TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
|
|
- Roman Veselý
- před 2 lety
- Počet zobrazení:
Transkript
1 TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1
2 Šíření tepla vedením, prouděním a zářením!!! Přenos tepla: je předávání části energie ( I. P.T.).!!! Směr přenosu tepla: teplejší studenějšímu ( II. P.T.). Šíření vedením (kondukcí): Přenos tepla mezi látkami které jsou v přímém kontaktu. Systémy jsou makroskopicky v klidu, nositelem jsou např. kmity krystalové mříže (šíří se rychlostí zvuku). Šíření prouděním (konvekcí): Makroskopický pohyb látky, např. v tekutinách či plynech. Šíření zářením (radiací): Není vázáno na látku, nositelem jsou elektromagnetické vlny (šíří se rychlostí světla). 2
3 Stacionární vedení s dokonalou i nedokonalou izolací Stacionárni (ustálené) vedení tepla: t.j., ϑ = ϑ(x), ale né času. Teplota soustavy je funkcí místa, Pozn: Nestacionární (neustálené) vedení tepla: ϑ = ϑ(x, t). Tepelná rovnováha (termicky homogenní soustava): ϑ = const. A : Jednorozměrné ustálené vedení tepla v homogenním prostředí a) Dokonalá tepelná izolace lineární pokles ϑ. 3
4 Teplo prošlé libovolným kolmým pr uřezem S za dobu t je Q = λs ϑ 1 ϑ 2 l t S je plocha, λ je součinitel tepelné vodivosti a je spád teploty ϑ 1 ϑ 2 l = ϑ l b) Nedokonalá tepelná izolace = únik tepla nelineární pokles ϑ. 4
5 !!! Definujme hustotu tepelného toku φ tj., množství tepla které projde za 1s jednotkovou plochou kolmou ke směru šíření tepla, tj.: [φ] = [Q/(tS)] = [λ(ϑ 1 ϑ 2 )/l] Pokud tloušt ku vrstvy (např. délku tyče) zmenšíme na dx, bude tepelný tok φ = λ dϑ dx Tepelný tok v obecně dim. homogenním a izotropním prostředí je φ φ = λ gradϑ = λ ϑ Fourier uv zákon vedení tepla. Pozn.: Srovnejte se vztahem E = gradφ ekvipotenciály izotermy; E φ 5
6 B : Neustálené vedení tepla Nyní ϑ = ϑ(x, t). Obklopme vyšetřovaný bod malou uzavřenou ploškou S. Za dt projde elementem ds teplo dq = φ dsdt = λ gradϑ dsdt Celkem vyproudí Q 1 = (S) λ gradϑ dsdt G. O. = (V ) λdiv gradϑ dtdv = (V ) λ 2 ϑ dtdv I : Uvnitř V nejsou zdroje tepla jen únik tepla pokles teploty dϑ. Označíme-li měrnou tepelnou kapacitu daného objemu jako c ztráta tepla díky poklesu teploty je Q 2 = c dmdϑ = cϱ dϑdv (V ) (V ) 6
7 ZZE: Q 1 = Q 2 cϱ dϑ = λ 2 ϑ dt ϑ(x, t)/ t = (λ/cϱ) ϑ a ϑ(x, t) ϑ(x, t) t = 0 a = λ/cϱ je součinitel teplotní vodivosti. Poslední rovnice vyjadřuje zákon nestacionárního vedení tepla v homogenním izotropním prostředí bez tepelných zdroj u - rovnice vedení tepla nebo také difuzní rovnice II : Uvnitř V jsou zdroje tepla produkce tepla Q p 7
8 Jestliže produkované teplo má jistý měrný tepelný výkon P ϑ produkovanou v objemu V = 1m 3 za 1s) (tj., energii Q p = Q V = (V ) P ϑ dtdv = Q V + Q ϑ λ 2 ϑ dtdv ; Q ϑ = (V ) (V ) cϱ dϑdv Q V odpovídá teplu které opustí V (tj., < 0); Q ϑ odpovídá teplu které je zodpovědné za zvýšení teploty ve V (tj., > 0) a ϑ(x, t) ϑ(x, t) t + P ϑ cϱ = 0 Toto je obecná rovnice vedení tepla v homogenním izotropním prostředí. 8
9 Pozn.I: Není-li teplota funkcí času 2 ϑ = const. (= Poissonova rovnice) je analogem rovnice pro výpočet elektrostatického potenciálu v přítomnosti el. náboj u 2 φ = ϱ e /ε 0 Není-li ani zdroj tepelné energie 2 ϑ = 0 (= Laplaceova rovnice), opět analogie s elektrostatikou Pozn.II: Pro lineární funcki: ϑ(x, t) = k x stacionární případ s dokonalou izolací dq 1 = λ( ϑ) dsdt = λk dsdt φ = λk = const. ϑ(x, t) = kx 1 Pozn.III: Pokud prostředí není izotropní (tj., směrově nezávislé) λ není obecně skalár, ale tenzor λ( ϑ) ds λ ij ( ϑ) i ds j Pokud λ není konstantní, ale mění se skokem přestup tepla, např. přestup tepla vrstvou. 9
