Příklady: 7., 8. Práce a energie

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady: 7., 8. Práce a energie"

Transkript

1 Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209 N, která je rovnoběžná s nakloněnou rovinou. Vypočtěte práci, kterou při posunutí bedny o l = 1, 50 m podél nakloněné roviny vykonají tyto síly působící na bednu: a) [0,3 b] síla, kterou působí dělník, b) [0,3 b] tíhová síla, c) [0,3 b] normálová (tlaková) síla nakloněné roviny. d) [0,1 b] Jaká je celková práce, kterou vykonaly síly působící na bednu? 2. Na obrázku 1 je znázorněno zařízení s volnou kladkou: provaz je veden přes dvě nehmotné kladky, které se mohou otáčet bez tření. Na volné kladce visí nádoba o hmotnosti m = 20 kg. Na volný konec provazu působíme silou F. a) [0,3 b] Jak velká musí být síla F, máme-li nádobu zvedat stálou rychlostí? b) [0,3 b] O jakou vzdálenost musíme posunout volný konec provazu, chceme-li nádobu zvednout o h = 2, 0 cm? c) [0,2 b] Určete, jakou mechanickou práci vykonají při tomto posunutí následující síly: síla F, d) [0,2 b] tíhová síla G působící na nádobu. Obr Dvě kostky o hmotnostech m 1 a m 2 spojené nehmotnou šňůrou podle obrázku 2 jsou uvolněny z klidového stavu. Koeficient dynamického tření mezi kostkou m 1 a deskou stolu je f d. Předpokládejme, že kladka má zanedbatelnou hmotnost a otáčí se bez tření. a) [0,4 b] Určete velikost tahové síly T, kterou je šňůra napínána. b) [0,2 b] Kostka m 1 na stole urazila dráhu L. Určete mechanickou práci třecí síly působící na kostku m 1 a tíhové síly působící na kostku m 2. c) [0,4 b] Určete velikost rychlosti v kostky m 1 v závislosti na uražené dráze L. 8. června 2006 ÚFI FSI VUT v Brně 1

2 Obr Nádoba se pohybuje vzhůru po nakloněné rovině o úhlu sklonu α = 40. V bodě ležícím ve vzdálenosti l = 0, 55 m od jejího dolního konce (měřeno podél nakloněné roviny) je velikost rychlosti nádoby v 1 = 1, 4 m/s. Koeficient dynamického tření mezi nádobou a nakloněnou rovinou je f d = 0, 15. a) [0,4 b] Jak daleko se bude nádoba podél nakloněné roviny ještě pohybovat? b) [0,4 b] Jaká bude její rychlost poté, co opět sklouzne k dolnímu konci nakloněné roviny? c) [0,2 b] Jakou mechanickou práci vykonala třecí síla během celého tohoto pohybu? 5. Kostka o hmotnosti m = 3, 5 kg na obrázku 3 je urychlována stlačenou pružinou. Tuhost pružiny je k = 640 N/m. V okamžiku, kdy je pružina nenapjatá, ztrácí s ní kostka kontakt a pohybuje se dále po vodorovné podložce. Podložka je zčásti dokonale hladká, zčásti je vyrobena z materiálu, který působí na kostku třecí silou charakterizovanou koeficientem tření f d = 0, 25. Poloha rozhraní obou částí je shodná s polohou volného konce nenapjaté pružiny (obr. 3). Po ztrátě kontaktu s pružinou urazí kostka ještě d = 7, 8 m a zastaví se. a) [0,3 b] K jaké ztrátě mechanické energie E m došlo při brzdění kostky vlivem třecích sil? b) [0,3 b] Jaká byla největší hodnota kinetické energie E k,max kostky? c) [0,4 b] Jaké bylo stlačení pružiny l na začátku pokusu? Obr Dělník vytlačil bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25, 0. Působil na ni při tom silou o velikosti F = 209 N, která byl rovnoběžná s nakloněnou rovinou. Vypočtěte práci, kterou při posunutí bedny o l = 1, 50 m vykonaly síly působící na bednu: a) [0,2 b] síla F, kterou působil dělník, b) [0,2 b] tíhová síla G a c) [0,2 b] normálová (tlaková) síla N nakloněné roviny. d) [0,4 b] Jaká je celková práce W, kterou vykonaly všechny síly působící na bednu? 8. června 2006 ÚFI FSI VUT v Brně 2

3 8. června 2006 ÚFI FSI VUT v Brně 3 7. Na částici o hmotnosti m v místě x působí proměnná síla o velikosti F (x) = F 0 (x/x 0 1), kde F 0 a x 0 jsou konstanty. a) [0,4 b] Určete práci W této síly při přemístění částice z polohy x 1 = 0 do polohy x 2 = 2x 0. b) [0,3 b] Určete změnu kinetické energie E k částice při tomtéž přemístění, je-li síla F jedinou silou, která na částici působí. c) [0,3 b] Určete velikost rychlosti v 2 částice v poloze x 2, je-li velikost její rychlosti v poloze x 1 rovna hodnotě v Těleso o hmotnosti m = 2, 0 kg, které bylo zpočátku v klidu, se začne pohybovat rovnoměrně zrychleně a během t = 3, 0 s dosáhne rychlosti o velikosti v 1 = 10 m/s. a) [0,4 b] Jakou práci W vykoná výsledná urychlující síla během uvedeného časového intervalu t = 3, 0 s? b) [0,3 b] Jaký je okamžitý výkon P 1 této síly na konci uvedeného časového intervalu? c) [0,3 b] Jaký je okamžitý výkon P 1 této síly na konci první poloviny časového intervalu? 2 9. Kabina zdviže na obrázku 4váží G = N. Tažné lano zdviže se přetrhlo v okamžiku, kdy zdviž stála v prvním poschodí a její dno bylo ve vzdálenosti d = 4 m od konce tlumicí pružiny o tuhosti k = 1, N/m. Při přetržení lana bylo uvedeno do chodu bezpečnostní zařízení, které sevřelo kabinu mezi svislé vodicí kolejnice. Na kabinu tak začala působit třecí síla o stálé velikosti F t = 5000 N, směřující proti jejímu pohybu. a) [0,2 b] Jaká byla rychlost kabiny v 1 těsně před nárazem na tlumicí pružinu? b) [0,3 b] Určete maximální stlačení l pružiny. c) [0,3 b] Jakou dráhu s urazí kabina od okamžiku odskoku od pružiny do okamžiku, kdy se dostane do bodu obratu a začne opět padat? d) [0,2 b] Určete přibližně celkovou dráhu s celk, kterou kabina urazí od okamžiku přetržení lana do úplného zastavení. Obr Stroj tlačí kmen o hmotnosti m = 50 kg stálou rychlostí vzhůru po nakloněné rovině o úhlu sklonu α = 30. Síla F, kterou stroj na kmen působí, je stálá a má vodorovný směr. Koeficient tření mezi kmenem a nakloněnou rovinou je f d = 0, 20. a) [0,3 b] Určete práci W F, kterou vykoná síla F stroje při posunutí kmenu o l = 6, 0 m podél nakloněné roviny. b) [0,3 b] Určete práci W G tíhové síly G působící na kmen při tomtéž posunutí. c) [0,4 b] Jaká energie E je rozptýlena třecími silami?

4 11. Tenká tyč délky L a zanedbatelné hmotnosti je na konci uchycena tak, aby se mohla otáčet ve svislé rovině, podle obrázku 5. K jejímu druhému konci je upevněna těžká koule o hmotnosti m. Tyč odchýlíme od svislého směru o úhel θ a volně vypustíme. Uvažme časový interval mezi uvolněním tyče a okamžikem, kdy koule prochází nejnižším bodem své trajektorie. a) [0,3 b] Jakou práci W G vykoná v tomto intervalu tíhová síla G působící na kouli? b) [0,2 b] Jaká je změna tíhové potenciální energie E p soustavy koule + Země? c) [0,2 b] Jaká hodnota tíhové potenciální energie E p,0 odpovídá konfiguraci soustavy koule + Země, v níž je koule v krajní poloze, přisoudíme-li nejnižší poloze koule nulovou hodnotu této energie? d) [0,3 b] Pomocí zadaných veličin určete velikost rychlosti v 1 koule v nejnižší její poloze. Obr Na obrázku 6 jsou znázorněny dvě stejné pružiny spojené krátkým vláknem o délce l = 10 cm. Délka každé z pružin v nenapjatém stavu je d 0 = 50 cm a tuhost k = 500 N/m. Horní pružina je připevněna ke stropu, na volném konci dolní pružiny visí krabice o váze G = 100 N. Další dvě ohebná vlákna, každé o délce s = 85 cm (v dobrém přiblížení neměnné) jsou k soustavě připojena podle obrázku. Krátké vlákno přepálíme, takže krabice zůstane zavěšena pouze na pružinách a dlouhých vláknech a začne se pohybovat. Vlivem odporové síly prostředí se krabice nakonec zastaví v nové rovnovážné poloze. a) [0,4 b] Rozhodněte, zda tato poloha bude ležet nad, či pod původní rovnovážnou polohou, kterou zaujímala krabice před přepálením krátkého vlákna a určete vzdálenost y, jak daleko bude od ní vzdálena. b) [0,2 b] Jakou celkovou práci W p vykonaly pružné síly obou pružin v časovém intervalu mezi přepálením vlákna a ustálením nové rovnovážné polohy? c) [0,2 b] Jakou celkovou práci W G vykonala tíhová síla ve stejném časovém intervalu? d) [0,2 b] Jakou celkovou práci W b vykonaly brzdné síly ve stejném časovém intervalu? Obr června 2006 ÚFI FSI VUT v Brně 4

5 8. června 2006 ÚFI FSI VUT v Brně Malá kostka o hmotnosti m může klouzat bez tření po dráze tvaru smyčky smrti, znázorněné na obrázku 7. Kostku vypustíme z klidové polohy v bodě P, který leží ve výšce h = 5R nade dnem smyčky. a) [0,4 b] Určete výslednici F všech sil, které působí na kostku, v okamžiku jejího průchodu bodem Q. b) [0,1 b] Nakreslete obrázek a výslednici sil F vyznačte. c) [0,5 b] Z jaké výšky h k je třeba kostku volně vypustit, aby ztratila kontakt se smyčkou právě při průchodu jejím vrcholem? Obr. 7.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Dynamika I - příklady do cvičení

Dynamika I - příklady do cvičení Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

Příklady 2 - Kinematika - 27.9.2007

Příklady 2 - Kinematika - 27.9.2007 Příklady 2 - Kinematika - 27.9.2007 1. Počáteční poloha míčku je dána polohovým vektorem r 1 = ( 3, 2, 5), koncová poloha je určena vektorem r 2 = (9, 2, 8). Určete vektor posunutí míčku. Určete velikost

Více

1.2.9 Tahové a tlakové síly

1.2.9 Tahové a tlakové síly 129 Tahové a tlakové síly Předpoklady: 1201, 1203, 1207 Teď když známe Newtonovy pohybové zákony, můžeme si trochu zrevidovat a zopakovat naše znalosti o silách Podmínky pro uznání síly: Existuje původce

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Předmět: Seminář z fyziky

Předmět: Seminář z fyziky Pracovní list č. 1: Kinematika hmotného bodu a) Definujte základní kinematické veličiny, charakterizujte tečné a normálové zrychlení. b) Proveďte rozbor charakteristik jednotlivých konkrétních neperiodických

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Pokyny k řešení didaktického testu - Dynamika

Pokyny k řešení didaktického testu - Dynamika Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity

1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity 1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity Předpoklady: 1205 Pedagogická poznámka: Úvodem chci upozornit, že sám považuji výuku neinerciálních vztažných soustav na gymnáziu za tragický

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Tematický celek: Jednoduché stroje. Úkol:

Tematický celek: Jednoduché stroje. Úkol: Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání

Více

Základní informace... 258 Prostřed montáže... 258 Příprava k montáži a demontáži... 258 Manipulace s ložisky... 260

Základní informace... 258 Prostřed montáže... 258 Příprava k montáži a demontáži... 258 Manipulace s ložisky... 260 Montáž a demontáž Základní informace... 258 Prostřed montáže... 258 Příprava k montáži a demontáži... 258 Manipulace s ložisky... 260 Montáž... 261 Montáž ložisek s válcovou dírou... 261 Nastavení ložisek...

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

VIDEOSBÍRKA ENERGIE A HYBNOST

VIDEOSBÍRKA ENERGIE A HYBNOST VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při

Více

Základní škola Karviná Nové Město tř. Družby 1383

Základní škola Karviná Nové Město tř. Družby 1383 Základní škola Karviná Nové Město tř. Družby 1383 Projekt OP VK oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.4.00/21.3526 Název projektu:

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

Vztlaková síla působící na těleso v atmosféře Země

Vztlaková síla působící na těleso v atmosféře Země Vztlaková síla působící na těleso v atmosféře Země (Učebnice strana 140 141) Na pouti koupíme balonek. Pustíme-li ho v místnosti, stoupá ke stropu.po určité době (balonek mírně uchází) se balonek od stropu

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FYZIKA DIDAKTICKÝ TEST

FYZIKA DIDAKTICKÝ TEST NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Ověření ve výuce Třída: 8.A Datum: 26.9.2012 1 Mechanická práce Předmět: Ročník: Fyzika 8. ročník

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ ( 19 ) (ер. (51) Int Cl> ČESKOSLOVENSKA SOCIALISTICKÁ. (li) (Bil

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ ( 19 ) (ер. (51) Int Cl> ČESKOSLOVENSKA SOCIALISTICKÁ. (li) (Bil ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (ер (23) Výstavní priorita (22) Přihlášeno 02 0? 84 (21) pv 5Ю8-84 (li) (Bil (51) Int Cl> F 16 К 31/14 ÚŘAD PRO

Více

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule). Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Ložiskové jednotky se snímači... 957. Elektronické ovládací moduly steer-by-wire... 967. Jednotky pro řízení výšky zdvihu rámu...

Ložiskové jednotky se snímači... 957. Elektronické ovládací moduly steer-by-wire... 967. Jednotky pro řízení výšky zdvihu rámu... Mechatronika Ložiskové jednotky se snímači... 957 Elektronické ovládací moduly steer-by-wire... 967 Jednotky pro řízení výšky zdvihu rámu... 969 Další jednotky vybavené snímači... 971 955 Ložiskové jednotky

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a. ročník čtyřletého studia Laboratorní práce č. : Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně

Více

Síla, skládání sil, těžiště Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/

Síla, skládání sil, těžiště Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Síla, skládání sil, těžiště Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Vzájemné působení těles Pozoruj a popiš vzájemné působení sil Statické a dynamické působení sil čtvrtku).

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Mendelova zemědělská a lesnická univerzita v Brně

Mendelova zemědělská a lesnická univerzita v Brně Mendelova zemědělská a lesnická univerzita v Brně Bobtnání dřeva Fyzikální vlastnosti dřeva Protokol č.3 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum vyprac.: 10.12.02 Ročník: 2. Skupina:

Více

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka: .5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Práce. Práce se značí:

Práce. Práce se značí: Práce Z fyzikálního hlediska konáme práci, jestliže působíme určitou silou po nějaké dráze, tj. jestliže působíme silou na těleso a způsobíme tím jeho pohyb. F Práce se značí: Jednotka: W J (joule) Jestliže

Více

Seminární práce k předmětu Didaktika matematiky. Téma práce: Aplikační matematické úlohy

Seminární práce k předmětu Didaktika matematiky. Téma práce: Aplikační matematické úlohy Seminární práce k předmětu Didaktika matematiky Téma práce: Aplikační matematické úlohy Vypracovala: Kateřina Fišerová 25. dubna 2009 Příklad 1 (Derivace funkce jedné proměnné) Do stejnosměrného elektrického

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2

Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2 Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?) () Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město

2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město 2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2 Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Ing. Zuzana Kučerová Název šablony III/2 Inovace

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

F - Jednoduché stroje

F - Jednoduché stroje F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

Hračky ve výuce fyziky

Hračky ve výuce fyziky Veletrh ndpadů učitelii: fyziky Hračky ve výuce fyziky Zdeněk Drozd, Jitka Brockmeyerová, Jitka Houfková, MFF UK Praha Fyzika patří na našich školách stále k jednomu z nejméně obh'bených předmětů. Jedním

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 OBOR: POZEMNÍ STAVBY (S) A. MATEMATIKA TEST. Hladina významnosti testu α při testování nulové hypotézy

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

PATENTOVÝ SPIS ČESKÁ A SLOVENSKÁ FEDERATIVNÍ REPUBLIKA (19) S/10 7/10 FEDERÁLNÍ ÚŘAD PRO VYNÁLEZY. (51) mt. ci. G 21 К G 01 T. (11) Číslo dokumentu:

PATENTOVÝ SPIS ČESKÁ A SLOVENSKÁ FEDERATIVNÍ REPUBLIKA (19) S/10 7/10 FEDERÁLNÍ ÚŘAD PRO VYNÁLEZY. (51) mt. ci. G 21 К G 01 T. (11) Číslo dokumentu: PATENTOVÝ SPIS ČESKÁ A SLOVENSKÁ FEDERATIVNÍ REPUBLIKA (19) (21) Čisto přihlášky: 3662-90 (22) Přihlášeno: 24. 07. 90 (40) Zveřejněno: 19. 02. 92 (47) Uděleno: 31. 12. 92 (24) Oznámeno udělení ve Věstníku:

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

na dálku prost ednictvím silových polí Statický ú inek síly Dynamický ú inek síly dynamika Síla F je vektorová veli ina ur ená velikostí, p sobišt

na dálku prost ednictvím silových polí Statický ú inek síly Dynamický ú inek síly dynamika Síla F je vektorová veli ina ur ená velikostí, p sobišt 1.3. Dynamika V kapitole 1.2 Kinematika jsme se zabývali popisem pohybu těles, aniž bychom se zajímali o to proč k pohybu dochází. O příčině pohybu pojednává část mechaniky zvaná dynamika. 1.3.1. Síly

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí

Více

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. . Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..

Více