SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.

Rozměr: px
Začít zobrazení ze stránky:

Download "SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I."

Transkript

1 INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/ SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I. Ing. MARKÉTA PETŘÍKOVÁ TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

2 Sdílení tepla a úspory zateplením I. květen 2011

3 Základní pojmy Sdílení tepla je přenosový jev, při němž dochází kpředávání tepla z míst o vyšší teplotě do míst o nižší teplotě. Předpokladem k předávání tepla je existence teplotního pole, tj. nerovnoměrného rozložení teploty vprostoru, v obecném případě trojrozměrný Největší změna teploty v teplotním poli nastává ve směru normály k izotermním plochám Gradient teploty je vektor, směřující od nižší teploty kteplotě vyšší, tj. opačným směrem než je přenášeno teplo. gradt = dt dn

4 Proces přenosu tepla probíhá vzávislosti na čase, a to stacionárně nebo nestacionárně Teplo, vztažené na jednotku času, nazýváme tepelný tok, případně tepelný výkon Tepelný tok, procházející určitou plochou, je plošná hustota tepelného toku Q& Q J = = W τ s q& = Q& W A m 2 Následující kapitoly jsou věnovány stacionárnímu jednorozměrnému přenosu tepla.

5 Vedení tepla kondukce Sdílení tepla vedením (kondukcí) je způsob přenosu tepla, při němž se teplo šíří pouze vdůsledku tepelného pohybu strukturních částic hmoty. Nastává vtuhých tělesech a ve velmi tenkých nepohybujících se vrstvách kapalin a plynů. Fourierův zákon pro vedení tepla: q& = λ gradt

6 Vnásledujících kapitolách se předpokládá λ=konst a teploty povrchu stěn t 1 >t 2 >... > t n. Plošná hustota tepelného toku pro rovinnou plochu o velikosti A[m 2 ] Plošná hustota tepelného toku pro válcovou plochu o poloměru r[m] a délce L [m] q& Q& = = λ A dt dx q& L Q& dt = = λ 2 π L dr r

7 Stacionární jednorozměrné vedení tepla neohraničenou rovinnou stěnou o tloušťce δ δ Úpravou Fourierova zákona se získá vztah pro plošnou hustotu tepelného toku jednoduchou rovinnou stěnou: t 1 q& dt = λ = dx t t δ λ ( ) 1 2 q λ t 2 t > 1 t 2

8 Stacionární jednorozměrné vedení tepla neohraničenou rovinnou stěnou, složenou z n vrstev Úpravou Fourierova zákona se získá vztah pro plošnou hustotu tepelného toku složenou rovinnou stěnou: t 1 δ 1 δ 2 δ 3 t 2 q& = t t ( ) 1 n+ 1 i= n i= 1 δ λ q t 3 λ 1 λ 2 λ 3 t 4 t > t > t > t

9 Stacionární jednorozměrné vedení tepla neohraničenou válcovou stěnou o tloušťce (r 2 -r 1 ) Úpravou Fourierova zákona se získá vztah pro plošnou hustotu tepelného toku jednoduchou válcovou stěnou: d 2 d 1 t 2 q& L = ( t t ) 2 π d2 ln d1 λ 1 2 q λ t 1 t > 2 t 1

10 Stacionární jednorozměrné vedení tepla neohraničenou válcovou stěnou, d 4 složenou zn vrstev d 3 Úpravou Fourierova zákona se získá vztah pro plošnou hustotu tepelného toku složenou válcovou plochou: t 4 d 2 d 1 t 3 q& L = i= 1 ( t t ) 2 π 1 d ln i= n d i λ i i+ 1 n q t 2 t 1 λ 3 λ 2 λ 1 t < t < t < t

11 Přestup tepla konvekce přenos tepla prouděním Sdílení tepla přestupem (konvekcí, prouděním) je způsob přenosu tepla v pohybujících se tekutinách Teplo se šíří účinkem tepelné vodivosti při ohřevu nebo ochlazování tekutiny v blízkosti teplosměnné plochy Jedná se o výměnu tepla mezi tekutinou a obtékanou stěnou tuhého tělesa Jednotlivé případy přestupu tepla se liší fyzikální podstatou a charakterem proudění a jsou popsány dále

