ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

Rozměr: px
Začít zobrazení ze stránky:

Download "ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz"

Transkript

1 ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík, CSc.

2 VII. VOLBA A VÝBĚR PŘÍZNAKŮ

3 ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace; moc příznaků možná nepřiměřená pracnost, vysoké náklady; KOMPROMIS (potřebujeme kritérium)

4 ZAČÍNÁME KOMPROMIS (potřebujeme kritérium) přípustná míra spolehlivosti klasifikace (např. pravděpodobnost chybné klasifikace, odchylka obrazu vytvořeného z vybraných příznaků vůči určitému referenčnímu); určit ty příznakové proměnné, jejichž hodnoty nesou nejvíce informace z hlediska řešené úlohy, tj. ty proměnné, kterou jsou nejefektivnější pro vytvoření co nejoddělenějších klasifikačních tříd;

5 ZAČÍNÁME algoritmus pro určení příznakových veličin nesoucích nejvíce informace pro klasifikátor není dosud teoreticky formalizován - pouze dílčí suboptimální řešení spočívající: ve výběru nezbytného množství veličin z předem zvolené množiny; vyjádření původních veličin pomocí menšího počtu skrytých nezávislých veličin, které zpravidla nelze přímo měřit, ale mohou nebo také nemusí mít určitou věcnou interpretaci

6 VOLBA PŘÍZNAKŮ počáteční volba příznakových veličin je z velké části empirická, vychází ze zkušeností získaných při empirické klasifikaci člověkem a závisí, kromě rozboru podstaty problému i na technických (ekonomických) možnostech a schopnostech hodnoty veličin určit

7 ZÁSADY PRO VOLBU PŘÍZNAKŮ výběr veličin s minimálním rozptylem uvnitř tříd

8 ZÁSADY PRO VOLBU PŘÍZNAKŮ výběr veličin s maximální vzdáleností mezi třídami

9 ZÁSADY PRO VOLBU PŘÍZNAKŮ výběr vzájemně nekorelovaných veličin pokud jsou hodnoty jedné příznakové veličiny závislé na příznacích druhé veličiny, pak použití obou těchto veličin nepřináší žádnou další informaci pro správnou klasifikaci stačí jedna z nich, jedno která

10 ZÁSADY PRO VOLBU PŘÍZNAKŮ výběr veličin invariantních vůči deformacím volba elementů formálního popisu závisí na vlastnostech původních i předzpracovaných dat a může ovlivňovat způsob předzpracování

11 VÝBĚR PŘÍZNAKŮ formální popis objektu původně reprezentovaný m rozměrným vektorem se snažíme vyjádřit vektorem n rozměrným tak, aby množství diskriminační informace obsažené v původním vektoru bylo v co největší míře zachováno Z: Y m X n

12 VÝBĚR PŘÍZNAKŮ dva principiálně různé způsoby: selekce nalezení a odstranění těch příznakových funkcí, které přispívají k separabilitě klasifikačních tříd nejméně; extrakce transformace původních příznakových proměnných na menší počet jiných příznakových proměnných

13 VÝBĚR PŘÍZNAKŮ dva principiálně různé způsoby: selekce nalezení a odstranění těch příznakových funkcí, které přispívají k separabilitě klasifikačních tříd nejméně; extrakce transformace původních příznakových proměnných na menší počet jiných příznakových proměnných Abychom dokázali realizovat libovolný z obou způsobů výběru, je třeba definovat a splnit určité podmínky optimality.

14 VÝBĚR PŘÍZNAKŮ PODMÍNKY OPTIMALITY Nechť J je kriteriální funkce, jejíž pomocí vybíráme příznakové veličiny. V případě selekce vybíráme vektor x= T (x 1,,x n ) ze všech možných n-tic χ příznaků y i, i=1,2,,m. Optimalizaci selekce příznaků formálně zapíšeme jako Problémy k řešení: Z( y) = extr J( χ) stanovení kriteriální funkce; χ stanovení nového rozměru kriteriální funkce; stanovení optimalizačního postupu

15 VÝBĚR PŘÍZNAKŮ PODMÍNKY OPTIMALITY Nechť J je kriteriální funkce, jejíž pomocí vybíráme příznakové veličiny. V případě extrakce transformujeme příznakový prostor na základě výběru zobrazení Z z množiny všech možných zobrazení ζ prostoru Y m do X n, tj. Z( y) = extr J( ζ) Příznakový prostor je pomocí optimálního zobrazení Z dán vztahem x =Z(y) Problémy k řešení: stanovení kriteriální funkce; stanovení nového rozměru kriteriální funkce; zvolení požadavků na vlastnosti zobrazení; ζ stanovení optimalizačního postupu

16 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY pro bayesovské klasifikátory je-li χ = (χ 1, χ 2,, χ n ) možná n-tice příznaků, vybraných ze všech možných m hodnot y i, i=1,,m, n m, pak pravděpodobnost chybného rozhodnutí P eme je pro tento výběr rovna P eme = J(a*) = minj(a) = minlχ ( ωr )dχχ = a [ p( χ) p( χ ω). P( ω ] = min = ω ω = χ r r)dχ p( χ)dχ maxp( χ r). P( r) dχ r r χ χ 1 maxp( χ ωr). P( ωr χ r χ r = ) dχ

17 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY pro dichotomický bayesovský klasifikátor (R=2) je celková pravděpodobnost chybného rozhodnutí e = 1 p( χ ω ). P( ω ) p( χ ω ). P( ω ) d χ e χ pravděpodobnost chyby bude maximální, když integrál bude nulový obě váhované hustoty pravděpodobnosti budou stejné, pravděpodobnost chyby bude minimální, když se obě hustoty nebudou překrývat. Čím větší vzdálenost mezi klasifikačními třídami, tím menší pravděpodobnost chyby Integrál může být považován za vyjádření pravděpodobnostní vzdálenosti

18 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY zobecnění J( χ) [ p( χ ω). P( ω),i 1,2 ] = f i i = dχ χ J(χ) χ 0; J(χ) = 0, když jsou hustoty pravděpodobnosti totožné; J(χ) χ je maximální, když se hustoty nepřekrývají

19 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY

20 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY

21 SELEKCE PŘÍZNAKŮ PRAVDĚPODOBNOSTNÍ MÍRY pro více klasifikačních tříd tzv. bayesovská vzdálenost J R = ω 2 P( r χ).p( χ) dχ r 1 BA χ =

22 SELEKCE PŘÍZNAKŮ POMĚR ROZPTYLŮ rozptyl uvnitř třídy pomocí disperzní matice D( χ) kde R T = P( ω) ( χ µ ). ( χ µ ). p( χ ω)dχ, χ r = 1 r χ µ = ( χ ω) dχ r p r r r r

23 SELEKCE PŘÍZNAKŮ POMĚR ROZPTYLŮ rozptyl mezi třídami může být dán pokud R 1 R = B ( χ) P( ω µ r = 1s = r + 1 rs T r ).P( ωs). µ rs. rs, kde µ = µ µ R = µ 0 P( ωr).µ r = χ. p( χ) dχ lze r = 1 také psát R = T B( χ ) P( ωr ).( µ r µ 0 ). ( µ r µ 0 r= 1 r χ s ),

24 SELEKCE PŘÍZNAKŮ POMĚR ROZPTYLŮ vyjádření vztahu obou rozptylů J r1 (χ)=tr(d -1 (χ).b(χ)) J r2 (χ)=tr(b(χ)/tr(d(χ)) J r3 (χ)= D -1 (χ).b(χ) = B(χ) / D(χ) J r4 (χ) = ln(j r3 (χ))

25 NEPRAVDĚPODOBNOSTNÍ METRIKY Euklidovská metrika (s nejnázornější geometrickou interpretaci) ρ 1/ 2 n 2 E ( x1, x2) = (x1i x2i) i = 1 Hammingova metrika (Manhattan m.) ρ H ( x, x 1 2 ) n = x i=1 Minkovského metrika ρ 1/ m n m ( M x1, x2) = x1i x2i i= 1 ( 1i x 2i

26 NEPRAVDĚPODOBNOSTNÍ METRIKY Euklidovská metrika (s nejnázornější geometrickou interpretaci) ρ 1/ 2 n 2 E ( x1, x2) = (x1i x2i) i = 1 Hammingova metrika (Manhattan m.) ρ H ( x, x 1 2 ) n = x i=1 Minkovského metrika ρ 1/ m n m ( M x1, x2) = x1i x2i i= 1 ( 1i x 2i

27 NEPRAVDĚPODOBNOSTNÍ METRIKY Euklidovská metrika (s nejnázornější geometrickou interpretaci) ρ 1/ 2 n 2 E ( x1, x2) = (x1i x2i) i = 1 Hammingova metrika (Manhattan m.) ρ H ( x, x 1 2 ) n = x i=1 Minkovského metrika ρ 1/ m n m ( M x1, x2) = x1i x2i i= 1 ( 1i x 2i

28 NEPRAVDĚPODOBNOSTNÍ METRIKY Čebyševova metrika ρ C x, x ) = max { x x } ( 1 2 i Čebyševovu metriku lze vyjádřit jako limitu 1i 2i ρ x, x ) = lim ρ ( x, x ) C( 1 2 M 1 2 m Sokalova metrika ρ S ( x 1, x 2 ) ρ = 2 ρe( x1, x2 n ) 1/ 2

29 NEPRAVDĚPODOBNOSTNÍ METRIKY Čebyševova metrika ρ C x, x ) = max { x x } ( 1 2 i Čebyševovu metriku lze vyjádřit jako limitu 1i 2i ρ x, x ) = lim ρ ( x, x ) C( 1 2 M 1 2 m Sokalova metrika ρ S ( x 1, x 2 ) ρ = 2 ρe( x1, x2 n ) 1/ 2

30 NEPRAVDĚPODOBNOSTNÍ METRIKY Čebyševova metrika ρ C x, x ) = max { x x } ( 1 2 i Čebyševovu metriku lze vyjádřit jako limitu 1i 2i ρ x, x ) = lim ρ ( x, x ) C( 1 2 M 1 2 m Sokalova metrika ρ S ( x 1, x 2 ) ρ = 2 ρe( x1, x2 n ) 1/ 2

31 NEPRAVDĚPODOBNOSTNÍ METRIKY Volba podle toho jak potřebujeme posílit vliv proměnných, u nichž je pro dané obrazy x 1 a x 2 velký rozdíl.

32 NEPRAVDĚPODOBNOSTNÍ METRIKY nevýhody: fyzikální nesmyslnost vytvářet kombinaci veličin s různým fyzikálním rozměrem jsou-li příznakové veličiny zahrnovány do výsledné vzdálenosti se stejnými vahami, zvyšuje se vliv korelovaných veličin

33 NEPRAVDĚPODOBNOSTNÍ METRIKY možné odstranění (potlačení) nevýhod: vztažením k nějakému vyrovnávacímu faktoru, např. střední hodnotě, směrodatné odchylce, normě daného obrazu x=(x 1, x 2,,x n ) rozpětí i x = = maxx j n i=1= ij x 2 i, minx j ij, resp. standardizací podle vztahu xij xj uij =, i = 1,...,n; j = σ σ j 1,...,K

34 NEPRAVDĚPODOBNOSTNÍ METRIKY možné odstranění (potlačení) nevýhod: lze i subjektivně či na základě nějaké apriorní informace o úloze přiřadit každé příznakové proměnné váhový koeficient, např. váhovaná Minkovského metrika má tvar 1/ m n m ρ ( x, x ) a.x x WM 1 2 = i 1i 2i i= 1

35 NEPRAVDĚPODOBNOSTNÍ METRIKY možné odstranění (potlačení) nevýhod: váhování příznaků lze zapsat maticově u i = T C.x i, kde prvky transformační matice C jsou definovány jako c ii = a i, pro i = 1,, n c ij = 0, pro i j Za tohoto formalismu je Euklidova metrika definována vztahem ρ [ ] T T ( x x ). C. C.( x 1/ 2 E ( x1, x2) = x2)

36 NEPRAVDĚPODOBNOSTNÍ METRIKY možné odstranění (potlačení) nevýhod: pokud jsou složky transformovaného obrazu dány lineární kombinací více složek původního obrazu, není ani matice C, ani matice C. T C čistě diagonální. Použijeme-li místo matice C. T C inverzní kovarianční matice K -1, pak definiční vztah pro váhovanou Euklidovu metriku je definičním vztahem pro Mahalanobisovu metriku ρ [ ] 2 T 1 1/ 2 E ( u1, u2) = ρma( x1, x2) = ( x1 x2). K.( x1 x2)

37 NEPRAVDĚPODOBNOSTNÍ METRIKY možné odstranění (potlačení) nevýhod: pokud jsou složky transformovaného obrazu dány lineární kombinací více složek původního obrazu, není ani matice C, ani matice C. T C čistě diagonální. Použijeme-li místo matice C. T C inverzní kovarianční matice K -1, pak definiční vztah pro váhovanou Euklidovu metriku je definičním vztahem pro Mahalanobisovu metriku ρ [ ] 2 T 1 1/ 2 E ( u1, u2) = ρma( x1, x2) = ( x1 x2). K.( x1 x2) Kovarianční matice dvou (náhodných) vektorů x= T (x 1,,x m ) a y= T (y 1,,y n ) je dána vztahem T K(x,y)=E((x-Ex). T (y-ey)) = [cov(x i,y j )] m,n

38 KOEFICIENTY KORELACE

39 KOEFICIENTY KORELACE TO SNAD OPAKOVAT NEMUSÍME

40 KOEFICIENTY ASOCIACE

41 KOEFICIENTY ASOCIACE Koeficienty asociace jsou míry podobnosti mezi obrazy obsahujícími logické (binární, dichotomické) příznakové veličiny. Ke zjištění podobnosti je třeba sledovat shodu či neshodu hodnot odpovídajících si příznaků čtyři možné situace

42 KOEFICIENTY ASOCIACE a) u obou obrazů sledovaný jev nastal (oba odpovídající si příznaky mají hodnotu true) pozitivní shoda; b) u obrazu x i jev nastal (x ik = true), zatímco u obrazu x j nikoliv (x jk = false); c) u obrazu x i jev nenastal (x ik = false), zatímco u obrazu x j ano (x jk = true); d) u obou obrazů sledovaný jev nenastal (oba odpovídající si příznaky mají hodnotu false) negativní shoda;

43 KOEFICIENTY ASOCIACE

44 KOEFICIENTY ASOCIACE sledujeme, kolikrát pro všechny příznaky obrazů x i a x j nastaly případy shody a neshody A+D celkový počet shod příznaků; B+C celkový počet neshod příznaků; A+B+C+D =n tj. počet příznaků obou obrazů Na základě počtu zjištěných shod a neshod jsou definovány různé koeficienty asociace.

45 KOEFICIENTY ASOCIACE Jaccardův (Tanimotův) koeficient A s J( x i, x j) = A + B + C (není definován pro dvojice obrazů, které vykazují negativní shodu ve všech příznacích); Soklův- Michenerův koeficient A + D s SM( x i, x j) = A + B + C + D Diceův koeficient 2A 2A sd ( xi, xj ) = = 2A + B + C (A + B) + (A + C)

46 KOEFICIENTY ASOCIACE Russelův- Raoův koeficient A s RR ( x i, x j ) = A + B + C + D Asociační koeficienty zpravidla nabývají hodnot z intervalu 0,1. V případě R-R koeficientu je při srovnání dvou týchž obrazů hodnota s RR = 1 pouze když došlo u všech příznaků jen k pozitivní shodě.

47 KOEFICIENTY ASOCIACE Rogersův-Tanimotův koeficient A + D A + D s RT( x i, x j) = = A + D + 2.(B + C) (B + C) + (A + B + C + D) Hammanův koeficient A + D (B + C) sh ( xi, xj ) = A + B + C + D Na rozdíl od všech předcházejících nabývá Hammanův koeficient hodnot z intervalu -1,1, přičemž hodnoty -1 nabývá, pokud se příznaky neshodují ani jednou, 0 nabývá když je počet shod a neshod v rovnováze a +1 je v případě úplné shody mezi všemi příznaky.

48 KOEFICIENTY ASOCIACE Na základě četností A až D lze vytvářet také dříve uvedené míry: Pearsonův korelační koeficient A.D B.C sr( xi, xj) = (A + B).(C + D).(A + C).(B + kritérium shody χ 2 ) D) s χ ( x, x) = i j n.s 2 r ( x i, x j

49 KOEFICIENTY ASOCIACE Na základě četností A až D lze vytvářet také dříve uvedené míry: Hammingova vzdálenost ρ H ( xi, xj ) = B + C Euklidova vzdálenost ρe ( xi, xj) = B + C

50 KOEFICIENTY ASOCIACE Z koeficientů asociace, které vyjadřují míru podobnost lze odvodit koeficienty nepodobnosti d ( x, x) = 1 s ( x, x) X i j V případě Jaccardova a Dicova koeficientu nepodobnosti je dodefinována hodnota i pro případy úplné negativní shody tak, že d J (x i,x j ) = d D (x i,x j ) = 0 pro A = B = C = 0 x i j

51 KOEFICIENTY ASOCIACE NÁZEV ROZSAH VZTAH Cosine 0.0,1.0 Dice 0.0,1.0 Euclid 0.0,1.0 Forbes 0.0, Hamman -1.0,1.0 Jaccard 0.0,1.0 Kulczynski 0.0,1.0 Manhattan 1.0,0.0

52 KOEFICIENTY ASOCIACE NÁZEV ROZSAH VZTAH Sokal-Michener 0.0,1.0 Pearson -1.0,1.0 Rogers-Tanimoto 0.0,1.0 Russell-Rao 0.0,1.0 Simpson 0.0,1.0 Yule -1.0,1.0

53 PODOBNOST MEZI TŘÍDAMI podobnost jednoho obrazu s více obrazy jedné třídy (skupin, množin, shluků); podobnost obrazů dvou tříd (skupin, množin, shluků); zavedeme funkci, která ke každé dvojici skupin obrazů (C i,c j) přiřazuje číslo D(C i,c j), které podobně jako míry podobnosti či nepodobnosti (metriky) jednotlivých obrazů musí splňovat minimálně podmínky:

54 PODOBNOST MEZI TŘÍDAMI PODMÍNKY (S1) D(C i,c) j 0 (S2) D(C i,c j ) = D(C j,c i ) (S3) D(C i,c i ) = max i,j D(C i,c j ) (S3 ) (pro míry podobnosti) D(C i,c i ) = 0 pro všechna i (pro míry podobnosti)

55 METODA NEJBLIŽŠÍHO SOUSEDA je-li d libovolná míra nepodobnosti (vzdálenosti) dvou obrazů a C i ac j jsou libovolné skupiny množiny obrazů {x i }, i=1,,k, potom metoda nejbližšího souseda definuje mezi skupinami C i ac j vzdálenost Pozn.: D NN ( C i, C i ) = min d(x,x ) xp C i x C Při použití této metody se mohou vyskytovat v jednom shluku často i poměrně vzdálené obrazy. Tzn. metoda nejbližšího souseda může generovat shluky protáhlého tvaru. q j p q

56 METODA K NEJBLIŽŠÍCH SOUSEDŮ Je zobecněním metody nejbližšího souseda. Je definována vztahem D NNk ( C i, C i ) = min xp C x C k d(x tj. vzdálenost dvou shluků je definována součtem k nejkratších vzdáleností mezi obrazy dvou skupin obrazů. q i j p,x q ), Pozn.: Při shlukování metoda částečně potlačuje generování řetězcových struktur.

57 METODA NEJVZDÁLENĚJŠÍHO SOUSEDA opačný princip než nejbližší sousedi Pozn.: D ( C, C ) = FN i i max d(x xp C i x C Generování protáhlých struktur tato metoda potlačuje, naopak vede ke tvorbě nevelkých kompaktních shluků. je možné i zobecnění pro více nejbližších sousedů D FNk ( C i, C i ) = q max x C p i xq C j j k p d(x,x p q,x ) q ),

58 METODA CENTROIDNÍ vychází z geometrického modelu v euklidovském n rozměrném prostoru a určuje vzdálenost dvou tříd jako čtverec Euklidovy vzdálenosti těžišť obou tříd. je-li těžiště třídy definováno jako střední hodnota z obrazů patřících do této třídy, tj. pak x rk = {xrk1,xrk2,...,xrkn}, xrj = xrik, i = D C ( C i, C i ) = ρ 2 E ( x i K k= 1, x j ), 1,...,n,

59 METODA PRŮMĚRNÉ VAZBY vzdálenost dvou tříd C i ac j je průměrná vzdálenost mezi všemi obrazy tříd C i ac j. Obsahuje-li shluk C i P obrazů ac j Q obrazů, pak jejich vzdálenost je definována vztahem Pozn.: D GA P Q 1 ( C i, Ci) = d(xp,xq). PQ p= 1 q= 1 Metoda často vede k podobným výsledkům jako metoda nejvzdálenějšího souseda.

60 WARDOVA METODA vzdálenost mezi třídami (shluky) je definována přírůstkem součtu čtverců odchylek mezi těžištěm a obrazy shluku vytvořeného z obou uvažovaných shluků C i ac j oproti součtu čtverců odchylek mezi obrazy a těžišti v obou shlucích C i ac j.

61 WARDOVA METODA x x x jsou-li xi a j těžiště tříd C i ac j a těžiště sjednocené množiny, pak Wardova vzdálenost obou shluků je definována výrazem Pozn.: D W ( C i, C i ) x i i j n = x C C k = 1 (x n n 2 (x x ) ik k + xi Cik= 1 xi Cjk= 1 Metoda má tendenci vytvářet shluky zhruba stejné velikosti, tedy odstraňovat shluky malé, resp. velké. ik (x x ik k ) 2 x k ) 2.

62 WARDOVA METODA

63 ALGORITMY SELEKCE PŘÍZNAKŮ výběr optimální podmnožiny obsahující n (n m) příznakových proměnných kombinatorický problém (m!/(m-n)!n! možných řešení) hledáme jen kvazioptimální řešení

64 ALGORITMUS OHRANIČENÉHO VĚTVENÍ předpoklad: monotónnost kritéria selekce - označíme-li X j množinu obsahující j příznaků, pak monotónnost kritéria znamená, že podmnožiny X 1 X 2 X j X m splňuje selekční kritérium vztah J(X 1 ) J(X 1 ) J(X m )

65 ALGORITMUS OHRANIČENÉHO VĚTVENÍ uvažme případ selekce dvou příznaků z pěti

66 ALGORITMUS SEKVENČNÍ DOPŘEDNÉ SELEKCE algoritmus začíná s prázdnou množinou, do které se vloží proměnná s nejlepší hodnotou selekčního kritéria; v každém následujícím kroku se přidá ta proměnná, která s dříve vybranými veličinami dosáhla nejlepší hodnoty kritéria, tj. J({X k+1 })=max J({X k y j }), y j {Y-X k }

67 ALGORITMUS SEKVENČNÍ ZPĚTNÉ SELEKCE algoritmus začíná s množinou všech příznakových veličin; v každém následujícím kroku se eliminuje ta proměnná, která způsobuje nejmenší pokles kriteriální funkce, tj. po (k+1). kroku platí J({X m-k-1 })=max J({X m-k -y j }), y j {X m-k }

68 ALGORITMY SEKVENČNÍ SELEKCE SUBOPTIMALITA Suboptimalita nalezeného řešení sekvenčních algoritmů je způsobena: dopředná selekce - tím, že nelze vyloučit ty veličiny, které se staly nadbytečné po přiřazení dalších veličin; zpětná selekce neexistuje možnost opravy při neoptimálním vyloučení kterékoliv proměnné; Dopředný algoritmus je výpočetně jednodušší, protože pracuje maximálně v n-rozměrném prostoru, naopak zpětný algoritmus umožňuje průběžně sledovat množství ztracené informace.

69 ALGORITMUS PLUS P MÍNUS Q po přidání p veličin se q veličin odstraní; proces probíhá, dokud se nedosáhne požadovaného počtu příznaků; je-li p>q, pracuje algoritmus od prázdné množiny; je-li p<q, varianta zpětného algoritmu

70 ALGORITMUS MIN - MAX Heuristický algoritmus vybírající příznaky na základě výpočtu hodnot kriteriální funkce pouze v jedno- a dvourozměrném příznakovém prostoru. Předpokládejme, že bylo vybráno k příznakových veličin do množiny {X k } a zbývají veličiny z množiny {Y-X k }. Výběr veličiny y j {Y-X k } přináší novou informaci, kterou můžeme ocenit relativně k libovolné veličině x i X k podle vztahu J(y j,x i ) = J(y j,x i ) - J(x i )

71 ALGORITMUS MIN - MAX Informační přírůstek J musí být co největší, ale musí být dostatečný pro všechny veličiny již zahrnuté do množiny X k. Vybíráme tedy veličinu y k+1, pro kterou platí J(y k+1,x k ) = max j min i J(y j,x i ), x i X k

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. VII. VOLBA A VÝBĚR PŘÍZNAKŮ ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace; moc příznaků možná nepřiměřená pracnost, vysoké

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VI. VOLBA A VÝBĚR PŘÍ ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace;

Více

Shluková analýza. Jiří Militky. Analýza experimentálních dat V. Červeně označené slide jsou jen pro doplnění informací a nezkouší se.

Shluková analýza. Jiří Militky. Analýza experimentálních dat V. Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Shluková analýza Jiří Militky Analýza experimentálních dat V Klasifikace objektů Rozdělení objektů do shluků dle jejich podobnosti

Více

4 STATISTICKÁ ANALÝZA VÍCEROZMĚRNÝCH DAT

4 STATISTICKÁ ANALÝZA VÍCEROZMĚRNÝCH DAT 4 SAISICKÁ ANALÝZA VÍCEROZMĚRNÝCH DA V technické biologické ale také lékařské praxi se často vedle informací obsažených v náhodném skaláru ξ vyskytují i informace obsažené v náhodném vektoru ξ s m složkami

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jří Holčík, CSc. INVESTICE Insttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a analýz IV - pokračování KLASIFIKACE PODLE MINIMÁLNÍ VZDÁLENOSTI METRIKY PRO URČENÍ VZDÁLENOSTI

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Shluková analýza dat a stanovení počtu shluků

Shluková analýza dat a stanovení počtu shluků Shluková analýza dat a stanovení počtu shluků Autor: Tomáš Löster Vysoká škola ekonomická v Praze Ostrava, červen 2017 Osnova prezentace Úvod a teorie shlukové analýzy Podrobný popis shlukování na příkladu

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky

Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky Interpretují rozdíly mezi předem stanovenými třídami Cílem je klasifikace objektů do skupin Hledáme

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT

MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT 8. licenční studium Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT Příklady: ) Najděte vlastní (charakteristická) čísla a vlastní

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Příklady ke čtvrtému testu - Pravděpodobnost

Příklady ke čtvrtému testu - Pravděpodobnost Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu

Více

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k? A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

AVDAT Mnohorozměrné metody metody redukce dimenze

AVDAT Mnohorozměrné metody metody redukce dimenze AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

NADSTAVBOVÝ MODUL MOHSA V1

NADSTAVBOVÝ MODUL MOHSA V1 NADSTAVBOVÝ MODUL MOHSA V1 Nadstavbový modul pro hierarchické shlukování se jmenuje Mod_Sh_Hier (MOHSA V1) je součástí souboru Shluk_Hier.xls. Tento soubor je přístupný na http://jonasova.upce.cz, a je

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D. Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

VÍCEKRITERIÁLNÍ ROZHODOVANÍ

VÍCEKRITERIÁLNÍ ROZHODOVANÍ VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Detekce kartografického zobrazení z množiny

Detekce kartografického zobrazení z množiny Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

NMAI059 Pravděpodobnost a statistika

NMAI059 Pravděpodobnost a statistika NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )

Více

Míry podobnosti, základy fuzzy matematiky

Míry podobnosti, základy fuzzy matematiky Evropský sociální fond Investujeme do vaší budoucnosti Míry podobnosti, základy fuzzy matematiky Matematika pro informatiky, FIT ČVUT Martin Holeňa, 9. týden LS 2010/2011 O čem to bude? Přehled vzdáleností

Více

Státnice odborné č. 20

Státnice odborné č. 20 Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více