Matematické ...MINUT VKY. 7. ročník / 2. d í l. pro vzdělávací oblast Matematika a její aplikace dle RVP ZV
|
|
- Iva Vávrová
- před 6 lety
- Počet zobrazení:
Transkript
1 Matematické...MINUT VKY pro vzdělávací oblast Matematika a její aplikace dle RVP ZV. ročník /. d í l. Racionální čísla. Poměr, přímá a nepřímá úměrnost. Čtyřúhelníky. Procenta. Hranoly. Tabulky, grafy, diagramy, závislosti, projekty
2 Podobně jako k učebnicím pro. ročník základních škol předkládáme i žákům. ročníku matematické...minutovky. Stejně jako v předchozích ročnících jsou zaměřeny především na důkladné procvičování základních početních operací, které má zajistit upevnění nabytých dovedností a umožnit žákům získat potřebnou jistotu, zběhlost a rychlost. Navíc jsou od šestého ročníku rozvíjeny a upevňovány dovednosti v oblasti geometrie. Forma...minutovek se oproti minulým letům mírně proměnila: tentokrát 0 různorodých cvičení je rozděleno do dvou sešitů. Procvičovány jsou především vědomosti a dovednosti z geometrie a z oboru celých a racionálních čísel i schopnost orientovat se v řadách, tabulkách, grafech, diagramech apod....minutovky byly vytvořeny jako součást Matematiky pro. ročník vydávané pedagogickým nakladatelstvím Prodos v Olomouci. Obsah. Racionální čísla... M, str.. Poměr, přímá a nepřímá úměrnost... M, str.. Čtyřúhelníky... M, str. 00. Procenta... M, str. 0. Hranoly... M, str.. Tabulky, grafy, diagramy, závislosti, projekty... Recenzovaly: Mgr. Edita Doubravská; RNDr. Helena Binterová, Ph. D. Schválilo MŠMT čj.: MSMT- /0 dne. května 0 k zařazení do seznamu učebnic pro základní vzdělávání jako součást ucelené řady učebnic pro vzdělávací obor Matematika a její aplikace s dobou platnosti šest let. Prodos 00 Veškerá práva k dílu, zejména právo autorské a licenční, jsou v držení nakladatelství PRODOS spol. s r.o. Žádná část publikace nesmí být reprodukována (tiskem, jako fotokopie, elektronickými či jinými me to dami), zpracována ani dále šířena elektronickým či mechanickým kopírováním bez písemného sou hla su držitele práv s výjimkou případů povolených zákonem. Kompletní výsledky cvičení najdete na ucebnice.org/vysledky.
3 . Racionální čísla Vypočítej. a) = 0 d) ( ) = g) ( ) + ( ) + (+) = 0 b) + ( ) = e) : ( ) = h) ( ) ( ) (+) = c) ( ) + ( ) = 0 f) ( ) : ( ) = i) ( ) = 0 0 Vypočítej. a) ( + ) : ( ) = b) ( ) + ( ) = ( ) = ( 0) = 0 c) ( ) : ( ) = d) ( ) : + ( ) ( ) = + = 0 e) : ( ) = + = f) + ( ) = počítám s celými čísly 0 Vypočítej do sešitu nebo na volný list papíru a doplň výsledek. a), +, 0, =,0 d) 0,0, = b), 0, 0,0 =, e), : = c),, = 0, f) 0, :, =, 0,, Zaokrouhli na řád uvedený v závorce. a),, (setiny) c), (desetiny) b) 0, 0, (desetiny) d), 0 (desítky) počítám s desetinnými čísly 0 Vypočítej. a) + b) + = + = c) d) + + = : = počítám se zlomky 0
4 . Racionální čísla Znázorni na číselné ose čísla. Uspořádej je podle velikosti. a),; ;,; ; ;, Čísla uspořádaná vzestupně: ;,;,; ;,;,,, 0 b) ; ; ; ; Čísla uspořádaná sestupně: ; ; ; ; 0 uspořádám racionální čísla 0 Vypočítej. a), +, =, g), +, =, b), + (,) =, h),, =, c), + 0, =, i), +, 0,0 = d),0, =, j) 00,0,, =, e), +, =, k) 0,,0 +, =, f),, =, l),, + 0,0 = sečtu a odečtu záporná desetinná čísla 0 Zapiš pod sebe a vypočítej. a) 0, (+) ( ) =, c) ( 0,) ( 0,) ( 0,) = b),, ( ) 0, =, d) (,) ( ) (,) (+0,) = 0,0,0
5 . Racionální čísla Vypočítej. Výpočty piš do sešitu nebo na volný list papíru. a), : ( ) =, e),0 : 0, = 0, b), : ( ) =, f), : 0, = c) 0, : =, g) : ( 0,00) = 000 d) 0, : 0,0 = h), : 0, =, vynásobím a vydělím záporná desetinná čísla 0 Doplň tabulky. Výpočty piš do sešitu nebo na volný list papíru. +,0, 0,0,,,,00, 0,,,0,,,,,, 0,,,, 0,,,,, 0,,,,,,,0, 0, 0,,,,,0,,, 0,0,,,0,,,,, 0,,,0,, 0, 0,0 0, 0 0,,,,, 0,,,,,,,0,,,,,,,,,0,0, 0,0,,0, 0, 0,,0,,0,0 0,0,0 0,0,,, 0, 0,, 0,
6 . Racionální čísla Doplň pyramidy. + 0,,,, 0, 0,, 0,, 0, 0, 0,,, +,,,,0,,,, 0,,,0,,,0, 0, 0,, 0,,,, +,,,,,,,,,,,,,,,0,,,,,,,, 0,,,, 0, +,,,,,, 0,,,, 0, 0,,,, 0 Doplň hady. a),, +,0 +,,, 0, 0,,,, b) +,, +,,,0,,, +, +, :, +, : ( 0,) 0,,, : , +, 0,,, správně vypočítám příklady s racionálními čísly 0
