výstupů + (Sweave). + Učesaný jazyk, vektorizace výpočtů, možnost využití objektově orientovaného programování, komunikuje Tinn-R, GGobi, L A T E X, Excel, Dostupnost nejnovějších statistických metod.

21 První kroky: Spuštění R Erko lze inicializovat různým způsobem. Windows GUI: Obvyklý způsob přes Start Všechny programy R. Xemacs, Rterm, Rcmd, Tinn-R... Ukončení práce s programovacím prostředím R, je velmi jednoduché. Stačí do příkazového řádku zapsat za prompt q()

22 Princip práce s R Obvykle probíhá práce s R interaktivně. Lze ji popsat modelem otázka odpověd : Zadáte příkaz a stisknete klávesu Enter. R vyhodnotí příkaz (vytiskne jeho hodnotu pokud je není zapsána do vnitřní paměti). Pak R čeká na další vstupní příkaz.

23 Několik malých příkladů [1] 4 exp(-2) [1] log(100, base = 10) [1] 2 rnorm(10) [1] [5] [9] data<-(rnorm(50,13,4)) mean(data) [1] var(data) [1] sqrt(var(data)) [1]

24 Funkce exp(), log(), mean(), var(), sqrt(), rnorm() jsou funkce implementované v R. Volání funkcí je indikováno prostřednictvím jména funkce a závorek jméno.funkce(argument1, argument2,argument3,...) v nichž jsou obsaženy argumenty funkce. Naprostá většina práce v R se odehrává právě prostřednictvím funkcí.

25 Možnosti záznamu dat Do R lze data zaznamenávat různými způsoby. Asi nejjednodušší postup spočívá ve využití funkcí c() nebo scan(). Nebo využít vestavěný datový editor pomocí funkce edit(data.frame()). Import data bude zmíněn později. x<-c(1,2,3,4,8,12,3,4,6) x [1] nebo x<-scan() 1: : Read 9 items x [1]

26 Základní statistické funkce Ukažme si několik jednoduchých příkazů, které lze využít při základním (opravdu při tom nejzákladnějším) statistickém zpracování dat. Předpokládejme, že data jsou uložena v objektu x nebo v objektech A, B, C. Co hodlám získat Aritmetický průměr Počet pozorování Rozptyl Směrodatná odchylka Histogram Dekadický logaritmus Přirozený logaritmus Minimum Maximum Suma Vytvoření rostoucí posloupnosti příkaz v R mean(x) length(x) var(x) sqrt(var(x)) hist() log(x,10) log(x) min(x) max(x) sum(x) sort(x)

27 Grafika v R Co hodlám získat Krabicový diagram Histogram Rozpylové diagramy Koláčový graf 3D graf Vynesení bodů do kartézské soustavy souřadnic atd.. příkaz v R boxplot(x) hist() pairs() pie(x) persp() plot(x,y).

28 Hodnoty F(x) = P(X x) a hodnoty u α ; t α (n); χ 2 α (n); F α(n 1 ; n 2 );... Hodnoty distribučních funkcí: pro případ, že x = 2; m = 18, n = 20 F(x) pokud X N(0; 1) pnorm(2,0,1) F(x) pokud X t(n) pt(2,20) F(x) pokud X χ 2 (m) pchisq(2,20) F(x) pokud X F (m, n) pf(2,18,20) Kvantily nejčastěji používaných rozdělení spojitých náhodných veličin: pro případ, že α = 0, 05, m = 18, n = 20 z 1 α qnorm(0.95,0,1) t 1 α qt(0.975,19) 2 χ 2 α(n) qchisq(0.05,20) F 1 α (m 1, n 1) qf(0.95,17,19)

29 Testování hypotéz (těch základních...) Studentův t-test(jeden výběr) H A : µ µ 0 = 140 H A : µ < µ 0 = 140 H A : µ > µ 0 = 140 Test na shodu dvou rozptylů H A : σ 2 A σ2 B Studentův t-test(dva výběry) H A : µ A µ B H A : µ A < µ B H A : µ A > µ B t.test(x,mu=140) t.test(x,mu=140,alternative="less") t.test(x,mu=140,alternative="greater") var.test(a,b) t.test(a,b) t.test(a,b,alternative="less") t.test(a,b,alternative="greater")

30 Nápověda V prostředí R lze s výhodou využívat velmi dobře koncipovanou nápovědu. K její vyvolání stačí zadat jednoduchý příkaz help() nebo ještě jednodušeji, využít příkaz?. Za symbol? napíšeme název funkce ke které hodláme získat nápovědu. Jinou možností je použít příkaz help.search(). Hledané téma pak vepíšeme do uvozovek např. help.search("mean") a stiskneme enter. Pokud příkaz sice známe, ale nevíme jaké argumenty obsahuje, můžeme využít příkazu args(). Do závorek opět vepíšeme název funkce.

31 Import dat z Excelu V případě, že hodláme importovat data, např. z Excelu, lze využít několika možností. Asi nejjednodušší cestou je exportovat data z Excelu prostřednictvím jeho nabídky/ Postup je následující: Soubor Uložit jako:mojedata Typ souboru: CSV (oddělený středníkem) Enter. Ve vašem pracovním adresáři se objeví soubor mojedata.csv. Pak pokračujeme již v R. Za prompt > napíšeme: mojedata<-read.csv("mojedata.csv", header=true,dec=",",sep=";") mojedata

32 Import dat z Excelu Druhá možnost spočívá ve vložení kopírovaných dat do schránky a pak použití příkazu: mojedata<-read.table(file("clipboard"),sep="\t",dec=",") mojedata

33 Export dat do Excelu Svá data můžeme také exportovat do Excelu. Předpokládejme, že hodláme vytvořit náhodné pořadí, ve kterém provedeme měření. Výsledné pořadí uložím do objektu cislapokusu a vyexportuji do Excelu. Soubor obsahující vytvořené pořadí bude pojmenován jako poradi.xls. cislapokusu<-sample(1:50,50,replace=f) write.table(cislapokusu,"poradi.xls",sep="\t",na="",row.names=f)

34 Příklad z maticové algebry - SVD dekompozice Předpokládejme jednoduchý skript v R: library(pixmap) x<- read.pnm("modelka.pgm") plot(x) #aproximaceobrázku V<-diag(dekompo$d[1:50]) S<-dekompo$u[,1:50] D<-dekompo$v[,1:50] rekonstr<-s %*% V %*% t(d) aproximovany.obrazek<-pixmapgrey(rekonstr) plot(aproximovany.obrazek, main="aproximace pomoci 50 SVD komponent")

35 Graficky vy stup v R Aproximace pomoci 5 SVD komponent Aproximace pomoci 15 SVD komponent Aproximace pomoci 20 SVD komponent Aproximace pomoci 10 SVD komponent Aproximace pomoci 50 SVD komponent c Rost 2007

36

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru 0.1 Základy statistického zpracování dat 1 0.1 Základy statistického zpracování dat Statistika se zabývá shromažďováním, tříděním a popisem velkých souborů dat. Někdy se pod pojmem statistika myslí přímo

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Statistika A. Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu

Statistika A. Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu Statistika A Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu parametrů a testování hypotéz Literatura: (H) Hindls & kol. Statistika pro ekonomy. Professional Publishing 2002 nebo

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

BAKALÁŘSKÁ PRÁCE. Statistická analýza dojivosti v programu SAS

BAKALÁŘSKÁ PRÁCE. Statistická analýza dojivosti v programu SAS UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Statistická analýza dojivosti v programu SAS Vedoucí diplomové práce: Mgr. Jaroslav

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková Počítačové cvičení předmětu M6130 Výpočetní statistika Marie Budíková 013 Poděkování Tento učební text vznikl za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

Statistika pro gymnázia

Statistika pro gymnázia Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu Statistika (4ST201) 1 Popsisná statistika (1. a 2. cvičení) 1.1 Úvodní příklad Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu určete: 1. Vytvořte histogram

Více

Základní analýza dat. Úvod

Základní analýza dat. Úvod Základní analýza dat literatura: Hendl, J. 2006: Přehled statistických metod zpracování dat. Analýza a metaanalýza dat. Praha: Portál. Macháček, J. 2001: Studie k velkomoravské keramice. Metody, analýzy

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více