10 Šíření tepla prouděním Probíhá v tekutinách a plynech či plazmatu a odpovídá makroskopickému transportu látky hustota látky se mění v závislosti na lokálních teplotních gradientech. Nedá se popsat rovnicí pro vedení tepla!!! Musí se používat rovnice pro proudění kontinua (např. Navier Stokesova rovnice v tekutinách) či r uzné transportní rovnice (např. Vlasovova či Balescuova rovnice ve fyzice plazmatu) Šíření tepla zářením Energie se šíří ve formě elektromagnetického záření (fotony). Přenos tepla probíhá i ve vakuu. Všechny zahřáté látky vyzařují elektromagnetické záření (dusledkem oscilací elektronu v atomech) 10
11 Při nižších teplotách (cca do 500 C) je toto záření infračervené (λ = m) Vyzařování je závislé na teplotě tělesa Každé těleso také pohlcuje elektromagnetické záření Spektrum teplotního záření pevných látek a kapalných látek je spojité 11
12 Přestup a prostup tepla Přestup tepla: přenos tepla mezi dvěma navzájem sousedícími prostředími. Prostup tepla: přenos tepla mezi dvěma prostředími která jsou oddělena děĺıcí vrstvou z jiného materiálu. Základní veličiny: a) Koeficient přestupu tepla: α je definován jako: α = φ ϑ 1 ϑ 1 φ je hustota tepelného toku jdoucího rozhraním, ϑ 1 je teplota na rozhraní a ϑ 1 je teplota uvnitř. ϑ 1 > ϑ 1 12
13 a) Koeficient prostupu tepla: k je definován jako: k = φ ϑ 1 ϑ 2 φ je hustota tepelného toku jdoucího rozhraním, ϑ 1 je teplota před vstupem to oddělujícího materiálu ϑ 2 je teplota po výstupu z oddělujícího materiálu. ϑ 1 > ϑ 2 DÚ: Dokažte že při ustáleném proudění s dokonalou izolací platí 1 k = 1 α 1 + d λ + 1 α 2 13
14 Note: Koeficient prostupu tepla se také běžne značí jako U. Note: Protože U uvádí kolik tepelné energie (ve Wattech) za sekundu unikne při teplotním rozdílu 1C na obou stranách materiálu jedním m 2, je tím méně tepelných ztrát, čím je tato hodnota nižší úspora financí. DÚ: Identifikujte prostupy a přestupy tepla. 14
15 DÚ: Jsou uvedené 3 hodnoty pro U g vzájemně konzistentní? 15
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
FBI nevratné procesy Nevratný proces Nevratný proces nevratný ireverzibilní děj relaxační procesy Fickův zákon Fourierův zákon Ohmův zákon
Přenosové jevy Procesy, které probíhají přirozeně, nemohou nikdy samy od sebe proběhnout opačným směrem. Takové procesy nazýváme nevratné procesy. Příklad: Nevratné procesy začínají nějakým vnějším zásahem,
Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Termodynamika nevratných procesů
1 Nevratný proces Přenosové jevy.1 Sdílení tepla.1.1 Tepelný tok Hustota tepleného toku Celkový tepelný tok. Sdílení tepla vedením 3 Tepelná vodivost 3.1 Wiedemannův-Franzův zákon 4 Tepelný odpor 5 Sdílení
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
= = ε =. = ( + ) =. = = ε =. = ( + ) =. = =, = = =, = ( ) = + ϱ = + = = (ϱ ϱ ) = = = ϱ = ϱ = ϱ = ϱ = ϱ = + +, + +, + + +, + + =, +, + + = = =, = (ϱ ϱ ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ
VI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
PROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Školení CIUR termografie
Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
= = =. = ( + ) =. = = =. = ( + ) =. = =, = = = = ( ) = + = + = = ( ) = = = = = = = = + +, + +, + + +, + + =, +, + + = = =, = ( ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ ΔW = + ΔU ΔQ ΔW = + U
FYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
elektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
Termodynamika v biochemii
Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém
3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014
3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich
Vedení tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI Fyzikální praktikum z molekulové fyziky a termodynamiky Vedení tepla Úvod V nerovnovážném stavu, kdy na soustavu působí
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:
Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA
. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia
BH059 Tepelná technika budov
BH059 Tepelná technika budov Neustálený teplotní stav Teplotní útlum a fázové posunutí teplotního kmitu konstrukce Pokles dotykové teploty podlahy θ 10 O ustáleném (stacionárním)teplotním stavu mluvíme
Úvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
Teplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 4 PŘENOS TEPLA
VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ FAKULA SAVEBNÍ PAVEL SCHAUER APLIKOVANÁ FYZIKA MODUL 4 PŘENOS EPLA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc.
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Energetické vlastnosti klimatizovaných interiérů
nergetické vlastnosti klimatizovaných interiérů Michal Osladil Katedra elektroenergetiky, FI, VŠB Technická univerzita Ostrava 17. listopadu 15, 708 33, Ostrava-Poruba michal.osladil@vsb.cz Abstrakt. Příspěvek
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Identifikátor materiálu: ICT 2 54
Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 7. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 7 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
Matematické modely a způsoby jejich řešení. Kateřina Růžičková
Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1203_základní_pojmy_3_pwp Název školy: Číslo a název projektu: Číslo a název šablony
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
- není prostorově orientován - ve zvoleném místě prostoru (času) ho lze vyjádřit jednou hodnotou - typické skaláry: teplota, tlak, koncentrace
1 Úvod Nejdřív bude zopakována matematická část týkající se skalárů, vektorů a tenzorů, práce s nimi. Pak skalární součin a k čemu je dobrý, zjednodušený zápis soustav rovnic pomocí gradientu, divergence,
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze
Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
TERMIKA. (Petr Jizba) Doporučená literatura:
Doporučená literatura: TERMIKA (Petr Jizba) http://www.fjfi.cvut.cz/files/k402/pers_hpgs/jizba/ Z. Maršák, Termodynamika a statistická fyzika (ČVUT 2000) J. Kvasnica, Termodynamika, (SNTL 1965) K. Huang,
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
MIKROPORÉZNÍ TECHNOLOGIE
MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!
Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika
Modelování vázaného šíření teplotněvlhkostního
Modelování vázaného šíření teplotněvlhkostního pole v rezonanční desce hudebního nástroje Ing. Pavlína Suchomelová Ing. Jan Tippner, Ph.D. Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav
TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček
TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v
Solární systémy. Termomechanický a termoelektrický princip
Solární systémy Termomechanický a termoelektrický princip Absorbce světla a generace tepla Absorpce je způsobena interakcí světla s částicemi hmoty (elektrony a jádry) Je-li energie částice před interakcí
Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
Bezkontaktní termografie
Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření
POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
tepelné vodivosti v kovech. Energie ve formě tepla mikroskopicky reprezentovaná kinetickou a potenciální
Měříme součinitel tepelné vodivosti kovů JIŘÍ ERHART LUBOŠ RUSIN PETR HÁNA Fakulta přírodovědně-humanitní a pedagogická TU, Liberec Teoretický úvod V pevných látkách se teplotní vodivost realizuje různými
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní