Mechanická práce, výkon a energie pro učební obory

Rozměr: px
Začít zobrazení ze stránky:

Download "Mechanická práce, výkon a energie pro učební obory"

Transkript

1 Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

2 1. Mechanická práce Síla koná práci, působí-li na pohybující se těleso ve směru dráhy. Platí vzorec W = F. s Pozn.: Působí-li síla proti směru dráhy, říkáme, že těleso práci spotřebovává. Př.: Zvedneme-li těleso do určité výše, síla naší ruky působí ve směru dráhy, proto práci vykonala. Těleso, které jsme ale zvedli, práci spotřebovalo. Jednotky práce: 1 joule [J] = [kg.m 2.s -2 ] 1 joule je práce, kterou vykoná síla, působí-li silou 1 N po dráze 1 m ve směru dráhy Příklad 1: Jakou práci (v MJ) vykoná síla 25 kn, když na těleso působí po dráze 2 km? F = 25 kn = N s = 2 km = m W =? [J] W = F. s W = W = J = 50 MJ Síla vykoná práci 50 MJ. Příklad 2: Jakou práci vykonáte, když zvednete konev o hmotnosti 1 kg s 10 l vody do výšky 40 cm? Hustota vody je kg/m 3 a hodnota tíhového zrychlení je 9,81 m.s -2. m 1 = 1 kg V 1 = 10 l = 10 dm 3 = 0,010 m 3 s = 40 cm = 0,4 m = 1000 kg.m -3 g = 9,81 m.s -2 W =? [J] W = F.s W = (F 1 +F 2 ).s W = (m 1 +.V 1 ).g.s W = ( ,010).9,81.0,4 2

3 W = 43,2 J (přibližně) Zvednutím konve s vodou vykonáme práci asi 43,2 J. 2. Mechanická práce - procvičovací příklady Po stoupající silnici dlouhé 0,5 km má automobil o hmotnosti kg překonat převýšení 10 m. Jakou práci v (kj) vykoná? Tření zanedbejte. Hodnota tíhového zrychlení je 10 m/s 2. OK 150 kj Do jaké výšky zvednete břemeno o hmotnosti 1,8 kg, vykonáte-li práci 16,2 J? Hodnota tíhového zrychlení je 10 m/s 2. OK 0,9 m Určete délku (v cm) svislé dráhy, po které musíte zvednout závaží silou 5 N rovnoměrným pohybem, abyste vykonali práci 1 J. OK 20 cm 4. Jak velkou práci (v kj) vykoná jeřáb, který zvedne rovnoměrným pohybem betonový panel o objemu 2 m 3 po svislé dráze 10 m, je-li hustota betonu kg/m 3? Hodnota tíhového zrychlení je 10 m/s 2. OK 500 kj 5. Traktor táhne vlečku o hmotnosti kg po cestě 100 m dlouhé. Cesta stoupá na úseku 100 m o 6 m. Jakou práci (v kj) na uvedené dráze traktor vykoná? Hodnota tíhového zrychlení je 10 m/s 2. OK 270 kj 6. Závodník na Tour de France ujel trať dlouhou 210 km. Jak velkou práci vykonal (v MJ), jestliže start i cíl mají stejnou nadmořskou výšku? Závodník i s kolem má hmotnost 80 kg a na tření a překonávání odporu vzduchu se spotřebuje síla rovnající se 5 % gravitační síly působící na závodníka s kolem. OK 8,4 MJ Do jaké výšky byl zvednut pytel brambor o hmotnosti 50 kg z povrchu Země rovnoměrným pohybem, jestliže přitom byla vykonána práce J? Hodnota tíhového zrychlení je 10 m/s 2. OK 4,5 m Jak velkou silou (v kn) zvedal jeřáb těleso po svislé dráze 14 m rovnoměrným pohybem, jestliže vykonal práci 21 kj? OK 1,5 kn 9. Člověk o hmotnosti 60 kg vynese do třetího poschodí těleso o hmotnosti 20 kg. Výška jednoho poschodí je 4 m. Určete, jak velkou práci (v kj) přitom vykoná. Hodnota tíhového zrychlení je 10 m/s 2. OK 9,6 kj Těleso o hmotnosti 2 kg zvednuté do výše 3 m nad zemí volně padá. Určete, kdo koná práci a jako výsledek napište její velikost. Hodnota tíhového zrychlení je 10 m/s 2. OK 60 J 11. Vědro s maltou zvedneme pomocí pevné kladky ve svislém směru rovnoměrným pohybem po dráze 8,0 m. Jak velkou práci vykonáme, je-li hmotnost vědra s maltou 10 kg? Třecí síly zanedbáváme. Hodnota tíhového zrychlení je 10 m/s 2. OK 800 J Délka sáňkařské dráhy je 60 m, výška 8 m. Jak velkou práci (v kj) vykoná chlapec, který táhne do kopce sáňky o hmotnosti 15 kg? Hodnota tíhového zrychlení je 10 m/s 2. OK 1,2 kj

4 Jak velkou práci (v kj) vykonal dělník, když vytáhl těleso kladkostrojem do výšky 10 m silou 1,8 kn? OK 18 kj 14. Těleso bylo zvednuto jeřábem svisle vzhůru po dráze 12 m rovnoměrným pohybem. Tahová síla přitom vykonala práci 20 kj. Jaká je hmotnost zvednutého tělesa? Třecí sílu zanedbáváme. Hodnota tíhového zrychlení je 10 m/s 2. OK 167 kg 15. Práce, kterou konáme při chůzi po vodorovné rovině, spočívá v tom, že při každém kroku se tělo zvedne asi o 3 cm. Jak velkou práci (v kj) vykoná žák, když ujde 5 km? Hmotnost žáka je 45 kg, hmotnost aktovky je 3 kg, délka kroku je 0,5 m. Hodnota tíhového zrychlení je 10 m/s 2. OK 144 kj Jak velkou práci (v MJ) vykoná elektrická lokomotiva, která táhne vlak stálou silou 110 kn po vodorovné dráze 10 km? OK MJ 17. Při posouvání vlaků byl jeden vagón uveden nárazem do pohybu po přímých vodorovných kolejích. Na úseku dráhy 200 m se pohyboval rovnoměrně. Určete, jak velká práce se konala při pohybu vagónu na tomto úseku. OK 0 J 18. Na tabulce jeřábu jsou tyto údaje: nosnost jeřábu 20 kn při výšce 20 m. Jak velkou práci (v kj) vykoná jeřáb, zvedá-li těleso o maximálním dovoleném zatížení rovnoměrným pohybem do maximální dovolené výšky? OK 400 kj Automobil ujel vzdálenost 12 km. Motor vykonal práci 4,8 MJ. Předpokládáme, že tažná síla motoru byla stále stejná. Jak byla velká? OK 400 N 20. Z černé skříňky na zdi visí dva provázky, černý a bílý. Vždycky, když černý stáhnete o 1 cm, vytáhnete bílý o 2 cm. Jak velkou silou musíte tahat za černý provázek, když na bílém provázku visí břemeno o tíze 2 N? OK 4 N 21. Výtah, jehož kabina má hmotnost 100 kg, vyvezl 100 cihel do výšky 8 m rovnoměrným pohybem. Hmotnost jedné cihly je 5,0 kg. Jakou práci (v kj) vykonal motor výtahu? Třecí síly zanedbáváme. Hodnota tíhového zrychlení je 10 m/s 2. OK 48 kj Mechanický výkon Výkon definujeme jako velikost práce vykonané za časovou jednotku. Výkon je tedy číselně roven velikosti práce vykonané za časovou jednotku. Jednotky výkonu: 1 watt [W] [W] = [J.s -1 ] Výkon má hodnotu jednoho wattu, jestliže je vykonána práce o velikosti 1 joule za dobu jedné sekundy. Pozn.: Dříve se používala jednotka 1 kůň. Velikostí tato jednotka odpovídá přibližně 0,75 kw. 4

