MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

Rozměr: px
Začít zobrazení ze stránky:

Download "MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické"

Transkript

1 MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných okolnostech - umožňují profitovat z nákupu většího množství surovin nebo zboží, popř. ze zvýšení jejich cen Zásoby se mohou týkat buď surovin nebo rozpracovaných výrobků ve výrobních podnicích, nebo zboží v obchodní síti. Všechny tyto druhy produktů budeme z hlediska teorie zásob nazývat položkami. Nejčastějším typem modelů řízení zásob jsou nákladově orientované modely, jejichž cílem je minimalizace nákladů spojených s pořízením zásob a s jejich skladováním, popř. minimalizace ztrát vzniklých z nedostatku zásob. Důležitým pojmem v teorii zásob je poptávka, která může být buď jednoznačně určena, nebo může představovat náhodnou veličinu se známým rozdělením pravděpodobnosti. Náhodný charakter může mít i čas, který uplyne od vystavení a odeslání objednávky do okamžiku, kdy zásoba skutečně přijde na sklad. Tento časový interval se nazývá pořizovací lhůta dodávky (též předstih objednávky). Pokud poptávka i pořizovací lhůta dodávky jsou jednoznačně určeny, příslušné modely zásob označujeme jako deterministické. V opačném případě jde o modely stochastické. Ve vybraných matematických modelech řízení zásob, které budou obsahem této přednášky, se budou vyskytovat následující symboly a pojmy: T doba, po kterou sledujeme zásobovací proces (zpravidla jeden rok) t délka dodacího cyklu (doba mezi dvěma po sobě jdoucími dodávkami) Q celková poptávka (spotřeba) za dobu T velikost jedné objednávky d předstih objednávky r bod znovuobjednávky nebo též objednací úroveň (velikost zásob, při které je nutné vystavit objednávku) c fixní náklady na pořízení jedné objednávky c skladovací náklady na jednotku zásob za jednotku času A. Deterministické modely zásob Ukázkou deterministických modelů zásob je následující historicky první formulovaný model řízení zásob, který vychází z těchto předpokladů: - zásoby se doplňují v jednom časovém okamžiku, a to po jejich vyčerpání - je předem znám požadavek na nakupovanou položku za celé zásobovací období (Q) - jsou známy jednotkové objednací a skladovací náklady (c a c ) - v důsledku konstantní poptávky je čerpání zásob rovnoměrné - nákupní cena je nezávislá na velikosti objednávky Pro tento typ modelu je průběh čerpání zásob graficky znázorněn na obr.. Za uvedených předpokladů je možné určit, v jak velkých dodávkách a jak často by měl majitel zásob položku objednávat, aby náklady spojené s pořizováním a udržováním zásob byly co nejnižší. Obr.

2 Během jednoho dodacího cyklu nabývají objednací náklady N a skladovací náklady na průměrnou výši zásob v tomto období (lze ji vyjádřit jako průměr (+)/) N těchto hodnot: N = c N = c t Protože počet dodacích cyklů za skladovací období T je roven podílu Q/, pro nákladovou funkci za celé toto období platí Q cq ctq N ( ) = c + c t = + () Aby i skladovací náklady byly vyjádřeny v závislosti na velikosti objednávky, T v druhém zlomku výrazu () nahradíme délku dodacího cyklu t podílem. Po této Q / úpravě má nákladová funkce tvar cq ct N ( ) = + () Graf této funkce spolu s grafy nákladů na vyřízení objednávky a na skladování je pro níže řešený příklad zakreslen na obr.. Z tohoto obrázku je patrné, že při zadaných hodnotách c, c, T, Q s rostoucí velikostí objednávky pořizovací náklady klesají (jde o nepřímou závislost), zatímco skladovací náklady lineárně vzrůstají. Při určité velikosti objednávky součet těchto nákladů nabývá nejnižší hodnoty.

3 Obr náklady (Kč) 8 objednací náklady skladovací náklady celkové náklady velikost objednávky (ks) Zjištění optimální velikosti objednávky (v angloamerické literatuře značené EOQ = Economic Order Quantity) znamená nalezení lokálního minima funkce (). Položíme-li. derivaci této funkce podle proměnné rovnou nule, platí odkud dn d cq ct = + =, cq = (3) c T Výpočtem. derivace funkce () ve zjištěném bodě bychom se přesvědčili, že jde o lokální minimum. Dosazením hodnoty do nákladové funkce () a po její úpravě získáme výraz pro minimální dosažitelné náklady. Platí ( ) = c c QT (4) N T Optimální délka dodacího cyklu, počítaná ze vztahu t =, je pak dána výrazem Q t ct = (5) c Q Pro výši zásob, při které je nutné vystavit objednávku, aby byla vyřízena do okamžiku vyčerpání zásob, lze odvodit vzorec Qd d r =, (6) T t d d kde je nejblíže nižší celé číslo k podílu. Jestliže pořizovací lhůta dodávky je kratší t t d než délka dodacího cyklu, =, takže vzorec (6) má jednodušší tvar t

4 r Qd = (7) T Příklad Podnik potřebuje pro výrobu ročně 8 tisíc kusů úzkoprofilových součástek. Fixní náklady na jednu objednávku činí tis. Kč, náklady na skladování jednoho kusu za rok činí Kč. Průměrná pořizovací lhůta dodávky je měsíce. Určete, N( ), t, r. Řešení: Do vzorců (3) až (5) dosadíme tyto hodnoty: c = Kč c = Kč T = rok Q =8 ks d = 6 roku Potom = **8 * = 6 36 * = 6 ks N ( ) = ** *8 * = 6 Kč t = * * *8 = roku 3 Protože je splněna podmínka d < t, pro výpočet bodu znovuobjednávky můžeme použít vzorec (7). Platí 8* r 6 = = 3 Závěr: Podnik by měl jedenkrát za 4 měsíce, kdy zásoby součástek klesnou na 3 ks, objednat 6 ks součástek. Zjištěná optimální výše objednávky je patrná i z obr.. B. Stochastické modely zásob Příkladem stochastického modelu zásob je model jednorázově vytvářené zásoby při náhodné poptávce. Tento model je vhodný pro zboží, které po jisté době zastarává - např. pro módní nebo sezónní výrobky, pečivo, ovoce, zeleninu, řezané květiny, noviny, náhradní součásti unikátních strojů apod. Předpokládejme, že pro dané časové období bylo zakoupeno zboží v množství a že poptávka po tomto zboží představuje diskrétní náhodnou veličinu, která nabyla hodnoty Q. Po skončení uvažovaného období mohou nastat dvě krajní situace: - Q, neboli zůstane neprodáno - Q jednotek zboží - Q, neboli bude chybět Q - jednotek zboží Ztráty vzniklé z přebytku nebo z nedostatku zboží v uvažovaném období jsou závislé jednak na rozdílu mezi zakoupeným množstvím zboží a poptávkou, jednak na velikosti ztrát z jednotky přebývajícího množství (označme ji c s ) a nedostávajícího se množství zboží (označme ji c z ). Známe-li pravděpodobnost, s jakou poptávka po zboží v daném období nabude hodnoty Q (označme ji P(Q)), pro očekávané celkové ztráty z přebytku nebo z nedostatku zboží při počáteční zásobě platí Z( ) = c ( Q) P( Q) + c ( Q ) P( Q) s z Q= Q= + (8)

5 Jestliže neuvažujeme náklady na pořízení zásob (provádí se pouze jedna objednávka) a na skladování (předpokládáme, že skladovací doba není dlouhá), cílem řešení uvažovaného modelu je stanovení takové výše počáteční zásoby (a tudíž i velikosti jednorázové dodávky zboží), aby očekávané ztráty vyjádřené výrazem (8) byly minimální. Jestliže funkce Z() má lokální minimum pouze v jednom bodě, pro optimální hodnotu objednávky lze odvodit vztah cz P( Q ) P( Q ) (9) cz + cs Při známých ztrátách c z a c s hodnotu určíme z uvedeného vztahu tak, že při daném rozdělení pravděpodobnosti poptávky spočítáme kumulativní pravděpodobnosti ΣP(Q) a najdeme takové dvě jejich sousední hodnoty, aby mezi nimi ležela hodnota zlomku c z /(c z +c s ). Jinou možností pro stanovení optimální velikosti počáteční zásoby je vyčíslení ztrát Z() pro různé hodnoty a výběr nejnižších ztrát. Lze odvodit, že zlomek c z /(c z +c s ) představuje tzv. úroveň obsluhy, tzn. pravděpodobnost, že nedojde k nedostatku zásob. Příklad Prodejce vánočních stromků se rozhoduje, kolik stromků má objednat u lesního závodu. Na základě zkušeností z minulých let odhaduje zájem o stromky tak, jak je uvedeno v tab.. Tab. Poptávka (ks) Pravděpodobnost,5,,5,35,5 Jestliže nebudou všechny stromky prodány, po Vánocích mohou být nabídnuty do zoologické zahrady nebo do zahradnictví, přičemž prodejce by tratil na každém stromku 8 Kč. Na stejnou částku prodejce odhadl i ušlý zisk z jednoho nedostávajícího se stromku v případě, že by zájem o stromky převýšil jejich objednaný počet. Při jakém počtu dodaných stromků budou očekávané ztráty z jejich přebytku nebo nedostatku co nejmenší? Řešení: Zadaný problém je možné vyřešit s využitím vztahu (9), pro jehož aplikaci je nutné spočítat kumulativní pravděpodobnosti poptávky po stromcích. Tyto pravděpodobnosti jsou uvedeny v tab.. V řešené úloze je míra obsluhy rovna,5, přičemž z tab. vyplývá,4 <,5 <,75. Optimálním počtem objednaných vánočních stromků je tedy 8 kusů. Při tomto počtu budou očekávané ztráty z přebytku nebo z nedostatku stromků, počítané podle vzorce (8), 68 Kč. Tab. Poptávka (ks) Pravděpodobnost Kumulativní pravděpodobnost,5,5 4,,5 6,5,4 8,35,75,5,

Úvod Modely zásob Shrnutí. Teorie zásob. Kristýna Slabá. 9. ledna 2009

Úvod Modely zásob Shrnutí. Teorie zásob. Kristýna Slabá. 9. ledna 2009 Teorie zásob Kristýna Slabá 9. ledna 2009 Obsah 1 Úvod Teorie Klasifikace zásob 2 Modely zásob Teorie Klasifikace modelů zásob Model zásob s okamžitou dodávkou Příklad Model zásob s postupnou dodávkou

Více

Teorie zásob. Kvantifikace zásob. V zásobách je vázáno v průměru 20 % kapitálu (u výrobních podniků) až 50 % kapitálu (u obchodních podniků).

Teorie zásob. Kvantifikace zásob. V zásobách je vázáno v průměru 20 % kapitálu (u výrobních podniků) až 50 % kapitálu (u obchodních podniků). Teorie zásob Souhrn matematických metod používaných k modelování a optimalizaci procesů hromadění různých položek k zabezpečení plynulého chodu zásobovaných složek. Kvantifikace zásob V zásobách je vázáno

Více

Matematické modelování 4EK201

Matematické modelování 4EK201 Matematické modelování 4EK0 Ukázkový test Maimum 00 bodů. Pokud má úloha lineárního programování více optimálních řešení, pak (a) jich může být nekonečně mnoho, (b) jich musí být nekonečně mnoho.. Doplňte

Více

Logistika v zásobování. Modely zásob.

Logistika v zásobování. Modely zásob. Logistika v zásobovz sobování. Modely zásob. z. Logistika v zásobovz sobování. Zásoby především tvoří suroviny, rozpracovaný materiál a polotovary. Za zásoby dále považujeme rozpracované výrobky, které

Více

Statické modely zásob Nazývají se také modely s jedním cyklem. Pořízení potřebných zásob se realizuje jedinou dodávkou.

Statické modely zásob Nazývají se také modely s jedním cyklem. Pořízení potřebných zásob se realizuje jedinou dodávkou. Statiké modely zásob Nazývají se také modely s jedním yklem. Pořízení potřebnýh zásob se realizuje jedinou dodávkou. Náklady na pořízení zásob jsou finí a nemohou ovlivňovat rozhodovaí strategii. Statiký

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Technická univerzita v Liberci Fakulta mechatroniky, informatiky a mezioborových studií. Petr Rálek, Josef Novák, Josef Chudoba

Technická univerzita v Liberci Fakulta mechatroniky, informatiky a mezioborových studií. Petr Rálek, Josef Novák, Josef Chudoba Technická univerzita v Liberci Fakulta mechatroniky, informatiky a mezioborových studií Metody užívané v logistice Petr Rálek, Josef Novák, Josef Chudoba Materiál byl vytvořený s podporou ESF v rámci projektu:

Více

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 MATERIÁL 5.1. CHARAKTERISTIKA EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 Ing. Jan TICHÝ, Ph.D. jan.tich@seznam.cz Materiál: a) základní materiál b) pomocný materiál c) provozní hmoty d) obaly ad a) zpracovává se

Více

Vstup a úkoly pro 4. kapitolu LOGISTIKA V ZÁSOBOVÁNÍ. MODELY ZÁSOB. Smysl zásob

Vstup a úkoly pro 4. kapitolu LOGISTIKA V ZÁSOBOVÁNÍ. MODELY ZÁSOB. Smysl zásob Vstup a úkoly pro 4. kapitolu LOGISTIKA V ZÁSOBOVÁNÍ. MODELY ZÁSOB. Smysl zásob Smyslem zásob je zajistit bezporuchový a plynulý výdej skladovaných položek do spotřeby. Jejich výše je ovlivněna požadavkem

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Teorie zásob Logistika a mezinárodní obchod

Teorie zásob Logistika a mezinárodní obchod Teorie zásob Logistika a mezinárodní obchod 1 ZÁSOBY JSOU IDENTIFIKÁTOREM NESCHOPNOSTI MANAGEMENTU FIRMU ŘÍDIT 2 Řízení zásob. www2.humusoft.cz/www/akce/witkonf07/.../gros_rizeni_zasob.pdf Teorie zásob

Více

VI. přednáška Řízení zásob II.

VI. přednáška Řízení zásob II. VI. přednáška Řízení zásob II. 1. Řízení zásob 2.1. Podstata, úkoly a nástroje řízení zásob Úkolem řízení zásob je jejich udržování na úrovni, která umožňuje kvalitní splnění jejich funkce: vyrovnávat

Více

Definice logistiky Evropská logistická asociace - ELA:

Definice logistiky Evropská logistická asociace - ELA: Definice logistiky Evropská logistická asociace - ELA: Organizace, plánování, řízení a výkon toků zboží, vývojem a nákupem počínaje, výrobou a distribucí podle objednávky finálního zákazníka konče tak,

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Optimalizace skladových zásob ve firmě Tradix, a. s.

Optimalizace skladových zásob ve firmě Tradix, a. s. Mendelova univerzita v Brně Provozně ekonomická fakulta Optimalizace skladových zásob ve firmě Tradix, a. s. Bakalářská práce Vedoucí práce: Ing. Pavel Kolman Libor Stojaspal Brno 2012 Rád bych poděkoval

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB

Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB Jaký je základní přístup k řízení zásob? Je to tzv. optimalizační přístup, který

Více

Obchodní přirážka. Procento obchodní přirážky

Obchodní přirážka. Procento obchodní přirážky Obchodní přirážka Žádná maloobchodní firma by nemohla přežít, kdyby nabízela zboží k prodeji za ceny, za které je nakoupila. O jakou částku může prodejní cena zboží převyšovat nákupní cenu, jak jsme již

Více

3/10 Plánování zásob ve v robním procesu

3/10 Plánování zásob ve v robním procesu EFEKTIVNÍ V ROBA část 3, díl 10, str. 1 3/10 Plánování zásob ve v robním procesu V dnešní době nelze hovořit o úspěšném zvládnutí výrobních a provozních činností a přitom nevěnovat bedlivou pozornost problematice

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Qopt. = (2 x C x D) / S

Qopt. = (2 x C x D) / S Příklad 1 Standartní výpočet Firma Trikot vyrábí oděvy a spotřebovává ročně 25 000 m látky. Variabilní na skladování 1 m látky jsou 22,50 Kč. Cena za 1 m látky je 80,- Kč. Variabilní na zajištění jedné

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Logistika. Souhrnné analýzy. Radek Havlík tel.: URL: listopad 2012 CO ZA KOLIK PROČ KDE

Logistika. Souhrnné analýzy. Radek Havlík tel.: URL:  listopad 2012 CO ZA KOLIK PROČ KDE Logistika Souhrnné analýzy listopad 2012 KDE PROČ KDY CO ZA KOLIK JAK KDO Radek Havlík tel.: 48 535 3366 e-mail: radek.havlik@tul.cz URL: http:\\www.kvs.tul.cz Paretova, ABC a XYZ analýzy Obsah Paretova

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Simulační modely. Kdy použít simulaci?

Simulační modely. Kdy použít simulaci? Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu

Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu Úloha 1 Podnik Firma vyrábí cyklistické rukavice. Předběžná kalkulace variabilních nákladů na

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Řízení oběžného majetku a řízení zásob

Řízení oběžného majetku a řízení zásob Řízení oběžného majetku a řízení zásob 1) Technické dokonalosti 2) Vyspělosti a vzdělanosti 3) Obchodní zdatnosti: a) cenovou politiku b) průzkum trhu c) ochranu proti rizikům podnikání d) majetkově finanční

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Příklady k T 1 (platí pro seminární skupiny 1,4,10,11)!!!

Příklady k T 1 (platí pro seminární skupiny 1,4,10,11)!!! Příklady k T 1 (platí pro seminární skupiny 1,4,10,11)!!! Příklad 1.: Podnik zvažuje dvě varianty (A z vlastních zdrojů, B s použitím cizího kapitálu) za těchto podmínek: Varianta A Varianta B Celkový

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

ŘÍZENÍ ZÁSOB. Ing. Gabriela Dlasková

ŘÍZENÍ ZÁSOB. Ing. Gabriela Dlasková ŘÍZENÍ ZÁSOB Ing. Gabriela Dlasková Povinná literatura: Kislingerová, E. a kol.: Manažerské finance, C.H.BECK, Praha 2010 ŘÍZENÍ ZÁSOB Management zásob: součást řízení pracovního kapitálu Důvod vzniku

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Makroekonomie I cvičení

Makroekonomie I cvičení Téma Makroekonomie I cvičení 25. 3. 015 Dvousektorový model ekonomiky Spotřební funkce Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Model 45 - jak je dosaženo rovnovážného HDP Východiska - graf: Osa x.

Více

SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum. Ak. rok 2011/2012 vbp 1

SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum. Ak. rok 2011/2012 vbp 1 SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum Ak. rok 2011/2012 vbp 1 DEFINICE Operační výzkum je prostředek pro nalezení optimálního řešení daného problému při respektování celé řady různorodých omezení,

Více

Inventory Costing. Skorkovský

Inventory Costing. Skorkovský Inventory Costing Skorkovský Základní pojmy I Zaúčtované položky (transakce) zpracované účetními nástroji NAVI mohou poskytnout informaci o zisku ve zvolených periodách Role skladového účetnictví tkví

Více

Optimalizace skladových zásob ve firmě Molat spol. s r. o. - Stavebniny

Optimalizace skladových zásob ve firmě Molat spol. s r. o. - Stavebniny Mendelova univerzita v Brně Provozně ekonomická fakulta Optimalizace skladových zásob ve firmě Molat spol. s r. o. - Stavebniny Bakalářská práce Vedoucí práce: Ing. Pavel Kolman Eva Ševčíková Brno 2010

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

5 NÁKLADY PODNIKU A JEJICH KALKULACE

5 NÁKLADY PODNIKU A JEJICH KALKULACE 5 NÁKLADY PODNIKU A JEJICH KALKULACE Náklady podniku můžeme charakterizovat jako peněžně vyjádřenou spotřebu výrobních faktorů účelně vynaložených na tvorbu podnikových výnosů včetně dalších nutných nákladů

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Výpočet pravděpodobností

Výpočet pravděpodobností Výpočet pravděpodobností Pravděpodobnostní kalkulátor v programu STATISTICA Cvičení 5 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen 2016 Ambrožová Klára Trocha teorie Náhodné jevy mají

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Zásobovací činnost podniku

Zásobovací činnost podniku Zásobovací činnost podniku Didaktické zpracování učiva pro střední školy Činnost obchodního úseku Obchodní úsek Logistika (zásobování) Marketing (odbyt) plánování nákup skladování Osnova učiva 1. Zařazení

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

1 Odvození poptávkové křivky

1 Odvození poptávkové křivky Odvození poptávkové křivky Optimalizační chování domácností (maximalizace užitku) vzhledem k rozpočtovému omezení. Nejprve odvodíme deterministický model, který potom rozšíříme o stochastické prvky. Odvozené

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA FAKULTA PROVOZNĚ EKONOMICKÁ OBCHODNÍ LOGISTIKA. Výběr dodavatele. Zpracovali: Pavel Jaroš, 4.

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA FAKULTA PROVOZNĚ EKONOMICKÁ OBCHODNÍ LOGISTIKA. Výběr dodavatele. Zpracovali: Pavel Jaroš, 4. MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA FAKULTA PROVOZNĚ EKONOMICKÁ OBCHODNÍ LOGISTIKA Výběr dodavatele Zpracovali: Pavel Jaroš, 4. ročník, ME Datum: 27.11.2001 Jan Kula, 4. ročník, ME Ú V O D Stavební

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Kvantitativní metody v rozhodování. Marta Doubková

Kvantitativní metody v rozhodování. Marta Doubková Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Semestrální projekt z předmětu Podnikový management

Semestrální projekt z předmětu Podnikový management Semestrální projekt z předmětu Podnikový management Filip Šimek, 2005 simekf1@fel.cvut.cz Strana 1 / 7 1. Podnikatelský plán, zakladatelský rozpočet Podnikatelský plán je dokument, který vystihuje oblast

Více

Logistické náklady, vztahy logistických činností a logistických nákladů

Logistické náklady, vztahy logistických činností a logistických nákladů Není tomu příliš dlouho, kdy se výrobní a obchodní činnost společnosti odvíjela od základní rovnice Cena = náklady + zisk V současnosti tento vztah neplatí!! Cenu neurčuje prodejce zboží, ale především

Více

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL DOKONALÁ KONKURENCE Trh dokonalé konkurence je charakterizován velkým počtem prodávajících, kteří vyrábějí homogenní produkt a nemohou ovlivnit tržní

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Logistika-teorie zásob, řízení zásob, doprava

Logistika-teorie zásob, řízení zásob, doprava Logistika-teorie zásob, řízení zásob, doprava Ing. Hana Pechová Vedoucí práce: doc. Ing. Vratislav Preclík, CSc. Abstrakt Logistika je velmi důležitá pro funkčnost firmy. Finanční ztráty jsou příčinou

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

PŘECHODOVÝ JEV V RC OBVODU

PŘECHODOVÝ JEV V RC OBVODU PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí

Více

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti pravděpodobnosti pravděpodobnosti Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá část kapitoly 11 ze skript [1] a vše, co se nachází v kapitole 5 sbírky úloh [2] tuto kapitolu 5 sbírky úloh

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Metoda nejmenších čtverců.

Metoda nejmenších čtverců. Metoda nejmenších čtverců. Robert Mařík 22. ledna 2006 Obsah 1 Motivace a geometrický význam 2 2 Vzorec 12 3 Příklad použití 13 4 Odvození vzorce 21 5 Otázky pozorného čtenáře 23 c Robert Mařík, 2006 1

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více