12 Newtonův zákon, platný pro případ přestupu tepla: & = ( ) q& = α ( t t ) q α t t s t t s t t t S q α q α t S t t t > S t t t > t t S

13 Hodnota součinitele přestupu tepla α[w/(m K)] závisí na druhu konvekce, geometrii obtékaní stěny a na fyzikálních vlastnostech proudící tekutiny Hodnota Nusseltova čísla se počítá z kriteriální rovnice, která nejlépe vyhovuje konkrétnímu zadání: vlastnostem zadané tekutiny tvaru stěny a způsobu obtékání

14 Volná konvekce je vyvolána vlivem vztlakových sil, Nusseltovo číslo závisí na hodnotách Prandtlova a Grashoffova čísla Pr : ν ν ρ c η c = = p = a λ λ p Gr g d 3 = u γ t ν 2

15 Nucená konvekce je vyvolána čerpadlem nebo kompresorem, Nusseltovo číslo závisí na hodnotách Prandtlova a Reynoldsova čísla Pr ν ν ρ c η c = = p = a λ λ p Re wd = u ν

16 Prostup tepla kombinovaný způsob přenosu tepla Prostup tepla je způsob přenosu tepla, vzniklý kombinací přestupem tepla z tekutiny do stěny na jedné straně stěny, vedení tepla dělicí stěnou a přestupem tepla ze stěny do tekutiny na druhé straně stěny.

17 Prostup tepla rovinnou stěnou Při prostupu tepla jednoduchou rovinnou stěnou vyjádříme přestup vedení přestup třemi rovnicemi: rovnice 1 přestup tepla z tekutiny do stěny = & 1 t t q t1 s1 α 1 rovnice 2 vedení stěnou jednoduchou rovinnou stěnou = & t t q δ s1 s2 λ rovnice 3 přestup ze stěny do tekutiny = & 1 t t q s2 t2 α 2

18 Součtem rovnic 1, 2 a 3 se získá vztah pro stanovení plošné hustoty tepelného toku při prostupu tepla jednoduchou rovinnou stěnou : q& = tt1 tt2 1 δ α λ α 1 2 Podobným způsobem se postupuje při sestavování vztahu pro složenou rovinnou stěnu. Výsledný vztah pro plošnou hustotu tepelného toku při prostupu tepla složenou rovinnou stěnou : tt1 tt2 q& = = k t t i= n 1 δi α λ α 1 i= 1 i 2 ( ) t1 t2

19 t t1 α 1 t S1 q t S2 λ α 2 t t2 t > t > t > t t1 S1 S2 t2

20 δ 1 δ 2 δ 3 t t1 α 1 q t S1 t S2 t S3 t S4 α 2 λ 1 λ 2 λ 3 t t2 t > t > t > t > t > t t1 S1 S2 S3 S4 t2

21 Prostup tepla válcovou stěnou Řešení prostupu tepla jednoduchou válcovou stěnou vychází (stejně jako u rovinné stěny) ze tří rovnic: rovnice 1 přestup tepla z tekutiny do stěny t t = q& t1 s1 L α 1 π d 1 1 rovnice 2 vedení stěnou jednoduchou válcovou stěnou δ t t = q& s1 s2 L λπ ln d d 2 1 rovnice 3 přestup ze stěny do tekutiny t t = q& s2 t2 L α 1 π d 1 2

22 Plošná hustota tepelného toku při prostupu tepla jednoduchou válcovou stěnou π ( t t ) q& = = k t t + ln + α d 2 λ d α d ( ) t1 t2 L V t1 t2 1 δ d plošná hustota tepelného toku při prostupu tepla složenou válcovou stěnou π ( t t ) q& = = k t t + ln + α d 2 λ d α d ( ) t1 t2 L i= n V t1 t2 1 δi di i= 1 i i 2 n+ 1

23 d 2 d 1 t t2 α 2 t S2 q t S1 λ α 1 t t1 t < t < t < t t1 S1 S2 t2

24 d 4 d 3 d 2 d 1 t t2 α 2 t S4 t S3 q t S2 t S1 α 1 λ 3 λ 2 λ 1 t t1 t < t < t < t < t < t t1 S1 S2 S3 S4 t2

25 Sdílení tepla sáláním radiací Přenos tepla mezi rovnoběžnými stěnami Přenos tepla mezi tělesy

26 Kirchhoffův zákon dokonale černé těleso dokonale šedé těleso

27 Sdílení tepla sáláním radiací Přenos tepla mezi rovnoběžnými stěnami T1 T2 Q& 1,2 = ε1,2 c 0 S c 0 = σ 0 10 konstanta sálání dokonale černého tělesa σ = 5, W m K 0

28 Přenos tepla mezi tělesy T1 T2 Q& 1,2 = ε1,2 c 0 S ε 1,2 = S S ε ε 1 2 2

29 ukázka tabulek pro sdílení tepla

30 ukázka tabulek fyzikálních vlastností látek

31 Pochopili jste, co se skrývá pod pojmem přenos tepla??? Dokážete určit, který způsob přenosu tepla dominuje na následujících obrázcích???

32

33

34

35

36 děkujeme za pozornost

37 Sdílení tepla a úspory zateplením II. červen 2011

38 Energetický tok oknem při různém druhu zasklení Velký výběr nabízených systému zasklení usnadňuje projektantům práci při návrhu vhodného druhu pro dané použití. Rozhodujícím faktorem budou při výběru tepelně technické parametry, hlavně vdobě, kdy rostoucích cen primárních zdrojů a je nutné šetřit. Samozřejmě je nutné provést také ekonomickou analýzu problému, aby byla zaručena reálná návratnost vynaložených finančních prostředků.

39 Základní druhy zasklení 1. dvojsklo smezerou vyplněnou vzduchem 2. dvojsklo smezerou vyplněnou argonem, kryptonem, xenonem 3. dvojsklo smezerou vyplněnou argonem (kryptonem, xenonem) a pokovením 4. dvojsklo smezerou vyplněnou argonem (kryptonem, xenonem) a přidanou fólií 5. trojsklo smezerou vyplněnou argonem (kryptonem, xenonem) 6. trojsklo smezerou vyplněnou argonem (kryptonem, xenonem) a přidanou fólií 7. plus další kombinace počtu skel, druhu plynu, pokovení a fólií

40 Součinitele prostupu tepla různých kombinací zasklení

41 Fólie Heat Mirror

42 Rozdíl v umístění pokovení a fólie

43 Pokovení U = 3 W m-2 K-1 U = 3 W m-2 K-1 g = 77% g = 77% prostup světla = 81% prostup světla = 81% vrstvička kovu a argon

44 Porovnání vlastností různých typů zasklení Tloušťka Hmotnost U vertical g R sol T vis R vis T UV [mm] [kg.m -2 ] [W.m -2.K - 1 ] [%] [%] [%] [%] [%] Fl4-16Air-Fl4 24,5 20 2, Dvojsklo Fl4-16Ar-Le4 24,5 20 1, Fl4-16Kr-Le4 24,5 20 1, Fl4-12Ar-TC88-12Ar-Le4 32,5 20 0, ,4 Heat Mirror Fl4-10Kr-TC88-10Kr-Le4 28,5 20 0, ,4 Fl4-12Ar-SC75-12Ar-Le4 32,5 20 0, ,3 Fl4-10Kr-SC75-10Kr-Le4 28,5 20 0, ,3 Trojsklo Fl4-10Ar-Le4-10Ar-Le4 32,5 30 0,

45 Základní druhy vyráběných skel: Plavená skla float Vrstvená skla dvě a více tabulí mezi, které se vkládá polyvinylbutyralová fólie (PVB), tato skla se označují jako bezpečnostní Tvrzená (kalená) skla další typ bezpečnostních skel. Sklo je zahřáno do bodu měknutí (650 C) a následně prudce ochlazeno. Tato úprava dodá sklu pětkrát větší odolnost oproti obyčejnému Zrcadla na jednu stranu se nanese vrstvička stříbra a lak Protipožární skla tabule skla jsou spojeny protipožární vrstvou, která při požáru zpění a vytváří tak ochrannou vrstvu.

46 Běžně dostupné okenní systémy na trhu

47 Běžně dostupné okenní systémy na trhu

48 Faktory ovlivňující konečné vlastnosti oken Vliv distančního rámečku

49 Faktory ovlivňující konečné vlastnosti oken Umístění oken

50 Legislativa Požadavky na výplně otvorů dle nařízení vlády č. 163/2002 Sb. 1. Mechanická odolnost a stabilita 2. Požární bezpečnost 3. Hygiena, ochrana zdraví a životního prostředí 1. Bezpečnost při užívání 2. Ochrana proti hluku 3. Úspora energie a ochrana tepla

51 Základní požadavky: Legislativa Šíření tepla konstrukcí Nejnižší vnitřní povrchová teplota konstrukce Součinitel prostupu tepla Šíření vlhkosti konstrukcí Zkondenzovaná vodní pára uvnitř konstrukce Roční bilance kondenzace a vypařování vodní páry uvnitř konstrukce Šíření vzduchu konstrukcí a budovou Průvzdušnost Tepelná stabilita místností Energetická náročnost budovy

52 Legislativa Důležité parametry z výše uvedeného jsou: nejnižší povrchová teplota θ si [ C], musí být zaručena vždy vyšší, než je teplota rosného bodu, aby nedocházelo ke kondenzaci vodních par na povrchu a následnému vzniku plísní součinitel prostupu tepla U [W m -2 K -1 ] lineární činitel prostupu tepla ψ [W m -1 K -1 ] průvzdušnost funkčních spár výplní otvorů i LV [m 3 h -1 m -1 ]

53

54 Zkoušky oken Výrobky se posuzují podle šesti základních kritérií: 1. Posouzení výrobku s technickou dokumentací. 2. Průvzdušnost podle ČSN EN 1026 a průvzdušnost po zkoušce zatížení větrem. 3. Vodotěsnost podle ČSN EN Odolnost proti zatížení větrem podle ČSN EN Únosnost omezovačů otevření a odolnost proti statickému kroucení podle ČSN EN Prostup tepla výpočtem nebo měřením.

55 Blow-door test Princip zkoušky spočívá ve zjištění objemu vzduchu, který uniká pláštěm budovy. Test těsnosti je důležitý zejména u nízko energetických a pasivních budov, do kterých se instaluje nucené větrání a je požadována co největší těsnost. Zkouška spočívá vinstalování ventilátoru, například do vstupních dveří. Ten vytváří podtlak, nebo přetlak, podle toho co chceme a následně se sleduje, kolik vzduchu se musí přivést, aby se udržel po stanovenou dobu daný tlakový rozdíl. Množství přivedeného vzduch pro udržení rozdílu tlaků je roven ztrátám průvzdušností.

56 Blow-door test

57 Princip měření termočlánkem Princip měření je založen na termoelektrickém jevu. Vzniká ve speciálních případech, kdy zahřejeme vodič elektrického proudu. V něm dochází kpřeměně vnitřní energie na elektrickou, tu změříme na mikrovoltmetru

58 Princip měření snímačem tepelného toku Snímač se nalepí na povrch, kde chceme měřit. Procházející tepelný tok přes fólii je přímo úměrný teplotní diferenci. Tok procházející přes fólii je stejný jako ten co prochází přes plochu, kde je nalepena. Mikrovoltmetr nám ukáže napětí odpovídající tomuto tepelnému toku.

59 děkujeme za pozornost

60 děkujeme za pozornost

1 Zatížení konstrukcí teplotou

1 Zatížení konstrukcí teplotou 1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO KONKRÉTNÍ ROZBOR TEPELNĚ TECHNICKÝCH POŽADAVKŮ PRO VYBRANĚ POROVNÁVACÍ UKAZATELE Z HLEDISKA STAVEBNÍ FYZIKY příklady z praxe Ing. Milan Vrtílek,

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1203_základní_pojmy_3_pwp Název školy: Číslo a název projektu: Číslo a název šablony

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006 TZÚS, s.p., pobočka Praha 1/ Mechanické zkoušky 2/ Klimatické zkoušky 3/ Tepelně technické zkoušky 1/ Mechanické zkoušky odolnost proti svislému zatížení deformace křídla při zatížení svislou silou v otevřené