5 Pomocí vzorce pro výkon můžeme též počítat práci z výkonu. Práce je rovna součinu času a výkonu. W = P. t Jednotky práce odvozené z výkonu: 1 Ws = 1J 1Wh = J 1 kwh = 3, J Příklad 1: Jak velký je výkon jeřábu, který zvedne břemeno o hmotnosti kg za tři minuty do výše 27 m? m = 1000 kg s = 27 m t = 3 min = 180 s P =? [W] P = W/t P = F.s/t P = m. g. s/t P = ,81. 27/180 P = 1 471,5 W = 1,5 kw (přibližně) Výkon jeřábu je přibližně 1,5 kw. Příklad 2: Žák vzepřel činku o hmotnosti 30 kg do výše 1,8 m za 1,0 s. Určete jeho výkon. Pohyb činky považujte za rovnoměrný. m = 30 kg h = 1,8 m t = 1,0 s P =? [W] P = W/t P = F.h/t P = m. g. h/t P = 30. 9,81. 1,8/1 5

6 P = 530 W (přibližně) Výkon žáka byl asi 530 W. Příklad 3: Motor pracuje s výkonem 0,6 kw po dobu 4 hodin. Jak velikou mechanickou práci vykoná? P = 0,6 kw = 600 W t = 4 h = s W =? [J] P = W/t, proto W = P. t W = W = J = 8,64 MJ Motor vykoná práci 8,64 MJ. 4. Mechanický výkon - procvičovací příklady Jeřáb má zvednout během osmihodinové pracovní směny 3000 t stavebního materiálu do výšky 9 m. Jaký průměrný výkon musí mít motor? Hodnota tíhového zrychlení je 10 m/s 2. OK 9,4 kw 2. Určete výkon motoru elektrického vrátku, který vytáhne náklad 150 kg rovnoměrným pohybem do výšky 20 m za 25 s. Hodnota tíhového zrychlení je 10 m/s 2. OK 1,2 kw Motor mopedu má stálý výkon 1 kw po dobu jízdy 1,5 h. Jak velkou mechanickou práci motor vykoná? OK 5,4 MJ 4. Za jak dlouho vykoná stroj, který má výkon 2 kw, práci 1000 J? OK 0,5 s 5. Motor o výkonu 300 W vykonal práci J. Kolik sekund na to potřeboval? OK 40 s 6. Čerpadlo načerpá 50 m 3 vody do nádrže ve výšce 15 m za 10 minut. Určete v kilowattech průměrný výkon motoru čerpadla, nepřihlížíme-li ke ztrátám. Hustota vody je 1000 kg/m 3, hodnota tíhového zrychlení je 10 m/s 2. OK 12,5 kw Těleso o hmotnosti 500 kg bylo zdviženo pomocí jeřábu svisle vzhůru po dráze 12 m rovnoměrným pohybem za 1 minutu. Určete průměrný výkon motoru jeřábu. Hodnota tíhového zrychlení je 10 m/s 2. OK 1 kw Výtah dopraví náklad o hmotnosti 250 kg do výšky 3,0 m za 10 s rovnoměrným pohybem. Hmotnost klece výtahu je 100 kg. Jaký je průměrný výkon motoru výtahu? Třecí síly zanedbáváme. Hodnota tíhového zrychlení je 10 m/s 2. OK W 782 6

7 9. Automobil se pohybuje rychlostí 72 km/h, jeho tažná síla je N. Jaký výkon má motor automobilu? OK 24 kw 10. Koulař udělí za 1,2 s kouli pohybovou energii J. Určete průměrný výkon koulaře. OK 830 W 11. Buchar o hmotnosti 500 kg provádí 40 úderů za minutu. Jaký je průměrný výkon motoru bucharu, je-li zdvih kladiva 0,8 m? Hodnota tíhového zrychlení je 10 m/s 2. OK 2,7 kw Automobil jede po rovině rovnoměrným pohybem rychlostí 72 km/h a překonává přitom tření N. Určete výkon motoru automobilu. OK 20 kw 13. Těleso o hmotnosti 50 kg se má zvednout do výše 10 m za 15 s. Jaký výkon je k tomu potřeba? Hodnota tíhového zrychlení je 10 m/s 2. OK 333 W 14. Automobil jede rychlostí 54 km/h. Jeho výkon je 36 kw. Určete velikost tažné síly. OK 2,4 kn 15. Jeřáb zvedá břemeno o hmotnosti 200 kg rychlostí 1 m/s. Určete průměrný výkon jeřábu. Hodnota tíhového zrychlení je 10 m/s 2. OK 2 kw 16. Určete výkon motoru výtahu, jestliže zvedne rovnoměrným pohybem těleso o tíze N do výšky 10 m za 12 s. OK 1 kw Mechanická energie Energie tělesa je schopnost pohybujícího se tělesa konat práci. Energii máme: kinetickou (pohybovou) potenciální (polohovou) Pozn.: Příklady jiných forem uvedených energií (elastická energie = potenciální; např. pero v budíku) Pozn.: Shora uvedená definice je definicí kinetické energie. Energie tělesa je tím větší, čím větší práci je těleso schopno vykonat. Mírou velikosti energie je velikost práce. Jednotky energie jsou stejné jako jednotky práce. Energii značíme E 1. Kinetická energie E k = W = F. s = m. a. at 2 /2 = m. (a. t) 2 /2 = m. v 2 /2 v... rychlost rovnoměrně zrychleného pohybu Příklad 1: Náboj o hmotnosti 20 g je vystřelen z hlavně rychlostí 600 m/s. Určete jeho kinetickou energii v okamžiku, kdy opouští hlaveň. 7

8 v = 600 m/s m = 20 g = 0,02 kg E k =? [J] E k = m. v 2 /2 E k = 0, /2 E k = J Kinetická energie náboje je J. 2. Potenciální energie Zvedáme-li těleso do výšky h, konáme práci. Zvedané těleso tuto práci spotřebovává. Tato práce je vlastně potenciální energií zvedaného tělesa. E p = m. g. h Potenciální energie se tedy rovná součinu tíhy tělesa a jeho výšky. Různé druhy potenciální energie: gravitační energie elastická energie Gravitační energie je podmíněna tíhou tělesa. Elastická energie je podmíněna pružností tělesa (vzájemným silovým působením molekul) Kinetickou a potenciální energii nazýváme souhrnně energií mechanickou. Příklad 2: V přehradě padá za sekundu 2000 m 3 vody z výšky 37 m. Určete potenciální energii tohoto množství vzhledem k hladině přehrady. V = m 3 h = 37 m = 1000 kg/m 3 E p =? [J] E p = m. g. h =. V. g. h E p = , E p = J = 726 MJ (přibližně) Potenciální energie daného množství vody je přibližně 726 MJ. Zákon zachování energie Energie nevzniká, ani nezaniká. Mění se pouze ve stejném množství jedna její forma v jinou nebo přechází z jednoho tělesa na těleso druhé. 8

9 Příkladem, kde se dá dobře vysvětlit přeměna energie, je matematické kyvadlo. Je-li kulička v krajní poloze, má největší potenciální energii a nulovou kinetickou, při průchodu rovnovážnou polohou je tomu naopak. (Zanedbáváme jakékoliv ztráty třením) Zákon zachování energie platí pro jakékoliv druhy energie; může se tedy měnit např. energie elektrická na světelnou, mechanickou, apod. Účinnost Účinností rozumíme poměr výkonu P 2 získávaného z nějakého zařízení a výkonu P 1 (příkonu) přiváděného témuž zařízení. = P 2 /P 1 Účinnost je bezrozměrná veličina, pro niž platí, že vždy je větší nebo rovna nule a menší nebo rovna jedné. Zpravidla se udává v procentech. U skutečných zařízení dochází vždy ke ztrátám, takže účinnost každého zařízení je menší než 1 (menší než 100 %). Protože výkon je určen podílem práce a času, je možno účinnost určit i změřením dodané a vykonané práce nebo energie za určitou dobu. = P 2 /P 1 = (P 2. t)/(p 1. t) = W 2 /W 1 = E 2 /E Ukázkové příklady: Příklad 3: Stříkačka vrhá za minutu 200 litrů vody do výšky 30 m. Jaký je příkon čerpadla, je-li účinnost zařízení 65%? Hustota vody je 1000 kg/m 3, hodnota tíhového zrychlení je 10 m/s 2. V = 200 l = 0,2 m 3 h = 30 m = 65 % = 0,65 = 1000 kg/m 3 t = 1 min = 60 s P 1 =? [W] = P 2 /P 1... proto P 1 = P 2 / (1) Vypočteme si nejprve P 2 : P 2 = W 2 /t = m. g. h/t =. V. g. h/t 9

10 P 2 = , /60 P 2 = 1000 W Dosadíme do (1): P 1 = 1000/0,65 P 1 = 1,54 kw (přibližně) Příkon čerpadla je asi 1,54 kw. 6. Mechanická energie - procvičovací příklady 1. Klec těžního stroje o hmotnosti 400 kg vyjíždí rovnoměrným pohybem z těžní jámy hluboké 520 m na povrch. Jak velkou polohovou (potenciální) energii vzhledem ke dnu těžní jámy získá klec? Hodnota tíhového zrychlení je 10 m/s 2. OK 2,1 MJ Stroj vykoná práci 30 MJ za 1 hodinu. Jaký musí být příkon stroje v kilowattech, je-li jeho účinnost 80 %? OK 10,42 kw Jakou polohovou (potenciální) energii vzhledem ke kulatině má beranidlo o hmotnosti 500 kg ve výši 0,5 m nad zaráženou kulatinou? Hodnota tíhového zrychlení je 10 m/s 2. OK 2,5 kj Jak se změní polohová (potenciální) energie kladiva o hmotnosti 45 kg, jestliže ho zvedneme do výšky 1,6 m? Hodnota tíhového zrychlení je 10 m/s 2. OK Zvýší se o 720 J Jeřáb zvedá panel o hmotnosti 100 kg do výšky 15 m rovnoměrným pohybem. Jak se změní polohová (potenciální) energie panelu? Hodnota tíhového zrychlení je 10 m/s 2. OK Zvýší se o 15 kj 6. Jak se změní polohová (potenciální) energie hodinového závaží o hmotnosti 0,5 kg, jestliže ho vytáhneme do výšky 50 cm? Hodnota tíhového zrychlení je 10 m/s 2. OK Zvýší se o 2,5 J Jak velkou polohovou (potenciální) energii má cihla o hmotnosti 5 kg ve výšce 20 m nad zemí? Hodnota tíhového zrychlení je 10 m/s 2. OK 1 kj 8. Střela o hmotnosti 20 g je vystřelena kolmo vzhůru do výšky 300 m. jaká je její polohová (potenciální) energie v nejvyšším bodě dráhy vzhledem k Zemi? Hodnota tíhového zrychlení je 10 m/s 2. OK 60 J 9. Jak velkou polohovou (potenciální) energii má 1 m 3 vody na Slapské přehradě vzhledem k hladině vody pod přehradou, je-li rozdíl nadmořských výšek hladiny přehradního jezera a hladiny vody pod přehradou 52 m? Hustota vody je 1000 kg/m 3, hodnota tíhového zrychlení je 10 m/s 2. OK 520 kj Určete, jakou pohybovou energii má kladivo před tím, než dopadne na hlavičku hřebíku, působí-li po dopadu na hřebík silou 600 N a zatlačí ho do dřeva o 5 mm. OK 3 J Určete účinnost spotřebiče, když jeho výkon je 180 W a jeho příkon je 200 W. OK 90 %

11 12. Jaký příkon musí mít motor rychlovýtahu, který vynese kabinu, která má i s cestujícími hmotnost 500 kg do výšky 30 m za 10 s, je-li účinnost motoru 80%? Hodnota tíhového zrychlení je 10 m/s 2. OK 18,75 kw

12 Obsah 1. Mechanická práce 2. Mechanická práce - procvičovací příklady 3. Mechanický výkon 4. Mechanický výkon - procvičovací příklady 5. Mechanická energie 6. Mechanická energie - procvičovací příklady

F - Příprava na 2. zápočtový test z fyziky

F - Příprava na 2. zápočtový test z fyziky F - Příprava na. zápočtový test z fyziky Určeno pro třídu 1DOP. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Název DUM: Polohová energie v příkladech

Název DUM: Polohová energie v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Polohová energie

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule). Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní

Více

F - Elektrická práce, elektrický výkon, účinnost

F - Elektrická práce, elektrický výkon, účinnost F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

! # # 0,;) $( 1 # #.4'(53.4'(5 &.( ( > 3 ' (,!2 " '3 # =0# &#> $( 1 # #- # $& 0)1; " <#!* # ( ( (" '(5 (, % $,2 " )*$#

! # # 0,;) $( 1 # #.4'(53.4'(5 &.( ( > 3 ' (,!2  '3 # =0# &#> $( 1 # #- # $& 0)1;  <#!* # ( ( ( '(5 (, % $,2  )*$# ) 3 4 25 4 8 4, 9: 843 8 4 25 / / 1 4 6 7 41 8 4, 9: 84 7 846 51 0 2 8 4 65 4 65 555 4 1 4 1555 3 4, 9: 348 3 4 65 555 1555, - - - ), / 0 1 2 ) 13,3 45,,-, 0 1 6 7 8 9 5 1 453 3 : ) /3-2 3,2,, : 1,1;1

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

F - Jednoduché stroje

F - Jednoduché stroje F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Práce - výkon (pracovní list)

Práce - výkon (pracovní list) Základní škola a Mateřská škola Dolní Hbity, okres Příbram Práce - výkon (pracovní list) Ing. Miroslava Maříková VY_52_INOVACE_F.Ma.23-1 - Předmět: FYZIKA Stupeň vzdělávání: druhý stupeň /8.roč./ Téma:

Více

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle Při výstřelu lodního protiletadlového děla projektil neboli střela ráže 3 mm o hmotnosti 190 gramů zrychlí z klidu na rychlost 880 km/h za 0,01 s. Předpokládáme, že: pohybující se projektil v hlavni je

Více

Název DUM: Mechanická práce v příkladech

Název DUM: Mechanická práce v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Mechanická práce

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

Věra Keselicová. duben 2013

Věra Keselicová. duben 2013 VY_52_INOVACE_VK54 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová duben 2013 8. ročník

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Ověření ve výuce Třída: 8.A Datum: 26.9.2012 1 Mechanická práce Předmět: Ročník: Fyzika 8. ročník

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ROVNOMĚRNÝ POHYB 1) První třetinu dráhy projel automobil rychlostí

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Dynamika pro učební obory

Dynamika pro učební obory Variace 1 Dynamika pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Newtonovy pohybové zákony

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Účinnost v

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Tematický celek: Jednoduché stroje. Úkol:

Tematický celek: Jednoduché stroje. Úkol: Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie Příklad. Vozík má hmotnost 400 kg, výkon motoru je,0 kw. Vodorovná cesta má součinitel smykového tření 0,. Určete jaký maximální náklad vozík uveze, aby se pohyboval rychlostí 2 m.s.

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 8. října 707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Digitální

Více

Práce síla dráhu Působíme-li na těleso silou F a přemístíme ho tak po dráze s , vykonáme mechanickou práci W

Práce síla dráhu Působíme-li na těleso silou F a přemístíme ho tak po dráze s , vykonáme mechanickou práci W Práce O práci v našem životě často hovoříme nebo ji vykonáváme. Ve fyzice jde však o název další fyzikální veličiny, kterou poznáme a naučíme se s ní pracovat. Rozhodněte, kdo na úvodním obrázku vykonává

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

III. Dynamika hmotného bodu

III. Dynamika hmotného bodu III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL - Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

1 MECHANICKÁ PRÁCE A ENERGIE 1.1 MECHANICKÁ PRÁCE

1 MECHANICKÁ PRÁCE A ENERGIE 1.1 MECHANICKÁ PRÁCE 1 MECHANICKÁ PRÁCE A ENERGIE 1.1 MECHANICKÁ PRÁCE Rychlý náhled Zavedeme skalární veličinu práce a naučíme se řešit úlohy z praxe. Odvodíme si jednotku práce a ukážeme, jak se dá práce vypočítat z grafu

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

Archimédův kladkostroj. Tematický celek: Jednoduché stroje. Úkol:

Archimédův kladkostroj. Tematický celek: Jednoduché stroje. Úkol: Název: Archimédův kladkostroj. Tematický celek: Jednoduché stroje. Úkol: 1. Archimédův kladkostroj charakteristika stroje. 2. Navrhněte konstrukci robota zvedáku s Archimédovým kladkostrojem. 3. Určete

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

Práce. Práce se značí:

Práce. Práce se značí: Práce Z fyzikálního hlediska konáme práci, jestliže působíme určitou silou po nějaké dráze, tj. jestliže působíme silou na těleso a způsobíme tím jeho pohyb. F Práce se značí: Jednotka: W J (joule) Jestliže

Více

Archimédův zákon, vztlaková síla

Archimédův zákon, vztlaková síla Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6 ÚLOHY - ŘEŠENÍ F1: Objem jedné dávky písku u nakládače je 0,50 m 3 a dávky se od této hodnoty mohou lišit až o 50 litrů podle toho, jak se nabírání písku zdaří. Suchý písek má hustotu 1500 kg/m 3. Na valník

Více

Konstrukce kladkostroje. Výpočet výkonu kladkostroje.

Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Název: Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Tematický celek: Mechanická práce a energie. Úkol: 1. Kladkostroj druhy a využití. 2. Navrhněte konstrukci robota - jeřábu s kladkostrojem.

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 Číslo projektu CZ.1.07/1.5.00/34.0448 Číslo materiálu ICT- PZF 1/ 9 Mechanická práce a energie pracovní list Název školy Autor Tematický

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok 58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Pokyny k řešení didaktického testu - Dynamika

Pokyny k řešení didaktického testu - Dynamika Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

R 2 R 4 R 1 R

R 2 R 4 R 1 R TEST:Bc-1314-FYZ Varianta:0 Tisknuto:18/06/2013 1. Jak daleko od Země je Měsíc, jestliže světlo urazí tuto vzdálenost za 1,28 sekundy? Rychlost světla je 300 000 km/s. 1) 384 000 km 2) 425 000 km 4) 256

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

F - Mechanika kapalin - I

F - Mechanika kapalin - I - Mechanika kapalin - I Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

2.1 Pokyny k uzavřeným úlohám. 2.2 Pokyny k otevřeným úlohám. Testový sešit neotvírejte, počkejte na pokyn!

2.1 Pokyny k uzavřeným úlohám. 2.2 Pokyny k otevřeným úlohám. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D12C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Vybrané kapitoly ze středoškolské fyziky

Vybrané kapitoly ze středoškolské fyziky UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky Vybrané kapitoly ze středoškolské fyziky Sbírka příkladů pro přípravný kurz uchazečů o studium na DFJP Univerzity Pardubice RNDr. Jan

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více