7 . Racionální čísla Otestuj své znalosti Uspořádej daná racionální čísla podle velikosti vzestupně nebo sestupně. a),; 0 ; 0,; ; ; ; Čísla uspořádaná vzestupně: 0,; ; 0 ; ; ; ;, b) 0,; 0 ;,; ; ; ; Čísla uspořádaná sestupně: ; ; 0,; 0 ; ; =, Vypočítej do sešitu nebo na volný list papíru a výsledek zapiš jako zlomek v základním tvaru. a) + + = d) = b) : = e) + + = 0 c) = f) + = 0 Doplň pyramidy.,,,,,,,, 0,, 0, 00,, 0, + 0,,0,,,0,,,,0,,0,,, 0,,,,,,,0,,, 0, 0,,
8 . Poměr, přímá a nepřímá úměrnost Žáci jedné školy řešili úlohu z prvního dílu minutovek tak, že si ve třídě umístili třídní metr, který si vytvořili. Všichni se změřili pomocí tohoto metru. Pak odjeli na školu v přírodě a po návratu zjistili, že jejich metr není přesný. Někteří totiž měřili méně než v předchozích měsících. Jak by podle tebe měli situaci vyřešit? Máš minuty na rozmyšlení svého návrhu. Pak vytvořte dvojice (trojice) a své návrhy prodiskutujte. Nakonec se ve třídě dohodněte na ideálním řešení. Vyjádři poměry v základním tvaru. a) : = : b), : 0, = 0 : c) : = : Porovnejte poměrem v základním tvaru. a) cm a mm b) kg a 0, t c), l a 0, hl 0 : : : vyjádřím poměr v základním tvaru 0 využiji poměr k porovnávání údajů 0 Do sešitu nebo na volný list papíru narýsuj čtverec (délka strany cm). Rozděl ho na polovinu. Jednu půlku označ písmenem A, druhou opět rozděl na polovinu. Jednu polovinu označ písmenem B, druhou rozděl na polovinu. Jednu polovinu označ písmenem C, druhou rozděl na polovinu. Jednu polovinu označ písmenem D, druhou rozděl na polovinu. Jednu polovinu označ písmenem E, druhou polovinu označ písmenem F. Jakou část celku tvoří obrazce A, B, C, D, E, F? V jakém poměru jsou části: E : A :, C : A :, B : D :, E : F :, F : A :, D : A :, A : C :, A : B :? vyjádřím poměr 0 Na plánu v měřítku : 00 má zahrada tvaru obdélníku rozměry, cm a cm. Jaké jsou skutečné rozměry zahrady? Jaká je výměra této zahrady v m? a =, m; b = m; S =, m
9 . Poměr, přímá a nepřímá úměrnost Lanovka na Ještěd zahájila svůj provoz. června. Přepravila 0 osob za hodinu. Délka tratě byla metrů, převýšení 00 metrů.. listopadu byl ukončen provoz z důvodu rekonstrukce.. prosince byl provoz obnoven. Délka nové tratě byla metrů, převýšení 0, metrů a počet osob přepravených za jednu hodinu se zvýšil na. Rychlost nové lanovky byla 0 m/s.. Vyjádři rychlost lanovky po rekonstrukci v km/h. km/h. O kolik procent se po rekonstrukci prodloužila trať lanovky? Trať se prodloužila o 0, % z původní délky.. Vhodným způsobem matematicky vyjádři změnu počtu osob přepravených za jednu hodinu. 0 = navíc přepravených osob. Jak dlouho byla lanovka v 0. letech minulého století mimo provoz? roky a měsíce. Načrtni obrázek lanovky a vyznač v něm délku lanovky a převýšení. 00 Délky stran trojúhelníku jsou v poměru : :. Nejkratší strana trojúhelníku má velikost, cm. Vypočítej obvod tohoto trojúhelníku. o =, cm 0 Urči velikosti vnitřních úhlů trojúhelníku, je-li jejich poměr : :. α = 0 ; β = ; γ =
10 . Poměr, přímá a nepřímá úměrnost 0 Ve slitině kovů je olovo, zinek a měď v hmotnostním poměru : :. Kolik kg slitiny dostaneme, pokud v ní bude kg olova? + + = kg 0 Ve třídě. B je chlapců a děvčat. V jakém poměru je počet chlapců k celkovému počtu žáků ve třídě? V jakém poměru je počet děvčat k počtu chlapců? : ; : 0 Tři pracovníci si měli rozdělit odměnu v poměru : :. Pracovník, který dostal nejvyšší odměnu, získal 0 Kč. Jaká byla celková odměna pro tyto tři pracovníky? 0 Kč ( ) využiji poměr v úlohách z běžného života 0 volím vhodný způsob řešení úloh 0 obhájím svá řešení úloh 0 vyjádřím bez obav své myšlenky 0 0 Doplň tabulku tak, aby zapsaná závislost byla přímá úměrnost. Do sešitu nebo na volný list narýsuj grafy těchto přímých úměrností. x 0 y, 0,, 0 x 0,, y 0,