Více

ZÁKLADY STAVEBNÍ FYZIKY

ZÁKLADY STAVEBNÍ FYZIKY ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

TEPELNÁ TECHNIKA OKEN A LOP

TEPELNÁ TECHNIKA OKEN A LOP TEPELNÁ TECHNIKA OKEN A LOP změny související s vydáním ČSN 73 0540-2 (2011) Ing. Olga Vápeníková ČSN 73 0540-2 (říjen 2011, platnost listopad 2011) PROJEKČNÍ NORMA okna + dveře = výplně otvorů ostatní

Více

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku: Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:

Více

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h = Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 91.120.10 Říjen 2011 ČSN 73 0540-2 Tepelná ochrana budov Část 2: Požadavky Thermal protection of buildings Part 2: Requirements Nahrazení předchozích norem Touto normou se nahrazuje

Více

TZB II Architektura a stavitelství

TZB II Architektura a stavitelství Katedra prostředí staveb a TZB TZB II Architektura a stavitelství Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT

ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě

Více

Školení DEKSOFT Tepelná technika 1D

Školení DEKSOFT Tepelná technika 1D Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný

Více

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing.

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing. TECHNICKÁ Odborná inženýrská, projekční a poradenská kancelář v oblasti oken/dveří, lehkých obvodových plášťů (LOP) a jiných fasádních konstrukcí. KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce

Více

B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV

B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV Ministerstvo průmyslu a obchodu 2015 ENERGETICKÝ AUDIT, ENERGETICKÝ POSUDEK A SOUVISEJÍCÍ LEGISLATIVA

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Problematika dodržení normy ČSN 730540 při výrobě oken

Problematika dodržení normy ČSN 730540 při výrobě oken Problematika dodržení normy ČSN 730540 při výrobě oken Tato norma platná od 1.12.2002 stanovuje z hlediska výroby oken určených pro nepřerušovaně vytápěné prostory 2 zásadní hodnoty: 1.součinitel prostupu

Více

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ

Více

Vliv prosklených ploch na vnitřní pohodu prostředí

Vliv prosklených ploch na vnitřní pohodu prostředí Vliv prosklených ploch na vnitřní pohodu prostředí Jiří Ježek 1, Jan Schwarzer 2 1 Oknotherm spol. s r.o. 2 ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Abstrakt Obsahem příspěvku je určení

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4

Více

HELUZ konference OTVOROVÉ VÝPLNĚ. Říjen 2013

HELUZ konference OTVOROVÉ VÝPLNĚ. Říjen 2013 HELUZ konference OTVOROVÉ VÝPLNĚ Říjen 2013 Obsah Historie Okna pro pasivní a nízkoenergetické domy Historie Vývoj požadavků v ČR (Q - kwh/m 2 a ) 300 250 200 150 100 50 0-50 270 210 100-145 50 15 0-15

Více

TZB Městské stavitelsví

TZB Městské stavitelsví Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.20 Stavebně truhlářské výrobky a jejich

Více

þÿ PY e s t u p t e p l a

þÿ PY e s t u p t e p l a DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /

Více

ICS Listopad 2005

ICS Listopad 2005 ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection

Více

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky Pracoviště zkušební laboratoře: 1. Laboratoř stavební tepelné techniky K Cihelně 304, 764 32 Zlín - Louky 2. Laboratoř akustiky K Cihelně 304, 764 32 Zlín - Louky 3. Laboratoř otvorových výplní K Cihelně

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky Pracoviště zkušební laboratoře: 1. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř poskytuje odborná

Více

Identifikace zkušebního postupu/metody 2

Identifikace zkušebního postupu/metody 2 Pracoviště zkušební laboratoře:. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky 2. Laboratoř akustiky K Cihelně 304, Zlín - Louky 3. Laboratoř otvorových výplní K Cihelně 304, Zlín - Louky

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

OBSAH ŠKOLENÍ. Internet DEK netdekwifi

OBSAH ŠKOLENÍ. Internet DEK netdekwifi OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Legislativní a normativní požadavky, definice, historie a budoucnost Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára

Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.

Více

ŠETŘÍLEK. Martin Koutník, Jan Hubáček. Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272 01 KLADNO

ŠETŘÍLEK. Martin Koutník, Jan Hubáček. Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272 01 KLADNO Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT ŠETŘÍLEK Martin Koutník, Jan Hubáček Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

Energetická náročnost budov

Energetická náročnost budov Energetická náročnost budov Energetická náročnost budov - právní rámec směrnice 2002/91/EC, o energetické náročnosti budov Prováděcí dokument představuje vyhláška 148/2007 Sb., o energetické náročnosti

Více

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Prohlášení o vlastnostech

Prohlášení o vlastnostech Výrobek: Plastová okna a balkónové dveře systém KVINTERM 2+ Typové označení: PO KVINTERM Zamýšlené použití: Plastová okna a balkónové dveře jsou určeny pro použití do obytných i průmyslových budov, na

Více

Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10).

Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 0). Lze provést ověření stálosti vlastností podle nařízení EP a Rady (EU) č. 305/20, ve znění pozdějších

Více

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE KPG SVISLÉ NOSNÉ KONSTRUKCE Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) Požadavky a principy konstrukčního řešení Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz

Více

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009

Více

Technologie staveb Tomáš Coufal, 3.S

Technologie staveb Tomáš Coufal, 3.S Technologie staveb Tomáš Coufal, 3.S Co je to Pasivní dům? Aby bylo možno navrhnout nebo certifikovat dům jako pasivní, je třeba splnit následující podmínky: měrná roční potřeba tepla na vytápění je maximálně

Více

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3. TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:

Více

COLTLITE POPIS VÝROBKU COLTLITE

COLTLITE POPIS VÝROBKU COLTLITE FUNKCE VÝROBKU: Lamelové okno Coltlite je určeno k přirozenému větrání budov, dennímu osvětlení vnitřních prostor budov a dále k přirozenému odvodu kouře a tepla při požáru. Okno Coltlite může být použito

Více

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové

Více

Identifikátor materiálu: ICT 2 54

Identifikátor materiálu: ICT 2 54 Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

Výpočty součinitele prostupu tepla jednotlivých variant

Výpočty součinitele prostupu tepla jednotlivých variant Výpočty součinitele prostupu tepla jednotlivých variant HODNOTY PRO VÝPOČET VARIANTY Č. 1 U g Izolační dvojsklo nepokovené 4-6-4, plněné vzduchem 3,3 U w Vypočítaný součinitel prostupu tepla [W/(m2.K)]

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22 M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)

Více

Lineární činitel prostupu tepla

Lineární činitel prostupu tepla Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel

Více

Recenze: Střešní okna pro pasivní domy

Recenze: Střešní okna pro pasivní domy Petr Slanina Tato recenze je reakcí na článek Střešní okna pro pasivní domy [1], jenž vyšel v květnu 2018 a jehož autorem je prof. Ing. Jan Tywoniak, CSc. z ČVUT v Praze a recenzentem doc. Ing. Miloš Kalousek,

Více

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební

Více

Roto STANDARD PLUS WDF 629 H WD - střešní okno dřevěné kyvné, zateplené

Roto STANDARD PLUS WDF 629 H WD - střešní okno dřevěné kyvné, zateplené Roto STANDARD PLUS 629 H WD - střešní okno 629N H WD a H WD U okno = 1,0 W/m 2 K Rozsah použití Sklon střechy od 15-90 Roto STANDARD PLUS 629 H WD střešní okno Roto STANDARD PLUS 629 H WD - střešní okno

Více

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava 14. ELEKTRICKÉ TEPLO Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod, výhody, zdroje Elektrické odporové a obloukové pece Indukční a dielektrický ohřev Elektrický

Více

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Icynene chytrá tepelná izolace

Icynene chytrá tepelná izolace Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Termodynamika nevratných procesů

Termodynamika nevratných procesů 1 Nevratný proces Přenosové jevy.1 Sdílení tepla.1.1 Tepelný tok Hustota tepleného toku Celkový tepelný tok. Sdílení tepla vedením 3 Tepelná vodivost 3.1 Wiedemannův-Franzův zákon 4 Tepelný odpor 5 Sdílení

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

COLTLITE POPIS VÝROBKU COLTLITE

COLTLITE POPIS VÝROBKU COLTLITE POPIS VÝROBKU FUNKCE VÝROBKU: Lamelové okno Coltlite je určeno k přirozenému větrání budov, dennímu osvětlení vnitřních prostor budov a dále k přirozenému odvodu kouře a tepla při požáru. Okno Coltlite

Více