Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec
|
|
- Drahomíra Šmídová
- před 8 lety
- Počet zobrazení:
Transkript
1 Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost léčby Počet pravděpodobnosti je základem induktivní statistiky zobecnění směrem od výběru k populaci nejistota; hladina významnosti, p-hodnoty, intervaly spolehlivosti Náhodný pokus, náhodný n jev Náhodný pokus: výsledek není jednoznačně určen podmínkami, předpokládáme opakovatelnost pokusu, jednotlivá opakování se neovlivňují Náhodný jev: tvrzení o výsledku pokusu, lze určit jeho pravdivost náhodné jevy A,B,C,D, (Př.A...padnutí šestky, B narození chlapce) negace A 1
2 815 Relativní četnost, pravděpodobnost podobnost předpokládáme opakovánípokusu, sledujeme výsledky: A, A, A, A, A, A, A, A, A, A jev nastal mkrát z n pokusů Relativní četnost výskytu jevu A: m / n Pravděpodobnost jevu A číslo A), které je mírou častosti výskytu A A) = lim n m n Příklad Sledujeme náhodný jev narozeníchlapce v závislosti na rostoucím počtu novorozenců. ABSOLUTNÍ ČETNOST m počet narozených chlapců RELATIVNÍ ČETNOST m/n počet narozených chlapců k celkovému počtu novorozenců (často se udává v %) Počet novorozenců n Absolutní četnost m Relativní četnost m/n , , , , ,50 Základní vlastnosti pravděpodobnost jistého jevu je rovna 1 pravděpodobnost nemožného jevu je 0 pro libovolný A platí 0 A) 1 lze-li A rozložit na několik vzájemně se vylučujících (disjunktních) jevů A 1,, A k, pak A) = A 1 ) + + A k ) je-li A částí B, pak A) B) 2
3 Pravidla pro počítání většinou sledujeme nikoli jeden jev, ale více jevů a zajímají nás jejich vzájemné vztahy C=(A,B) A a B nastanou současně D=(A nebo B) nastane alespoň jeden z jevů A a B A nebo B) = A) + B) -A,B) Jevy neslučiteln itelné,, opačné A a B jsou neslučitelné, když nemohou nastat oba současně, neboli A,B)=0 A nebo B) = A) + B) pravidlo o sčitání pravděpodobností obecněji: nechť A 1, A 2,..., A k vzájemně neslučitelné, jev D=(A 1 nebo A 2 nebo A k ) D)= A 1 ) + + A k )=ΣA i ) opačný (doplňkový) jev k jevu A (značíme A) nastává právě tehdy, když A nenastává A) = 1- A) Příklad A narození chlapce, A)=0,51 A... narození dívky, A) = 1-A)=0,491 Příklad: hod kostkou Mějme 3 vzájemn jemně neslučiteln itelné jevy: A padne 1, B padne 3, C padne 5 D padne liché číslo, D=(A nebo B nebo C) D)=A)+B)+C) = 1/6+1/6+1/6=0,5 3
4 Podmíněná pravděpodobnost podobnost pravd. nějakého jevu často závisí na tom, zda nastal jev jiný; nastal-li B může se změnit A) podmíněná pravděpodobnost jevu A za předpokladu, že nastal jev B P ( A B) = A, B) B) Nezávislost jevů Jevy A a B nezávislé, když výskyt jednoho neovlivňuje výskyt druhého P ( A B) = A) pravidlo o násobení pravděpodobností P ( A, B) = A) B) P ( B A) = B) obecněji: A 1, A 2,..., A k nezávislé, C=(A 1, A 2,..., A k ) P ( C) = A1) A2)... Ak) Příklad A zvýšený cholesterol, B kouření A) = 37/140=0,2643 B) = 98/140=0,7000 A,B) = 31/140 = 0,2214 A B) = 0,2214 / 0,7000 = 0,3163 A B) A) A) A a B nejsou nezávisl vislé Příklad: hod kostkou A v v 1.hodu 6, B ve B 2.hodu 6 A,B)=A)B)=(1/6)(1/6)=1/36=0,0278 4
5 Pravidlo o úplné pravděpodobnosti podobnosti jevy B i (i=1, 2,,k) vzájemně neslučitelné a jeden z nich musínastat P ( B1neboB 2nebo... nebobk) = 1 = k i= 1 A=(A,B 1 ) nebo (A,B 2 ) nebo nebo (A,B k ) A) = k A, = i= 1 i= 1 k A A úraz, zajímá nás s A) Příklad 3 skupiny osob rozdělěné dle věku: v B 1 dítě,, B 2 osoba v reprod.v.věku, B 3 osoba v postreprod.v.věku, B i... vzájemn jemně neslučiteln itelné,, 1 musí nastat B 1 )+B 2 )+B 3 )=0,25+0,60+0,15=1 navíc c známe podmíněné pravděpodobnosti: podobnosti: A B 1 )=0,2; A B 2 )=0,1; A B 3 )=0,4 A) = A B 1 ) B 1 ) + A B 2 ) B 2 ) + A B 3 ) B 3 ) = = 0,20*0,25 + 0,10*0,60 + 0,40*0,15 = 0,17 Bayesův vzorec známe apriorní pravděpodobnosti B i ) i=1,...,k známe podm. pravděpodobnosti A B i ) i=1,...,k zajímá nás aposteriornípravděp. B j A) Bj A) = k A Bj) Bj) i= 1 A 5
6 Příklad A osoba je kuřák, k, zajímá nás s A) B 1 osoba s chron.. bronchitidou, B 2 osoba bez chron.bronchitidy, B 1 )=0,40, B 2 )=0,60 navíc c známe podmíněné pravděpodobnosti: podobnosti: A B 1 )=0,75; A B 2 )=0,50 A B1) B1) B1 A) = A B1) B1) + A B 2) B 2) 0,75*0,40 = = 0,50 0,75*0,40 + 0,50*0,60 BAYESOVSKÝ PŘÍSTUP SKRÍNINGOVÝ T NEMOC D + - CELKEM + - a c b d a + b c + d CELKEM a + c b + d n SENSITIVITA a SPECIFICITA SENSITIVITA (SE) je pravděpodobnost P (T + /D + ) pozitivního výsledku testu u nemocné osoby SE = a/ (a+ c) SPECIFICITA (SP) je proevděpodobnost T - /D - ) negativního výsledku testu u osoby bez nemoci SP = d / (b + d) 6
7 NESPRÁVNÁ NEGATIVITA A NESPRÁVNÁ POZITIVITA NESPRÁVNÁ NEGATIVITA (FN) je pravděpodobnost T - /D + ) negativního výsledku testu u nemocných FN = c / (a + c) NESPRÁVNÁ POZITIVITA (FP) je pravděpodobnost T + /D - ) of pozitivního výsledku testu u osob bez nemoci FP = b / (b + d) Hodnocení diagnostického či skríningov ningového testu pro detekci nemoci ALE: v klinické praxi nevíme, zda je nemoc přítomna p či i nikoli; známe jen výsledek testu a na jeho základz kladě chceme predikovat přítomnost choroby... T+) musíme me na data nahlížet ve směru ru výsledků testu fi prediktivní hodnoty PREDIKTIVNÍ HODNOTY PREDIKTIVNÍ HODNOTA POZITIVNÍHO U je pravděpodobnost D + /T + ) výskytu nemoci v případě pozitivního výsledku testu PV + = a / (a + b) PREDIKTIVNÍ HODNOTA NEGATIVNÍHO U je prevděpodobnost D - /T - ), že se nemoc nevyskytne v případě negativního výsledku testu PV - = d / (c + d) 7
8 Prediktivní hodnota pozitivního testu pomocí Bayesova vzorce T + ) ) T + ) = T + ) ) + T + D ) D ) SE * ) = SE * ) + (1 SP) *(1 ) )... apriorní předtestová pravděpodobnost podobnost D T+)... aposteriorní potestová pravděpodobnost podobnost D POZOR: pro SE=0,95, SP=0,95, )=0,01 dostaneme PV+=0,16 při skríningu obecné populace bude nevyhnutelně mnoho lidí nesprávn vně pozitivních VZTAH MEZI SENZITIVITOU (SE), SPECIFICITOU (SP), PREVALENCÍ (P ()) A PREDIKTIVNÍMI HODNOTAMI (PV +, PV - ) VYPLYVAJÍCÍ ZBAYESOVA VZORCE PV + =(SE. P ( D + )) / (SE.P ( ) + ( 1 - SP).(1-P () )) PV - =(SP. (1-P ( D + )) / (SP.(1-P ( ) + ( 1 - SE).P () ) ROC křivkak řada diagnostických testů je kvantitativních jak stanovit dělící bod (cut-off point)? cíl: najít dělící bod tak, abychom dosáhli rovnováhy mezi FP a FN závěry (váhy nesprávných rozhodnutí) ROC křivka: spočteme SE a SP pro různé dělící body 8
9 Příklad osob Bez U RAKOVINA P=0,012 Bez RAKOVINY P=0,988 RAKOVINA P=0,012 Bez RAKOVINY P=0, POZITIVNÍ P=0,8 NEGATIVNÍ P=0,2 NEGATIVNÍ P=0,95 POZITIVNÍ P=0, OPERACE 0 OPERACE P=0,45 P=0,10 P=0,45 P=0,10 P=0,90 NO. PERSONS 4,5 1,0 4,5 2, , A B C C A B D C A A ZLEPŠENÍ B ÚMRTÍ OPERACE C ÚMRTÍRAKOVINA D ZHORŠENÍPANKREATICKÉ INSUFICIENCE Šance Řekneme, že šance (odds) závodního koně na první místo vdostihovém závodě (jev A) je 1 ku 4, znamená to, že kůň závod vyhraje spravděpodobností Abychom vyjádření pomocí šance převedli na vyjádření pomocí pravděpodobnosti, sečteme vlastně čísla = 5 a dostaneme tak jmenovatel zlomku pro vyjádření pravděpodobnosti výhry, tj. 1/5. Pro libovolný náhodnýjev A tedyplatí: šance A je O(A) výskytu jevu Ř e k n e m e - l i n a p ř í k l a d Podíl šancí (Odds ratio) Podíl šancí (odds ratio) OR udává podíl šanci, že se vyskytne nějaký jev A za určité podmínky (jev B), k šanci, že se jev A vyskytne, když podmínka neplatí (jev B). Podíl šancí se tedy vypočte jako přičemž 9
10 Věrohodnostní poměr Věrohodnostní poměr (likelihood ratio) LR udává podíl pravděpodobnosti, že se vyskytne nějaký jev A za určité podmínky (jev B), kpravděpodobnosti, že se jev A vyskytne, když podmínka neplatí (jev B), tedy Věrohodnostní poměr - příklad Má-li pacient náhlou ztrátu paměti (jev A), chceme znát věrohodnostní poměr výskytu jevu A vpřípadě, že má mozkový nádor (jev B), tj. podíl pravděpodobnosti, s jakou ztráta paměti vzniká přinádoru mozku, k pravděpodobnosti, s jakou vzniká vostatních případech (jev B). Věrohodnostní poměr je tedy podíl podmíněných pravděpodobností Příklad Ve statistické studii o rakovině plic bylo zjištěno, že šance na výskyt rakoviny plic (jev A) u kuřáků (jev B) je 5 ku 4 (5/4) a šance na výskyt rakoviny unekuřáků (jev B) je 1 ku 8 (1/8). Potom podíl šancí je což znamená, že šance dostat rakovinu plic je 10x větší ukuřáků než unekuřáků. 10
11 Věrohodnostní poměr Věrohodnostní poměr užíváme i při hodnocení skríningových a diagnostických testů a ve forenznígenetice. Například věrohodnostní poměr pozitivního skríningového testu je dán jako Podobně věrohodnostní poměr negativního testu spočteme jako 11
Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.
Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,
Informační a znalostní systémy
Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
PRAVDĚPODOBNOST JE. Martina Litschmannová
RAVDĚODOBNOST JE Martina Litschmannová Čím se zabývá teorie pravděpodobnosti? Teorie pravděpodobnosti je matematická disciplína popisující zákonitosti týkající se náhodných jevů, tj. používá se k modelování
Počet pravděpodobnosti
PSY117/454 Statistická analýza dat v psychologii Přednáška 4 Počet pravděpodobnosti Je známo, že když muž použije jeden z okrajových pisoárů, sníží se pravděpodobnost, že bude pomočen o 50%. anonym Pravděpodobnost
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky
řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesůvvzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
OR (odds ratio, poměr šancí) nebo též relativní riziko RR. Validita vyšetření nádorových markerů. Validita (určuje kvalitu testu)v % = SP/ SP+FP+FN+SN
Validita vyšetření nádorových markerů v rámci požadavků správné laboratorní práce Preanalytická fáze vyšet etřování sérových nádorových markerů (TM) Základní předpoklady správného užití TM: nádorové markery
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení šesté aneb Podmíněná pravděpodobnost Statistika (KMI/PSTAT) 1 / 13 Pravděpodobnost náhodných jevů Po dnešní hodině byste měli být schopni: rozumět pojmu podmíněná pravděpodobnost
Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky
řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesův vzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy
Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale
Intuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
TEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Pravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)
III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,
PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev
RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných
ZÁKLADY INFORMATIKY. 1. Úvod do informatiky - pojem informace, vznik a vývoj teorie informace, osobnosti, přístupy, důvody pro vznik teorie informace.
ZÁKLADY INFORMATIKY 1. Úvod do informatiky - pojem informace, vznik a vývoj teorie informace, osobnosti, přístupy, důvody pro vznik teorie informace. 2. Matematický aparát v teorii informace I. - teorie
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 6 Jak analyzovat kategoriální a binární
Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev
Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz
Pravděpodobnost vs. Poměr šancí. Pravděpodobnostní algoritmy: Bayesova věta. Bayesova teorie rozhodování. Bayesova věta (teorém) Vzorec. ...
ravděpodobnostní algoritmy: Bayesova věta Fantasy is hardly an escape from reality. It is a way of understanding it. LLoyd Alexander ravděpodobnost vs. oměr šancí ravděpodobnost - poměr počtu jedinců surčitým
Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
Náhodný jev a definice pravděpodobnosti
Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
PRAVDĚPODOBNOST A JEJÍ UŽITÍ
PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují
Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se
Induktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka
Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.
Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek
Teorie pravěpodobnosti 1
Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako
Pravděpodobnost (pracovní verze)
Pravděpodobnost (pracovní verze) 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment) Akt vedoucí k jednomu výsledku - např. hod kostkou, zatočení ruletou, vytažení karty z balíčku, výběr osoby
Úvod do teorie pravděpodobnosti
Úvod do teorie pravděpodobnosti Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 33 Obsah 1 Náhodné jevy 2 Pravděpodobnost 3 Podmíněná
Epidemiologie, 4. seminář. SCREENING SCREENINGOVÉ TESTY v epidemiologii
Epidemiologie, 4. seminář SCREENING SCREENINGOVÉ TESTY v epidemiologii PREVENCE (zabránění vzniku nemoci) Primární prevence cílem je zabránit vzniku nemoci pokles incidence Sekundární prevence záchyt existujícího
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Matematika I 2a Konečná pravděpodobnost
Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha Organizační pokyny k přednášce přednáškové
Epidemiologické metody
6. SEMINÁŘ RIZIKA Epidemiologické metody Posuzování vztahů mezi nemocemi a jejich příčinami a podmínkami vzniku. Důležitou roli zde má statistika poskytuje metody pro měření asociace mezi jevy Pro posouzení
III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina
III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu
5.1. Klasická pravděpodobnst
5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
IB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Cvičení ze statistiky - 4. Filip Děchtěrenko
Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost
Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1
? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v
Rychlokurz forenzní DNA statistiky Anastassiya Žídková
Rychlokurz forenzní DNA statistiky 21.10.2011 Anastassiya Žídková anastazie.d@gmail.com Úvod První část Program dnešního kurzu Základní zákony pravděpodobnosti Druhá část Bayesovavěta Zásady při interpretaci
Poznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Poznámky k předmětu Aplikovaná statistika, 11. téma
Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
pravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.
Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého
8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění
Jana Vránová, 3. lékařská fakulta, UK Praha
Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,
Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké
(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10
2. cvičení - STATISTIKA Náhodný jev, Pravděpodobnost jevu, Podmíněná pravděpodbnost, Úplná pravděpodobnost, Bayesova věta 1. V cele předběžného zadržení sedí vedle sebe 10 podezřelých, z toho 3 ženy. Jaká
VÝBĚR A JEHO REPREZENTATIVNOST
VÝBĚR A JEHO REPREZENTATIVNOST Induktivní, analytická statistika se snaží odhadnout charakteristiky populace pomocí malého vzorku, který se nazývá VÝBĚR neboli VÝBĚROVÝ SOUBOR. REPREZENTATIVNOST VÝBĚRU:
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Základy pravděpodobnosti poznámky. Jana Klicnarová
Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém
Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.
Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n