11 . Poměr, přímá a nepřímá úměrnost 0 Žáci. třídy se rozhodli situaci z úlohy vyřešit tak, že se každý změřil pomocí třídního (nepřesného) metru a pak přesně. Všechny nepřesně určené výšky pak přepočítali trojčlenkou. Pomoz Jirkovi přepočítat údaje z tabulky. Číslo žáka 0 0 Měření Měření Měření Měření nepřesným metrem Měření přesným metrem
12 0. Poměr, přímá a nepřímá úměrnost 0 Doplň tabulku a narýsuj graf přímé úměrnosti, která je dána rovnicí y = x. x y y 0 0 x y = x narýsuji graf přímé úměrnosti 0 doplním tabulku přímé úměrnosti 0 0 Doplň tabulku nepřímé úměrnosti a narýsuj její graf. x,, y, y 0 y = x x narýsuji graf nepřímé úměrnosti 0 doplním tabulku nepřímé úměrnosti 0
13 . Poměr, přímá a nepřímá úměrnost Slovní úlohy 0 až řeš do sešitu nebo na volný list papíru. 0 Ze 0 kg padaných jablek se nasuší, kg křížal. Kolik kg křížal nasušíme ze 0 kg jablek? Nasušíme kg křížal. 0 Písařka napsala na stroji stran textu za hodiny a minut. Kolik stránek textu by napsala za hodiny? Napsala by dvě a půl strany. Za svačinu pro 0 žáků bylo zaplaceno 0 Kč. Kolik Kč by stála stejná svačina pro žáků? Stála by Kč. Pletací stroj uplete za hodiny sedm párů ponožek. Kolik párů uplete stroj za h min? Uplete cca párů. Pokud Lenka přečte denně stran knihy, přečte celou knihu za dní. Kolik stran by musela denně přečíst, aby přečetla celou knihu za dní? Musela by přečíst denně 0 stran. Objem plechového sudu je 00 l. Voda sahá do výšky cm. Je v něm 0 l vody. Kolik litrů vody je ve druhém stejném sudu, jestliže v něm sahá voda do výše cm? V sudu je, litrů vody. Zvuk urazí vzdálenost km asi za s. Jak daleko je bouřka, jestliže mezi zábleskem a hromem je časový interval s? Bouřka je vzdálena, km. Jestliže bude použit na orbu traktor se čtyřmi radlicemi, zorá lán pole za hodin. Jak dlouho bude trvat orba při použití traktoru se radlicemi? Orba bude trvat hodin. a) Dva zedníci omítnou chodbu školy za hodin. Za kolik hodin by tuto chodbu omítlo zedníků? Devět zedníků by chodbu omítlo za hodin. b) Dva dělníci provedou montáž konstrukce zahradního skleníku za hodin. Za kolik hodin provede tutéž montáž dělníků? Šest dělníků provede práci za hodin. c) Tři brigádníci vyloží vagon za, hodiny. Za jak dlouho by tento vagon vyložilo pět brigádníků? Kolik brigádníků by muselo být přibráno, aby byl vagon vyložen za hodinu? Vagon by vyložili za, hodiny. Aby vagon vyložili za hodinu, byli by potřeba další tři. d) Čtyři zahradnice osází záhon za hodin. Za kolik hodin by stejný záhon osázelo zahradnic? Devět zahradníc osází záhon za hodin. volím vhodný způsob řešení úloh 0 obhájím svá řešení úloh 0 vyjádřím bez obav své myšlenky 0
14 . Poměr, přímá a nepřímá úměrnost Otestuj své znalosti Doplň tabulky tak, aby zapsaná závislost byla přímá úměrnost. Narýsuj grafy těchto přímých úměrností. x 0 y,, 0,, x 0, y 0,, y x y x y = x y = x Vyjádři poměr (postupný poměr) v základním tvaru. a) : = b) 0, : 0, = : d), : 0, = : g) : : = : : : 0 e) : 0 = : h) : : 0 = : : 0 c) : = 0 : f), :, = : i) 0,0 :, : = : 0 : 0
15 . Poměr, přímá a nepřímá úměrnost 0 Porovnej poměrem v základním tvaru. a) 0, t a kg b) m a cm c), l a 0, hl : 00 : : 0 Ve slitině kovů je olovo, zinek a měď v hmotnostním poměru : :. Ve slitině je kg mědi. Jaká je hmotnost celé slitiny? Hmotnost celé slitiny je, kg. Nejdelší strana trojúhelníku má velikost, dm. Délky stran tohoto trojúhelníku jsou dány poměrem : :. Vypočítej obvod tohoto trojúhelníku. o = dm Parcela má tvar obdélníku. Na plánku v měřítku : 00 jsou její rozměry cm a, cm. Jaké jsou skutečné rozměry parcely? Jaká je výměra této parcely v m? a = m; b =, m; S =, m Jestliže bude použit na orbu traktor se čtyřmi radlicemi, zorá lán pole za hodin. Jak dlouho bude trvat orba při použití traktoru se radlicemi? Orba bude trvat hodin. Vodní nádrž se zaplní dvěma stejnými přívodními rourami za hodin. Za kolik hodin by se nádrž naplnila, kdyby bylo v provozu všech pět stejných přívodních rour? Nádrž by se naplnila za h min. Pokud Romana přečte denně stran knihy, přečte celou knihu za dní. Kolik stran by musela denně přečíst, aby přečetla celou knihu za dní? Romana by musela denně přečíst stran.
16 . Čtyřúhelníky a) Vypočítej obsah čtverce BCDE: b = cm b) Vypočítej obsah obdélníku CDEF: c = m d = m c) Vypočítej obsah kosočtverce ABCD: a = mm v a = 0, cm S = cm S = 0 m S = mm určím obsah čtverce 0 určím obsah obdélníku 0 určím obsah kosočtverce 0 a) Vypočítej obsah kosodélníku BCDE: b = cm v b =, cm b) Vypočítej obsah t roj ú hel n í k u CDE: d =, m v d = 0, dm c) Vypočítej obsah lichoběžníku ABCD: z = mm z = mm v = mm S =, cm S =, dm S =, cm určím obsah kosodélníku 0 určím obsah trojúhelníku 0 určím obsah lichoběžníku 0
17 . Čtyřúhelníky a) Vypočítej obsah rovnoběžníku ABCD: b =, cm v b = cm b) Vypočítej výšku v d trojúhelníku BCD: d = 0, m S = 0,0 dm c) Vypočítej výšku v licho běžníku ABCD: a = cm c = 0 mm S =,0 dm S =, cm v d =,0 dm v =, cm určím obsah rovnoběžníku 0 určím výšku trojúhelníku 0 určím výšku rovnoběžníku 0 0 Urči velikosti vnitřních úhlů rovnoběžníku ABCD (úhel α leží při vrcholu A, úhel δ leží při vrcholu D). Rovnoběžník načrtni a zapiš výpočty. a) α = b) δ = ' β = γ = δ = α = ' β = ' γ = ' určím velikosti vnitřních úhlů rovnoběžníku 0
18 . Čtyřúhelníky Narýsuj trojúhelník ABC: a = cm, v a = cm, β =. A v a B β C sestrojím trojúhelník (zadaná výška) 0 Vypočítej délku strany rovnoběžníku (trojúhelníku). a) rovnoběžník: v a = dm S = dm a =, dm b) trojúhelník: v a = 0, m S =, m a =, m určím délku strany trojúhelníku 0 určím délku strany rovnoběžníku 0 Sestroj čtyřúhelník NOPR, je-li dáno: a) n =, cm o = cm p = cm PRN = 0 RPO = 0 b) lichoběžník: n = cm o = cm v = cm RNO =
19 . Čtyřúhelníky Rozbor: Rozbor: Zápis konstrukce:. PR; PR = cm. RPX; RPX = 0. k; k(p; r = cm). O; O PX k N Konstrukce: X O k Y. PRY; PRY = 0. l; l(o; r =, cm). N; N RY l. NOPR l Zápis konstrukce: Konstrukce: R X k P. NO; NO = cm. ONX; ONX =. r; r NO v(r, NO) = cm. R; R NX r. k; k(o; r = cm). P; P r k. lichoběžník NOPR r N P R N c) rovnoběžník: n = 0 mm, o = mm, v n = mm. O Rozbor: Konstrukce: X k R P R P Zápis konstrukce:. NO; NO = cm. r; r NO, v (r, NO) =, cm. k; k(o; r =, cm). P; P r k. NX; NX OP. R; R r NX. NOPR N v n O narýsuji čtyřúhelník 0
20 . Čtyřúhelníky Otestuj své znalosti Vypočítej obsah následujících obrazců. a) trojúhelník GHI : g = cm v g = cm b) rovnoběžník PRST : r = mm v r = 0, dm c) lichoběžník ABCD : a = 00 mm c = 0 cm v =, dm S = cm S =, cm S =, dm Vypočítej výšku následujících obrazců. a) trojúhelník KLM : k =, m S =, dm v k =? b) rovnoběžník VXYZ : x = 0 mm S =,0 dm v x =? v t = 0, dm v x = cm Do sešitu nebo na volný list papíru narýsuj čtyřúhelník KLMN: k =, cm, l =, cm, m = mm, n = 0, dm, KLM = 0.
21 . Procenta Zapiš zlomkem a desetinným číslem, jaká část je vybarvena. zlomek desetinné číslo zlomek desetinné číslo zlomek desetinné číslo 0, 0, 0, Zapiš zlomkem a desetinným číslem, jaká část není vybarvena. zlomek desetinné číslo zlomek desetinné číslo zlomek desetinné číslo 0, 0, 0, 0 0 Vyjádři zlomkem a desetinným číslem, jaká část obrázku je vybarvena. zlomek zlomek zlomek zlomek zlomek zlomek zlomek desetinné č. desetinné č. desetinné č. desetinné č. desetinné č. desetinné č. desetinné č. 0, 0, 0, 0, 0, 0,,00
22 0. Procenta vyjádřím část celku zlomkem 0 vyjádřím část celku desetinným číslem 0 0 Vyjádři zlomkem, desetinným číslem i počtem procent, jaká část obrazce je vybarvena. a) b) c) d) e) f) a) zlomek b) zlomek c) zlomek d) zlomek e) zlomek f) zlomek 0 desetinné č. desetinné č. desetinné č. desetinné č. desetinné č. desetinné č. 0, 0, 0, 0, 0,0 0, počet % počet % počet % počet % počet % počet %, 0,, Vyjádři zlomkem, desetinným číslem a počtem procent jednotlivé vybarvené části. ; 0,; 0 % 0 ; 0,0; % 00 ; 0,0; % ; 0,; 0 % Jaká část obrázku je vybarvena? převedu zlomek na počet procent 0 převedu desetinné číslo na počet procent 0
23 . Procenta Zapiš počet procent jako desetinné číslo. a) % = 0, c) % = 0, e) % = 0, g) 0 % =,0 b), % = 0, d),0 % = 0,00 f),0 % = 0,0 h), % =, zapisuji desetinným číslem počet procent 0 Zapiš desetinná čísla jako počet procent. a) 0, = % c) 0, = % e), = % g),0 = 0 % b) 0, = 0, % d), =, % f) 0, = 0 % h) = 00 % zapisuji desetinná čísla jako počet procent 0 Vypočítej. a), : 0 = 0, g), : 00 = 0,0 m) 0, = 0,000 b) : 0 =, h) 0, : 00 = 0,00 n), : = 0,000 c), : 0 = 0, i) : 00 = 0, o) : 000 =, d) 0, : 0 = 0,0 j) : 00 =, p) : 000 = 0,0 e) 0,0 : 0 = 0,00 k) 0 : 00 =,0 q),0 : = 0,000 0 f) 0,00 : 0 = 0,000 l) 0,0 : 00 = 0,00 0 r) 0 0 : 00 = 0,0 Vypočítej. a) % z 00 = d) % z 0 = 0, g) % z 0 = 0, b) % z 00 = e) % z 00 = h) % z 0 = 0, c) % z 00 = f) % ze 00 = i) % z = 0, určím % z celku 0 Zapiš, kde se v běžném životě setkáváme s procenty. tabulky, statistiky, výpočet daně, operační počítačové programy
24 . Procenta Vypočti procentovou část. a) 0 % z 00 = 00 c) 0 % z 00 = 0 b) 0 % z 0 = d) 00 % z = Doplň tabulku. základ ,, 0, % % 0 % % 0 % % 00 % 0, ,0,,,,, 0,,,,,,, 0,000 0,00 0,00 0,0 0,0 0,0 0,0,, 0,, určím procentovou část 0 0 Kolik procent je: a) 0 cm z m =, % c) 0 g z kg =, % b) 0, z = 0, % d) kg z 0 kg = 0 % určím počet procent, znám-li procentovou část a základ 0
25 . Procenta Urči základ, jestliže víš: a) % z 00 = 0 c) 0 % z 00 km = 0 km b) % z 000 l = 0 l d) 0, % z dm = 0 dm určím základ, znám-li počet procent a odpovídající procentovou část 0 Doplň tabulku. základ , 0, procentová část 0, 0, 0, 0,0 počet procent 0, 0 trpělivě řeším zadané úlohy 0 Na obrázku je zakreslena část obrazce. a) Vyjadřuje 0 % celkové jeho plochy. Doplň tak, aby byl obrazec celý. b) Vyjadřuje % celkové jeho plochy. Doplň tak, aby byl obrazec celý.
26 . Procenta Narýsuj sloupcový diagram vyjadřující: a) % b) 0 % c), % a b c Znázorni kruhovým diagramem: a) % b) 0 % c), % Graficky znázorni různými způsoby %, %, 0 %, %. Zvol nejvhodnější způsob. Svou volbu vysvětli. znázorním procenta graficky 0 volím vhodné způsoby řešení úloh 0
27 . Procenta Následující slovní úlohy řeš do sešitu nebo na volný list papíru Přines si do školy letáky z hypermarketů a dalších obchodů. Vyber ty, na kterých vidíš procenta. a) Vypočítej novou cenu zboží. b) Vypočítej původní cenu zboží. c) Ověř správnost výpočtu slevy v procentech, když znáš původní i novou cenu. V jedné pizzerii v Praze poskytují v neděli 0% slevu z ceny pizzy. V neděli jsme za pizzu zaplatili 0 Kč. Kolik korun bude stát tato pizza v úterý? 0 Kč Časopis stál původně 0 Kč. Nyní byl zlevněn o Kč. O kolik procent byl časopis zlevněn? o % 0 Kuřecí steak s hranolky a oblohou stojí v restauraci Mlýn 0 Kč. Kolik procent z této ceny zaplatíme za dětskou porci, jestliže její cena je Kč?, % Ve třídě je žáků. Tři žáci dnes chybí. Kolik procent žáků je dnes přítomno?, % Za nocleh se snídaní zaplatí čtyřčlenná rodina v turistické chatě na Vysočině 0 Kč. V sezóně je cena ještě o 0 % vyšší. Kolik stojí v sezóně týdenní pobyt čtyřčlenné rodiny? Kč Zjisti, jaké byly volební výsledky ve vašem městě či ve vaší obci. Zpracuj tyto výsledky graficky (alespoň dvěma způsoby). Napiš důležité informace o vodě: celkové hmot- Voda má v lidském organismu ze všech látek největší zastoupení, tvoří asi nosti. Kolik kilogramů vody je v tvém těle? používám procenta při řešení úloh z běžného života 0 obhájím svá řešení úloh 0 vyjádřím bez obav své myšlenky 0 volím vhodné způsoby řešení úloh 0
28 . Procenta Vytvoř úlohy, které se řeší následujícími výpočty. a) 000 : 00 = 0 b), % Kč 0 = 0 00 % x Kč = 0 Např. Cena motocyklu je 000 Kč bez DPH. Vypočítej cenu s % daní. Např. Zboží bylo koupeno se slevou, %. Jaká byla jeho původní cena? c) 0, 0 = 0 d) 00 ml 0 ml = 00 ml 0 0 = ml : = 0 ml 0 = 0, =, % 00 % z 0 Kč je 0 Kč. Výsledná cena je 00 Kč. Otestuj své znalosti Maminka koupila 00 ml medu. Než si na něj připravila sklenic, děti jí 0 ml ujedly. Jakým množstvím potom naplnila každou sklenici? Kolik procent z celkového množství děti ujedly?, % Sloupcovým a kruhovým diagramem znázorni: a) 0 % b), % c c
29 . Procenta Urči zpaměti. a) % ze 0 =, c) % z 0, = 0,00 b) % ze 0 m =, m d) % ze 0 l =, l Vypočítej. a) % z 00 km = km c) 00 % z 0 Kč = 0 Kč b) 0 % z 0 = d) % z 0 Kč = 0, Kč 0 Kolik procent je: a) 00 ks z 00 ks =, % c), z 0 =, % b) 0, z =, % d) m z m =, % Vypočítej základ, jestliže víš: a) 0 % z 00 km = 00 km c) 0, % z kg = 0 kg b) 0 % z, = 0 d) 0 % z 00 = 0
30 . Procenta Na obrázku je část obrazce. Dorýsuj celý obrazec, jestliže víš, že obsah vytištěného obrazce je % obsahu celého obrazce. Cena mp přehrávače byla snížena o % na 0 Kč. Jaká byla jeho původní cena? 00 Kč Vymysli slovní úlohu, která se bude řešit výpočtem: 0 : 00 =,, = % z 0 =
31 . Hranoly Narýsuj síť kvádru: a = cm b =, cm c =, cm Vypočítej objem a povrch krychlí: a =, cm, b =, cm. V = 0, cm V =, cm S =, cm S =, cm Vypočítej objem a povrch kvádru: a =, cm d = mm b = mm e =, cm c = dm f = dm V = cm S =, cm V =, cm S =, cm určím objem a povrch krychle a kvádru 0
32 0. Hranoly Doplň tabulku. cm dm m ml dl l hl 0 0, 0,00 0 0, 0, 0,0 0,0 0, , 0,0 0,000, 0,,,, , , 000 0, 000 0, 00, 0,00 00, 0,0, 0,,,, Převáděj jednotky. a), dm = 0 cm b), dm = 0, m c) mm = 0,0 dm d), cm = 0 mm e) 000 cm = 0, m f) 0 dm = mm g) 00 cm = 0,0 dm h), m = 00 cm převedu jednotky obsahu a objemu 0 0 Změřte rozměry dvou různých skříní ve třídě, načrtněte je a určete jejich povrch.
33 . Hranoly Kolik korun zaplatíme za obložení stěn koupelny, jejíž půdorys má tvar obdélníku s rozměry m a, m? Stěna bude obložena do výše, m. Jedno balení obkladaček stojí 0 Kč a pokryjeme jím plochu m. Kolik balení obkladaček budeme potřebovat? balení za Kč a) Kolmý trojboký hranol má podstavu pravoúhlého trojúhelníku. Délky odvěsen jsou cm a cm. Výška hranolu je cm. Urči objem a povrch tohoto hranolu. V = cm S = 0 cm b) Pravidelný kolmý čtyřboký hranol s podstavnou hranou 0 cm má objem 0 dm. Jaká je výška tohoto hranolu? v = 00 cm
34 . Hranoly Zjisti rozměry jedné zápalky (uvažuj kvádr). Kolik zápalek se vejde do jedné krabičky, která má rozměry mm mm mm? Kolik krabiček je v jednom balení? Kolik zápalek je v tomto balení? Načrtni síť hranolu s podstavou lichoběžníku. Vypočítej povrch pravidelného čtyřbokého hranolu, jehož výška je 0 cm. Jaký údaj potřebuješ k výpočtu ještě znát? S = a + av = a + 0a načrtnu síť hranolu 0 určím objem a povrch hranolu 0
35 . Hranoly Vyrob modely těles. vyrobím modely těles 0
36 . Hranoly Otestuj své znalosti Načrtni síť pravidelného čtyřbokého hranolu. a) Vypočítej objem kolmého trojbokého hranolu o výšce cm. Podstavou hranolu je pravoúhlý trojúhelník (délky stran jsou cm, cm, cm). V = cm b) Čtyřboký hranol má objem 0 cm. Podstavné hrany mají délku cm a, cm. Jaká je výška tohoto hranolu? c = cm Načrtni síť pravidelného kolmého šestibokého hranolu.
37 . Tabulky, grafy, diagramy, závislosti, projekty 0 Matematicky interpretuj následující obrázek. objektů není zabarvena, ano. Doplň tabulky. délka strany čtverce v cm 0 obsah čtverce v cm délka strany čtverce v cm 00 0 obsah čtverce v cm 00 Rychlík vyjel z Prahy a do Olomouce dorazil za, hodiny. Jakou rychlostí vlak jel, jestliže délka tratě je 0 km? 00 km/h Doplň do tabulky průběh cesty. čas (h) dráha (km) 0, 0,,, Sestroj graf závislosti vzdálenosti na době jízdy. s (km) ,,, t (h)
38 . Tabulky, grafy, diagramy, závislosti, projekty Graficky porovnej nabídku předplacených služeb mobilních telefonních operátorů, jestliže bys využíval především volání do vlastní sítě. Vypracuj do sešitu nebo na volný list papíru. Projekt Nákup. Žáci. třídy potřebovali do školy kalkulačku. S kolikaprocentní slevou ji zakoupili? Kč Kč. V jiném obchodě nabízeli také slevu na ovoce a zeleninu. Ověř, zda je sleva % správně určená. %,0,0,0,0,0,0. Obchodní řetězec nabízel slevu ovoce a zeleniny. Kolikaprocentní byla u jablek, okurek a kiwi? NE (,0) NE (,0) NE (,0),0,0,0,0,0,0. Ve výloze prodejny obuvi vybledla původní cena. Kolik korun stála obuv před slevou o, %? % 0 % % 0 Kč. Kolik procent původní ceny zaplatíme nyní za mikrovlnnou troubu? ušetříte 00 Kč Kč % 0,-. Obchody v úloze a nabízejí zboží, které je pro zdravý životní styl člověka důležité. Napište úvahu na toto téma do sešitu nebo na volný list papíru formátu A. Využijte informace, které máte z jiných vyučovacích předmětů, i informace získané mimo školu.
39 . Tabulky, grafy, diagramy, závislosti, projekty Vylušti SUDOKU. Návod: Každý řádek, sloupec a každý čtverec (krát políčka) musí obsahovat čísla od jedné do devíti. vyluštím sudoku 0 přemýšlím logicky 0
40 . Tabulky, grafy, diagramy, závislosti, projekty Vylušti KAKURO Návod: Do prázdných čtverců umísti celá čísla od jedné do devíti. Čísla v růžových šikmo rozdělených polích udávají, jaký je součet všech prázdných polí napravo od daného čísla nebo kolik je součet čísel směrem dolů. Žádné číslo se nesmí v rámci jednoho součtu opakovat. Dva malíři, jejichž výkonnost je v poměru :, malují byt. Výkonnější malíř vymaluje sám byt za 0 hodin. Za kolik hodin vymalují byt společně? x 0 + x = x = h Matematicky interpretuj následující obrázek. obrázku jsou zabarveny.
41 . Tabulky, grafy, diagramy, závislosti, projekty Projekt Telefonování. Zaznamenej graficky cenu hovoru, který trval minut sekund. a) Tarif T0 (T-Mobile) měsíční paušál činí 0 Kč, k dispozici je 0 volných minut, cena hovorů,0 Kč za minutu do sítě T-Mobile,,0 Kč za minutu do ostatních sítí, účtuje se první minuta celá, poté je doba spojení účtována po sekundách. Jedná se o první hovor v daném účtovacím období. b) Vodafonkarta (předplacená služba Vodafonu) cena hovoru v síti Vodafone je Kč za minutu, volání do ostatních sítí stojí Kč za minutu.. V roce 00 porovnávali žáci jedné školy nabídky mobilních operátorů. Máš před sebou jeden z výsledků srovnání. Co vše z něj můžeš vyčíst? Vypiš. 0,00 0,00 0,00 0,00 0,00 0,00 0,00,0,00,00 Porovnání cen za prvních 0 minut hovoru v různých tarifech 0,00,00 0,00,0,00,00,00 0,00 0,00 min ve špičce 0 min ve špičce min mimo špičku 0 min mimo špičku Optimum plus T0 Standard Rozjezd Naplno 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Operátor O T-Mobile Vodafone Tarif Optimum Plus T0 Standard Rozjezd Naplno Cena za min (ve špičce),0 Kč Kč Kč Cena za min (mimo špičku),0 Kč Kč Kč Cena za 0 min (ve špičce) Kč 0 Kč 0 Kč Cena za 0 min (mimo špičku) Kč 0 Kč 0 Kč
42 0. Tabulky, grafy, diagramy, závislosti, projekty 00 Nádrž o objemu 0 litrů se plní vodou rychlostí, litru za minutu. Na začátku v ní bylo 0 litrů. a) Za kolik minut se nádrž naplní? Za minut. b) Narýsuj graf závislosti objemu vody v nádrži na době plnění. V (l) c) Kolik litrů vody bylo v nádrži po minutách? litrů t (min) d) Kolik litrů vody bylo v nádrži po půl hodině? litrů e) Za jak dlouho do nádrže přiteče 0 litrů? Asi za minut a sekund.
43 Nakladatelství Prodos pro vás připravilo ucelenou řadu učebnic pro vzdělávací oblast Matematika a její aplikace (.. ročník a víceletá gymnázia) Matematika Matematika s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematické minutovky. ročník. díl Matematické minutovky. ročník. díl Matematika Matematika s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematické minutovky. ročník. díl Matematické minutovky. ročník. díl Matematika Matematika s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematika Pracovní sešit Matematika Pracovní sešit s komentářem pro učitele Matematika Matematika s komentářem pro učitele Matematika sbírka úloh (Pracovní sešit) Matematika sbírka úloh s komentářem pro učitele
44 Matematické...minutovky,. ročník /. díl Mgr. Miroslav Hricz Grafická úprava: Robert Janák Odpovědný redaktor: Mgr. Petr Pláteník Vydalo pedagogické nakladatelství PRODOS spol. s r.o. Kollárovo nám., 00 Olomouc prodos@prodos.eu Výroba: Prodos, 0
1. Racionální čísla. 18 c) ( 12) + ( 8) = počítám s celými čísly 1 2 3 4 5 6 7 8 9 10. počítám s desetinnými čísly 1 2 3 4 5 6 7 8 9 10
. Racionální čísla Vypočítej. a) = 0 d) ( ) = g) ( ) + ( ) + (+) = 0 b) + ( ) = e) : ( ) = h) ( ) ( ) (+) = c) ( ) + ( ) = 0 f) ( ) : ( ) = i) ( ) = 0 0 Vypočítej. a) ( + ) : ( ) = b) ( ) + ( ) = 0 c)
Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy
Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme
MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/
MATEMATIKA 6. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 6. ročníku přirozená čísla a desetinná čísla. Může být
Mgr. Monika Urbancová. Opakování učiva 7. ročníku
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/1.76 Autor Mgr. Monika Urbancová Datum 1. 8. 014 Ročník 8. ročník Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
Autor: Jana Krchová Obor: Matematika. Hranoly
Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm
Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla
list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
Sbírka úloh z matematiky. 6. - 9. ročník
Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
Vyučovací předmět: Matematika Ročník: 7.
Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Matematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
MATEMATIKA 7. ročník II. pololetí
MATEMATIKA 7. ročník II. pololetí Racionální čísla A) Vypočítejte a výsledek zapište v základním tvaru popř. ve tvaru smíšeného čísla 5-7 - - 8 + 5 4 ( 9 7 + ) ( - 9 ) (- 0,) ( - ) + ( - 4 ) B) Vypočítejte
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
Základní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly
a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,
Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou
list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
Přirozená čísla do milionu 1
statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
Příprava na 3. čtvrtletní práci. Matematika
Příprava na 3. čtvrtletní práci Matematika Procenta doplň tabulku Základ 100 Kč 150 Kč 450 Kč 20 Kč 2500 Kč Počet procent 15 % 20 % 75 % Část základu zlomkem 2 5 1 4 Část základu desetinným číslem 0,9
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
Matematické ...MINUT VKY. 7. ročník / 1. d í l. pro vzdělávací oblast Matematika a její aplikace dle RVP ZV
Matematické...MINUT VKY pro vzdělávací oblast Matematika a její aplikace dle RVP ZV. ročník /. d í l. Zlomky. Shodnost trojúhelníků. Celá čísla. Středová souměrnost. Tabulky, grafy, diagramy, závislosti,
Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.
Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu
Příprava na závěrečnou písemnou práci
Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721
MATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty
Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
Základní škola, Příbram II, Jiráskovy sady Příbram II
Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:
Příklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Oblast:
Vzdělávací oblast: a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Období: 1. Číslo a početní operace Používá přirozená čísla k modelování reálných situací Počítá předměty v daném souboru Vytváří
Volitelné předměty Matematika a její aplikace
Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky
M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
Vzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU
Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu
Očekávané ročníkové výstupy z matematiky 9.r.
Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y
je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
Matematické ...MINUT VKY. 6. ročník / 1. d í l. pro vzdělávací oblast Matematika a její aplikace dle RVP ZV
Matematické...MINUT VKY pro vzdělávací oblast Matematika a její aplikace dle RVP ZV 6. ročník / 1. d í l 1. Osová souměrnost 2. Desetinná čísla 3. Úhly 4. Řady, tabulky, grafy, diagramy Podobně jako k
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává
volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení
Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek
Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů
Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů 1) Zapiš matematickými symboly: bod A leží na přímce p bod M leží v průsečíku přímek k, m 2) Je dána přímka p, bod K
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Předmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102
Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva
ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 147 Jméno autora Mgr. Romana BLÁHOVÁ Datum, ve kterém byl DUM vytvořen 26.3. 2012 Ročník, pro který je DUM určen 4. Vzdělávací oblast (klíčová slova) MATEMATIKA
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Tematický plán Matematika pro 4. ročník
Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání
Matematika Název Ročník Autor
Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná
- zvládá orientaci na číselné ose
Příklady možné konkretizace minimální doporučené úrovně pro úpravy očekávaných výstupů v rámci podpůrných opatření pro využití v IVP předmětu Matematika Ukázka zpracována s využitím školního vzdělávacího
Mateřská škola a Základní škola při dětské léčebně, Křetín 12
Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,
Matematika - 4. ročník Vzdělávací obsah
Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC
Matematika a její aplikace Matematika
Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.
Základní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.
MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N
Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918
Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v
MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5
MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M
Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
Jméno :... třída : 5. I. část
Jméno :... třída : 5. I. část 1. 2 569 38 625 68 138 8 372 32 765 723 765 58 217 23 792 95 676-59 635-92 382-62 826 2. 372 6 53 37 2 657. 5. 73. 658. 37 3. 573 96 387 28. 60. 700. 30. 508. V prodejně měli
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Člověk a jeho svět. ČJ a literatura
VZDĚLÁVACÍ OBLAST: Vzdělávací obor: Stupeň: Období: Ročník: Očekávané výstupy omp e t e n c e čivo Mezipředmětové vztahy oznámky používá přirozená čísla k modelování reálných situací, počítá předměty v
1. Zlomky. zlomek desetinné číslo zlomek desetinné číslo zlomek desetinné číslo 2. a) b) c) d) e) f)
. Zlomky Znázorni různými způsoby zlomky. a) b) c) Jaká část obrazce je vybarvena? Vyjádři zlomkem a desetinným číslem. zlomek desetinné číslo zlomek desetinné číslo zlomek desetinné číslo 0, 0 0, 0, Jaká
Matematika a její aplikace Matematika
Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.
Přímá a nepřímá úměrnost
Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
-Zobrazí čísla a nulu na číselné ose
Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel
ŠVP Učivo. RVP ZV Očekávané výstupy. RVP ZV Kód. ŠVP Školní očekávané výstupy. Obsah RVP ZV
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 2. období 5. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A POČETNÍ OPERACE
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PID16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída
MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705
( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba
Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací
TEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)
Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník:
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník: 5. 5 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka
SPECIFIKACE POŽADAVKŮ PRO JEDNOTNOU PŘIJÍMACÍ ZKOUŠKU V PŘIJÍMACÍM ŘÍZENÍ NA STŘEDNÍ ŠKOLY V OBORECH VZDĚLÁNÍ S MATURITNÍ ZKOUŠKOU MATEMATIKA
SPECIFIKACE POŽADAVKŮ PRO JEDNOTNOU PŘIJÍMACÍ ZKOUŠKU V PŘIJÍMACÍM ŘÍZENÍ NA STŘEDNÍ ŠKOLY V OBORECH VZDĚLÁNÍ S MATURITNÍ ZKOUŠKOU MATEMATIKA Zpracoval: Centrum pro zjišťování výsledků vzdělávání 1 Úvod
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina